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Abstract Due to the ability of the blood–brain barrier (BBB) to prevent the entry of drugs into the brain, it is a
challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology
provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are
reviewed, including the BBB, blood–brain tumor barrier (BBTB), and nose-to-brain barrier. Delivery strategies are
focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The
major concerns and perspectives on constructing brain-targeted delivery systems are discussed.
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1. Introduction

In the past two decades, nanotechnology has been developing quickly
and is widely used in disease diagnosis and treatment. Various kinds of
nanoparticle (NP)-based drug delivery systems have been constructed
using emerging novel nanomaterials. These NPs include liposomes,
dendrimers, micelles, polymer nanoparticles and inorganic nanoparti-
cles1, which can carry therapeutic drugs or imaging probes and deliver
them to target site. NPs provide many benefits, including improving
the solubility, protecting cargoes from digestion by enzymes, elevating
targeting efficiency and enhancing cellular internalization. Therefore,
NPs have gained increasing attention in the field of medicine and
biology.

Currently, disorders in central nervous system (CNS) with sig-
nificant consequences and attention include Alzheimer's disease (AD),
Parkinson's disease (PD) and brain tumors2. However, the diagnosis
and treatment of CNS disorders is far from impressive, owing to the
restriction by blood–brain barrier (BBB) of drug transport into the
brain3, with almost 100% of the macromolecular drugs and over 98%
of the small-molecule drug candidates unable to enter the brain4. Other
than nutrients, only small lipophilic molecules (o500 Da) can
effectively cross the BBB and reach an efficacious brain concentra-
tion5. To conquer the BBB and deliver diagnostic and therapeutic
drugs to the brain, various kinds of strategies have been developed
using NPs as carriers.

In this review, the biology of the BBB and other neural barriers
that restrict brain-targeted drug delivery are described. Recent
advances in brain-targeted drug delivery are discussed which focus
on NPs-based strategies. Lastly, the shortage of recent studies and
potential future approaches are discussed.
2. Physical barriers in brain targeting

2.1. BBB

The BBB is the most important barrier in brain-targeted delivery. It
was first discovered by Ehrlich in 1885, who found that intravenously
injected dye could stain most organs except the brain6,7. The BBB is
composed of several kinds of cells, including brain capillary endothe-
lial cells (BCECs), pericytes, astrocytes and neuronal cells8,9. BCECs
are the main component of BBB. Different from peripheral endothelial
cells, BCECs possess several specific characteristics9. Most impor-
tantly, the continuous tight junctions between the BCECs prevent
paracellular transport of compounds from blood to brain9. These tight
junctions also result in extremely high transendothelial electrical
resistance (TEER) between the blood and brain and the passive
diffusion of compounds is considerably restricted8,10. Despite the
restriction on passive diffusion and paracellular transport from blood to
brain, there are various kinds of transporters or carriers that can
mediate the uptake to brain or extrusion from brain9,11,12 of various
substances, as discussed in Section 3.

2.2. Blood–brain tumor barrier (BBTB)

In brain tumors, especially in advanced brain tumors, the BBB is
compromised in the core but is integral in the surrounding area13,14.
For example, the distribution of erlotinib in the U87 tumor core is
4.69-fold higher than that in the brain around the tumor core15.
However, drug distribution to brain tumor is more restricted than is
found with peripheral tumors. In a metastatic breast tumor-bearing
mouse model, the lapatinib concentration in lung metastasis tissue is
5.15-fold higher than that in brain metastasis16. It is assumed that the
BBTB restricted the distribution of drugs from blood to brain
tumor2,17,18. Compared with blood tumor barriers in peripheral tumors,
the BBTB exhibits a smaller pore size and expresses a higher level of
drug efflux pumps, such as P-glycoprotein, multidrug-resistance-
associated proteins, and breast-cancer resistance protein19–23.
2.3. Nose to brain barrier

The anatomy, physiology and brain delivery route of the nasal
cavity have been well reviewed24,25. Basically, two parts of the
nasal cavity, the respiratory region and the olfactory region, are
responsible for drug absorption into brain or blood. Through the
respiratory region mucosa some compounds can enter the systemic
circulatory system and subsequently cross the BBB to brain, while
some can be directly transported to brain via the trigeminal nerve
pathway or lamina propria adsorption from perivascular and
lymphatic spaces25. Through the olfactory mucosa compounds
can be transported into the olfactory bulbs and then into
cerebrospinal fluid through lamina propria absorption, olfactory
nerves, lymphatic and perivascular spaces, and the trigeminal
nerve pathway. Among these pathways, the olfactory mucosa
pathway is the most rapid, and thus it is the main pathway that
mediates drug delivery from the nasal cavity to the brain. None-
theless, the volume that can be intranasally administered is very
small (25–200 μL), which can limit the drug dose and the
concentration of drug transported into brain. The nasal cilial
clearance further diminishes the absorption time of drug in the
nasal cavity and drug metabolism and secretion can also inhibit the
drug transfer into the brain25.
3. Strategies to overcome the BBB

To deliver drugs to the brain, the BBB is the first barrier.
Researchers have developed various kinds of strategies to over-
come or bypass the BBB, including penetrating through BBB by
cellular internalization, opening BBB and intranasal delivery2.
3.1. Penetrating through BBB

Although the BBB is intact, there are many receptors and carriers that
are overexpressed on the BBB (Table 1)26–35, which can mediate the
transport of specific ligands and their cargoes. Additionally, the
membrane of the BBB is negatively-charged and shows high affinity
with positively-charged compounds, which could also trigger the
internalization by cells. Thus these kinds of ligands could mediate the
penetration of NPs through the BBB.
3.1.1. Receptor-mediated transportation
On the BBB many receptors are overexpressed, including the
transferrin (Tf) receptor, insulin receptor, low-density lipoprotein
receptor–related protein, nicotinic acetylcholine receptor, insulin-
like growth factor receptor, diphtheria toxin receptor, scavenger
receptor call B type, leptin receptor and the neonatal Fc recep-
tor12,30. These receptors can specifically bind with corresponding
ligands and trigger internalization into cells. Thus, the correspond-
ing ligands could be functionalized onto NPs to mediate their
transport through BBB. Due to the specificity of the interaction
between receptors and ligands, the receptor-mediated transport has



Table 1 Transporters of the blood–brain barrier (BBB).

Receptor-mediated transport Active efflux-mediated transport Transporter-mediated transport

Transferrin receptor26 Adenosine triphosphate-binding cassette (ABC) transporter,
subfamily B, member 1 (P-glycoprotein)31

Glucose transporter, member 133

Insulin receptor12

ABC transporter, subfamily C12
Large neutral amino acid29

Transporter, member 134Low-density lipoprotein receptor–
related protein27

ABC transporter, subfamily G, member 229

Cationic amino acid transporter,
member 112Nicotinic acetylcholine receptor28

Organic anion transporter12

Monocarboxylic acid transporter,
member 112

Insulin-like growth factor
receptor12

Organic anion-transporting polypeptide29

Concentrative nucleoside
transporter12

Diphtheria toxin receptor12

Glutamic acid, amino acid transporter32

Choline transporter35
Scavenger receptor call B type29

Taurine transporter29

Nucleobase transporter29
Leptin receptor12

Neonatal Fc receptor30
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been the most commonly used and successful strategy to deliver
NPs to brain through BBB.

The Tf receptor, which consists of two 90 kD subunits, is a
transmembrane glycoprotein that is overexpressed on brain
endothelial cells and serves to mediate the brain delivery of iron.
It is the most widely evaluated receptor in BBB targeting
delivery26. Tf, the specific protein of Tf receptor, was functiona-
lized onto various kinds of NPs to improve brain delivery36,37. In
these studies the Tf-modified NPs (Tf-NPs) showed better brain
capillary endothelial cell affinity and could deliver significantly
more cargo to the brain than did unmodified NPs. For example,
doxorubicin, a first-line chemotherapeutic, was loaded into Tf-NPs
and they showed significantly better anti-brain tumor effect, with
median survival time 70% longer than that of the doxorubicin
solution-treated brain tumor-bearing rats28. Tf-modified magnetic
silica poly(lactic-co-glycolic acid) (PLGA) NPs also showed the
ability to target delivery both doxorubicin and paclitaxel to brain
tumors38.

Although use of endogenous ligands allowed improved brain
targeting delivery of NPs, the endogenous ligands may bind with
the receptors and inhibit the binding efficiency of ligand-modified
NPs, thus diminishing the brain-targeting delivery efficiency. To
avoid this problem, antibodies against these receptors were
developed. The binding site of antibodies to the receptors was
different from that of ligands with receptors, and thus ligand
competition could be avoided. OX26 is an antibody that can
specifically recognize the Tf receptor. Pang et al.39 conjugated
OX26 onto NPs for brain-targeted delivery of NC1900, a
peptide for neurodegenerative disorders. The concentration of
OX26-NPs in brain tissue at 2 h after intravenous injection was
2.62-fold higher than that of unmodified NPs. As a result,
NC1900-loaded OX26-NPs showed the best treatment outcome
for AD bearing rats as determined by a water maze learning task
using scopolamine-induced learning and memory impairment rats.
Anti-Tf receptor antibody RI7217 and anti-Tf receptor single chain
antibody fragment (scFv) also showed the ability to mediate NP
transport across the BBB to improve drug delivery and gene
transfection40,41. Additionally, antibody to insulin receptor, 83–
14 mAb, possessed nearly 10-fold higher BBB penetrative effect
than the anti-Tf receptor antibody42. Thus Dieu et al.43 conjugated
83–14 mAb onto the surface of NPs for brain-targeted drug
delivery. In vitro results showed that the brain endothelial cells
could effectively take up 83–14 mAb modified NPs, which could
be inhibited by excess of 83–14 mAb.

Similarly, lactoferrin (Lf) is a mammalian cationic iron-binding
glycoprotein that belongs to the Tf family, and could bind with Lf
receptor which was overexpressed on BBB44. Results showed the
brain targeting effect of Lf was superior to Tf and OX2645. The
accumulation of Lf-conjugated NPs (Lf-NPs) in brain was 2.98-
fold higher than that of NPs46, while it was even 1.96-fold higher
than that of Tf-NPs47; thus Lf-NPs might be a better brain-
targeting drug delivery system than Tf-NPs. Hu et al.48 utilized Lf-
NPs to deliver urocortin (a peptide drug) to brain for PD treatment.
The results demonstrated that urocortin-loaded Lf-NPs attenuated
considerably the striatum lesion caused by 6-hydroxydopamine in
rats as determined by a behavioral test. Immunohistochemistry and
transmitter contents results further demonstrated that treatment
with urocortin-loaded Lf-NPs could prevent the loss of contents of
the transmitters in brain, which was similar to that in brain from
normal rats and significantly better than that of a control group and
an unmodified NPs group. Modification of Lf onto polymersomes
also showed enhanced brain accumulation, which could deliver
more S14G-humanin (a peptide drug) to protect rat brain from
learning and memory impairment induced by amyloid β25–35

49.
These results demonstrated that Lf could serve as an active BBB
targeting ligand to improve drug delivery to the brain.

However, protein ligands and antibodies possess several dis-
advantages, including poor stability, high immunogenicity, large
molecular weight and high cost in production, which limit the
application of these ligands. To avoid these problems, peptide-
based ligands have gained increasing attention. To generate
peptide ligands there are two common strategies: redesign from
protein ligands and selection from a peptide library2.

CDX is a peptide that was constructed using computer-assisted
redesign from the loop II region of candoxin, a ligand for the
nicotinic acetylcholine receptor (nAchR)50. Although the binding
affinity of CDX with nAchR is lower than that of candoxin, it
could still considerably improve the uptake of NPs by BCECs.
After loading with paclitaxel, CDX-modified NPs showed a better
anti-brain tumor effect, with a median survival time of 27 days,
which was significantly longer than that of untreated NPs (with a
median survival time of 20 days). Rabies virus glycoprotein
peptide (RVG29) is derived from the rabies virus glycoprotein
which can also bind with nAchR28 and it could also enhance the



Targeting nanoparticles for brain drug delivery 271
drug delivery to brain51,52. The apparent permeability coefficient
for the RVG-modified poly(mannitol-co-PEI) vector was
1.51� 10�4 cm/s, which was 2.23-fold higher than the vector
without RVG modification53. In vivo, the RVG-modified vector
effectively delivered GADPH siRNA and BACE1 siRNA into the
brain, while the gene knockdown efficiency was significantly
higher than that of the unmodified vector. Pepstatin A is a peptide
that can specific bind with P-gp on the BBB. Yu et al.54 attached it
to NPs to quantitate the level of P-gp, which contributes to
pharmacoresistance in refractory epilepsy. This strategy can
noninvasively image the status of P-gp using magnetic resonance
imaging (MRI) and fluorescent imaging after loading correspond-
ing probes into the NPs.

Phage display also can select a peptide from peptide library that
can bind a specific receptor or cells50. Using this method, T7
peptide (HAIYPRH) was modified and selected for specific
affinity with the Tf receptor through sequential rounds of negative
and positive selection55. Kuang et al.56 decorated T7 peptide onto
dendrimers to deliver DNA for gene therapy of brain cancer. The
modification with T7 significantly enhanced cellular uptake of the
dendrimers by the BCEC. The gene delivery efficiency could be
decreased with an excess of Tf, indicating that the uptake of T7-
modified dendrimers was mediated by the Tf receptor. After
intravenous injection, T7-modified dendrimers yielded 1.7-fold
higher gene expression in brain, demonstrating that T7 could act as
an effective brain targeting ligand. The T7 peptide was also used
for delivering photosensitizer-loaded gold NPs to brain tumor57.
In vivo imaging demonstrated that the T7 modification could
enhance brain accumulation of photosensitizer 6-fold higher than
that obtained with unmodified gold NPs.

Aptamers are another kind of small molecular ligand that can
recognize specific receptors on the BBB to improve brain targeted
delivery. Cheng et al.58 used an in vivo systematic evolution of
ligands by exponential enrichment (SELEX) to find aptamers that
could bind to and penetrate the BBB. The selected A15 aptamer
could effectively be taken up by bEnd.3 cells with high intensity
and distribute into whole brain. However, no published study used
the aptamer for mediating NP transport through the BBB.

There are also other ligands that could recruit proteins in plasma
which can bind with specific receptors. Apolipoproteins, including
apolipoprotein A (ApoA) and apolipoprotein E (ApoE) are serum
proteins that can be transported into brain through low-density
lipoprotein receptors which are highly expressed on BBB59,60. Thus
ApoA, ApoE, and the peptide derived from ApoE showed the ability
to mediate NPs transfer into brain61–65. Interestingly, non-ionic
surfactants could promote the adsorption of ApoE onto the surface
of NPs66. For example, polysorbate 80, an FDA-approved injectable
surfactant, could adsorb ApoE in serum when it was conjugated onto
NPs, and polysorbate 80-coated NPs have been evaluated as a brain
targeting delivery system by many groups67–70. Martins et al.69

evaluated the brain targeting efficiency of polysorbates 60 and 80
for enhancing brain targeting of NPs. Although the plasma area under
curve (AUC) of polysorbate 60–coated NPs was 1.18-fold higher than
that of polysorbate 80–coated NPs, the brain AUC of polysorbate 80–
coated NPs was 1.77-fold higher than that of polysorbate 60–coated
NPs, indicating that polysorbate 80 may be a better surfactant for brain
targeting. Jiang's group67 found that the brain targeting efficiency of
polysorbate 80–coated NPs was influenced by the particle size. After
comparing NPs with particle sizes of 70, 170, 220 and 345 nm, results
showed that the 70 nm polysorbate 80–coated NPs delivered cargoes
to brain most effectively. Recently, Shalviri et al.71 designed poly-
sorbate 80–coated NPs for the delivery of doxorubicin, fluorescent dye
and gadolinium (Gd) to image and treat brain metastasis72. Results
showed that the accumulation of polysorbate 80-coated NPs was
greatly higher than that of unmodified NPs as demonstrated by MRI,
fluorescent whole body imaging and fluorescent distribution in brain
slices. Consequently, doxorubicin-loaded polysorbate 80–coated NPs
caused considerably higher activation of caspase-3 expression and
apoptosis of brain tumor cells, resulting in a significantly smaller extent
of metastasis and longer survival time (Fig. 1)72.

3.1.2. Transporter-mediated transport
Most nutritive materials that the brain requires are supplied by the
blood. Thus transporters for these nutritive materials including
hexose transporters, amino acid transporters and monocarboxylate
transporters (Table 1) are usually overexpressed on the BBB and
can be used for brain targeted delivery12,73.

Glutathione is an endogenous tripeptide that shows antioxidant
properties. The glutathione transporter is highly expressed on the BBB,
and thus researchers conjugated it onto liposomes to deliver various
drugs to brain74. Using a fluorescent probe as a tracker, intravenous
injection of glutathione-modified liposomes could cause 4-fold higher
accumulation in brain than unmodified liposomes75. Using glutathione-
modified liposomes as a drug delivery system, several drugs have been
delivered into the brain76,77. For example, doxorubicin-loaded glu-
tathione-modified liposomes were under evaluation in clinical trial. A
protein drug, β amyloid–binding llama single domain antibody
fragments (VHH-pa2H), could be loaded into the glutathione-
modified liposomes78. After intravenous injection, the concentration
in brain of APP/PS1 transgenic mice was over 10-fold higher than that
of the free drug. This system is promising because of the safety,
convenience of large-scale production, and controllable pharmacoki-
netics of liposomes. The human applicability of glutathione conjug-
ates also contributes to the attraction of the glutathione-modified
liposomes79.

The choline transporter is also highly expressed on the BBB
because the brain needs choline to synthesize the cholinergic
neurotransmitter acetylcholine35. 11C-choline has been used to diagnose
brain tumors80, which demonstrated the choline could penetrate BBB.
However, as choline was not suitable for modification, Li et al.81

developed several bis-quaternary ammonium compounds with high
affinity for the choline transporter. To select the best ligand for the
choline transporter, the inhibitory effect on the uptake of choline
chloride by BCECs was determined, and the compound with the best
inhibitory effect was selected as a ligand to be modified onto
dendrimers. An in vitro study determined that modification with a
choline derivative allowed more efficient uptake by BCEC compared
with unmodified dendrimers. After loading with plasmid DNA, the
brain from choline-derivative-modified dendrimer-treated mice showed
higher gene expression, demonstrating that the choline derivative was
an effective BBB targeted delivery ligand. The same drug delivery
system was also used for delivering MRI contrast Gd and codelivery of
DNA and doxorubicin, both of which showed excellent brain targeted
delivery efficiency82,83.

3.1.3. Adsorptive-mediated transportation
Adsorptive-mediated brain targeting is practicable because the
negatively charged BBB can interact with positively charged drug
delivery systems on the basis of the electrostatic effect12. Cationic
proteins and peptides, such as cationized bovine serum albumin
(CBSA), could be used for adsorptive-mediated brain targeted
drug delivery.

CBSA was prepared from bovine serum albumin through cationiza-
tion. After decorating onto NPs, CBSA could significantly improve



Figure 1 Inhibition of brain tumor growth in NRG-SCID mice. (A) Treatment schedule with saline (200 μL), doxorubincin (Dox) (10 mg/kg;
200 μL), or Dox-loaded NPs (10 mg/kg Dox; 200 μL). Treatments were administered on day 0 and 14. (B) In vivo images of brain tumor
bioluminescence. (C) Fold increase in the average tumor radiance as measured by in vivo bioluminescence imaging. Data presented as
mean7SEM (n¼5 for saline; n¼7 for free Dox and Dox-NP). Statistical significance of Po0.05 denoted by asterisk (*). This study demonstrated
that polysorbate 80 modification could enhance the brain-targeted delivery of NPs, resulting in an improved anti-brain tumor effect. Reprinted from
Ref. 72 with permission of the copyright holder, American Chemical Society. Dox, doxorubicin; NP, nanoparticle.
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cellular uptake by BCECs, with fluorescent intensity 2-fold higher than
that of unmodified NPs after 4 h incubation84. Additionally, the
modification with CBSA could increase not only the uptake by
BCECs but also the penetrating efficiency through an in vitro BBB
model. The apparent BBB permeability of CBSA-NPs was 2.7- to 9.0-
fold higher than that of unmodified NPs, while increasing the surface
density of CBSA from 33/NP to 372/NP increased the BBB
permeability from 2.7 to 9.0 85. In vivo, the accumulation in brain of
CBSA-modified NPs (CBSA-NPs) was 1.6-fold higher than that of
unmodified NP86. After loading NC-1900, an active compound for
treating of AD, CBSA-NPs treatment considerably improved memory
impairments to normal level, while the unmodified NPs only caused
modest improvement87. This kind of drug delivery system was also
used to deliver the tumor necrosis factor–related apoptosis-inducing
ligand (TRAIL) gene and aclarubicin to the brain88,89. Encapsulation
into CBSA-NPs led to 2.6- and 2.7-fold higher aclarubicin concentra-
tion in the brain tumor compared with unmodified NPs at 1 and 24 h,
respectively, after intravenous injection88. The CBSA-NPs also
showed higher TRAIL protein expression in brain tumor compared
with unmodified NPs when loading with TRAIL gene89. Several times
treatment of aclarubicin or TRAIL gene–loaded CBSA-NPs greatly
prolonged the median survival time of brain cancer-bearing mice,
which was 1.4-fold longer than that of unmodified NPs.

Additionally, cationized immunoglobulins, cationized monoan-
tibodies and histone have brain targeting properties via a similar
mechanism12. However, poor selectivity is the inherent short-
coming of adsorptive-mediated targeting because most biological
membranes are negatively charged. Due to this reason, adsorptive-
mediated targeting is rarely used in systemic administration.

3.1.4. Cell penetrating peptide (CPP)-related transport
CPPs were first discovered in 1988 from HIV and characterized
with the ability to facilitate cargo transport across cell mem-
branes90,91. As a negatively charged membrane, the BBB also
showed affinity for CPPs. Thus several groups utilized CPPs for
BBB penetration. Qin et al.92 showed that modification of
transactivating-transduction (TAT) onto liposomes (TAT-lipo-
somes) could enhance accumulation in brain, which was 2.54-
fold higher than that of unmodified liposomes. Other CPPs, such
as octaarginine, was also demonstrated to have BBB targeting
delivery potential, and the brain targeting efficiency was positively
related to the positive charge of the CPPs93. Another study showed
the TAT-conjugated chitosan NPs improved gene delivery to
brain94. TAT-modified gold NPs could deliver Gd3þ and doxor-
ubicin to glioma with better efficiency than Gd3þ and free
doxorubicin95. However, the interaction between CPPs and the
cell membrane was mainly considered unspecific96. Although
recently one study said their penetration through cell membrane
was mediated by fatty acids in the membranes97, this would not
provide the CPPs with cell selectivity. Therefore, CPP modifica-
tion improved BBB penetration as well as accumulation in other
organs, such as liver and spleen, leading to an increased risk of
drug-originating side effects98. For this reason CPP-modified NPs
are rarely used in brain targeting.
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To avoid this disadvantage, a bi-ligand was developed by
conjugating CPPs with a specific targeting ligand, providing the
CPP with cell selectivity. Additionally, the bi-ligand also could
overcome receptor saturation which restricts the internalization
efficiency of ligand-modified NPs99. Sharma et al.100,101 conju-
gated Tf with poly-L-arginine to form bi-ligand Tf-PR. In vitro, the
bEnd.3 cell uptake of Tf-PR-modified liposomes (Tf-PR-lipo-
somes) was significantly higher than that of Tf modified liposomes
(Tf-Liposomes) and poly-arginine-modified liposomes (PR-Lipo-
somes). Importantly, the transfer percentage through bEnd.3
monolayers of Tf-PR-liposomes was about 19% after 8 h incuba-
tion, which was considerably higher than that of Tf-liposomes
(about 13%) and PR-liposomes (about 10%)100. In vivo, the brain
targeting effect of Tf-PR-liposomes was approximately 2-fold
higher than the Tf-Liposomes. As a result, gene expression in
the brains of mice treated with gene-loaded Tf-PR-liposomes was
1.66-fold higher than that of Tf-Liposomes101.

Liu et al.102 also conjugated octaarginine with c(RGDfK)
peptide to form bi-ligand RRGD (Fig. 2). The bEnd.3 cell uptake
of RRGD modified liposomes (RRGD-liposomes) was 30- and 2-
fold higher than that of octaarginine modified liposomes (R-
liposomes) and c(RGDfK)-modified liposomes (RGD-liposomes).
The same trend was also observed in bEnd.3 monolayer penetra-
tion study. Consequently, the RRGD-liposomes showed the high-
est accumulation in brain tumor. After loading with paclitaxel,
RRGD-liposomes could extend the median survival time of brain
tumor bearing mice from 26 to 48 days, which was 1.33- and 1.26-
fold longer than that of mice treated with R-liposomes and RGD-
liposomes, respectively.
3.2. Temporarily open the BBB

Since BBB is the main barrier that restricts the transportation from
blood to brain, temporarily opening the BBB to enlarge the pore
Figure 2 Schematic illustration of paclitaxel (PTX)-loaded R8-RGD-mo
bind to integrin αvβ3 receptors expressed on brain capillary endothelial ce
synergistic effect. Liposomes could accumulate in the glioma tissue selectiv
from Ref. 102 with permission of the copyright holder, Elsevier, Amsterd
size could allow compounds or NPs to directly diffuse into brain.
Temporarily opening the BBB could be achieved by several
physical and pharmacological methods.

3.2.1. Chemical compounds enhanced BBB permeability
Borneol, a widely used messenger drug in traditional Chinese
medicine, can enhance the permeability of various membranes
including mucosa, skin and the BBB103. Zhang et al.104 evaluated
the effect of oral administration of borneol on brain targeted
delivery of NPs. Co-incubation BCECs with borneol and NPs
could significantly enhance the cellular uptake. In vivo, the brain
targeting index of co-administration versus that of administrating
NPs solely was 1.86, suggesting the borneol could significantly
enhance the brain accumulation of NPs. After loading with
huperzine A, the memory of AD mice treated with borneol and
NPs was considerably better than those of mice treated with NPs
solely, which was demonstrated by a Morris water maze experi-
ment. Similarly, alkylglycerols could open the BBB and facilitate
the brain delivery of drugs. Toman et al.105 modified alkylglycerol
onto dextran-graft-poly(lactic acid) NPs (PLA-DEX-OX4) for
brain targeted delivery. The penetration through bEnd.3 monolayer
of PLA-DEX-OX4 was higher than that of the unmodified NPs
and free dextran. Unfortunately, there is no significant difference,
suggesting that the efficiency of alkylglycerol modification was
sufficient. Since these compounds could only open the BBB above
a certain concentration, the BBB would return to intact status when
the blood concentration of these compounds was lower than the
threshold. Therefore, the dose and administration schedule must be
well-optimized.

3.2.2. Receptor-involved changing of tight junctions
Since tight junctions play an important role in keeping the integrity
of BBB and prohibiting the entry of molecules from blood to
brain, modification of the tightness of tight junctions is an
applicable method to improve the permeability of BBB.
dified liposomes (PTX-R8-RGD-lipo). Liposomes could specifically
lls and be transported across the blood–brain barrier (BBB) through a
ely, penetrate into the core region of tumor and release drug. Reprinted
am.



Huile Gao274
As G-protein-coupled receptors, adenosine receptors have four
subtypes: A1, A2A, A2B and A3106. Adenosine receptors have
been considered as promising therapeutic targets in many disor-
ders including CNS disorders. Many agonists and antagonists
of adenosine receptors have been discovered with therapeutic
effect107. Recently, it was pointed that activation of A1 and A2A
adenosine receptors could elevate the permeability of BBB in vivo.
One of the agonists of A2A, lexiscan, also could improve the
penetration of macromolecules through BBB. Incubating lexiscan
with bEnd.3 cell monolayers could decrease the TEER and
diminish the expression of occludin, caudin-5 and zonula
occludens-1 (ZO-1), which were all essential for keeping tight
junction integrity108. Thus agonists of adenosine receptors could
be used for brain targeting drug delivery.

However, the application of these agonists was restricted by
their short blood circulation time. Gao et al.109 conjugated lexiscan
onto dendrimers to form nanoagonists (NAs) to improve the brain-
targeted delivery of several model drugs. One of the nanoagnoists,
Den-Reg16 (conjugating 16 of lexiscan molecules onto 1 dendri-
mer), showed 7.7-fold higher binding affinity with the A2A
adenosine receptor than unmodified lexiscan. In vitro, the expres-
sion of ZO-1 in untreated bEnd.3 monolayers was continuously
aligned on the cell–cell interface, while Den-Reg16 treatment led
to discontinued expression even in absence of ZO-1, resulting in
68% reduction of TEER and 17.6-fold increase of permeability of
the model drug (1 mg/mL, 45 kDa). Compared with lexiscan
treatment, Den-Reg16 treatment still caused 4.6-fold higher
permeability of bEnd.3 monolayers. In vivo, the model drug
Figure 3 Brain drug delivery via nanoagonist (NA)-mediated adenosine re
radioactive model drug (3.7� 107 Bq/mouse) was injected at 30 min postinjec
fluorescence microscopic images of brain sections presenting cortex, striatum, an
(Den)-Reg16 (B) or Den-PEG (C). CD31 immunofluorescence indicating brain
stained nuclei are blue. Yellow areas present the co-localized vessel and mod
extravasated model drug. Scale bar, 50 μm. This study demonstrated that the ad
brain-targeted delivery of several model drugs. Reprinted from Ref. 109 wit
interpretation of the references to color in this figure legend, the reader is refer
accumulation in the brains of mice pretreated with Den-Reg16
was 6.8- and 3.6-fold higher than that of saline with lexiscan.
The increase in brain targeted delivery of model drug was
also determined by SPECT/CT (Fig. 3)109, suggesting that the
nanoagonists were promising adjuvants for improving BBB per-
meability.
3.2.3. Focused ultrasound
Focused ultrasound (FUS) can provide reversible BBB disruption-
enhanced permeability by concentrating acoustic energy to a focal
spot, which could be used for brain-targeted drug delivery66,110.
To improve the BBB disruption and minimize damage to
surrounding normal brain cells, many kinds of gas microbubbles
were used as cavitation nuclei to focus and convert the acoustic
energy into mechanical power. In this strategy, MRI is often
combined with FUS to direct the FUS energy and monitor the
local temperature elevation66.

The FUS has been used to enhance brain delivery of various
NPs. Etame et al.111 evaluated the distribution of gold NPs in two
hemispheres while one hemisphere was treated with FUS and the
other one was not. The concentration of gold NPs in the sonicated
hemisphere was 3.36 times higher than that of control hemisphere.
Treatment of doxorubicin-loaded liposomes with FUS enhanced
the median survival time of brain tumor-bearing mice from 23
days (control) and 27 days (treatment with doxorubicin loaded
liposomes only) to 35 days, while 3 of 8 mice survived over 140
days112.
ceptor signaling. (A) In vivo SPECT/CT images of mouse brain when
tion (PI) of 10 nmol NA, regadenoson (Reg), or saline via i.v. Confocal
d cerebellum areas when model drug was injected at 30 min PI of dendrimer
vasculature is displayed in green; model drug is displayed in red and DAPI-
el drugs. Arrows point to the leaky vessels, and arrowheads point to the
ministration of nanoagonists could temporarily open BBB and improve the
h permission of the copyright holder, American Chemical Society. (For
red to the web version of this article.)
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Combining FUS with other targeting methods could further elevate
the brain accumulation of drugs and NPs. For example, combining FUS
with magnetic targeting could further improve the brain accumulation of
magnetic NPs, which was 16.3-fold higher than FUS alone113.
Combing FUS with a targeting ligand modification also could further
elevate brain-targeted drug delivery. Compared with the combination of
FUS and doxorubicin-loaded liposomes, combination of FUS with
atherosclerotic plaque-specific peptide-1-modified liposomes increased
the tumor-to-contralateral brain ratios of drug from 2.1 to 3.8.

Although the toxicity of FUS to brain is considered minor and
neurotoxicity was not observed in a recent study114, the clinical
application of this method still needs to be viewed cautiously115.
Repeated application of FUS and microbubbles to open the BBB
over a long term (4–20 months) indicated lack of edema in the
majority of the cases116. But in a neurotoxicity test through
quantitative cognitive testing of visual, cognitive, motivational,
and motor function, a significant increase of reaction time during
the task was observed on the day of FUS and microbubbles
application. Fortunately, the reaction time returned to baseline
within 4–5 days after the procedure, demonstrating the safety of
this method.

3.3. Intranasal delivery to bypass the BBB

As noted above, there is a route to deliver drugs or NPs directly
from the nasal cavity to the brain, and thus intranasal delivery is
considered a promising strategy in brain-targeted drug delivery.
Drug solutions could be directly used for intranasal administration
and many absorption promoters or modulators have been devel-
oped to improve the intranasal delivery, which has been well
reviewed by Lisbeth Illum117. To protect the drugs from damage
by enzymes and further elevate the delivery efficiency, nanotech-
nology was also widely used in intranasal delivery25.

3.3.1. Unmodified NPs
Biocompatible NPs could not only protect the cargoes from
damage by enzymes in the nasal cavity but also protect the
mucosa and nasal cilia from toxicity caused by the drugs. Jiang's
group118 encapsulated nimodipine in microemulsions for intranasal
drug delivery. The AUC of nimodipine in brain cerebrum and
cerebrospinal fluid after intranasal administration of a microemul-
sion was 13.8-fold and 159-fold higher than that of intravenous
administration. Remarkably, the nimodipine microemulsion did
not cause ciliotoxicity at a dose much higher than the treatment
dose118. Intranasal administration of H102 peptide–loaded NPs
resulted in 1.6 to 2.9-fold higher concentration in different parts of
brain compared with intranasal administration of H102 peptide
solution119. Consequently, treatment of an AD mouse model was
considerably improved as characterized by the Morris water maze
test and activity of choline acetyltransferase and acetylcholines-
terases. Additionally, zidovudine-loaded solid lipid microparticles
showed the ability to intranasally deliver drug to cerebrospinal
fluid with 6-fold higher efficiency compared with zidovudine
solution120. Direct nose-to-brain transport was 61% for diazepam-
loaded NPs, while the number for diazepam solution was only
1%121. RNA-encapsulated NPs also demonstrated enhanced gene
expression in brain after intranasal administration122. These studies
suggest that NPs are superior in intranasal drug delivery than
solutions. However, the unmodified NPs lack cell internalization
efficiency and olfactory mucosa targeting ability, which could be
improved by specific ligand modification.
3.3.2. Agglutinant-mediated transport
It has been pointed out that the expression of some saccharide
groups, such as N-acetylglucosamine and L-fucose, on the olfac-
tory mucosa was considerably higher than that of respiratory
mucosa25. Thus, agglutinins could be used for enhancing intrana-
sal brain delivery because these agglutinins could bind with the
saccharide groups and trigger endocytosis.

Jiang's group first modified wheat germ agglutinin (WGA) onto
PLGA NPs (WGA-NPs) for intranasal delivery of cargoes25,123. Using
coumarin-6 as a fluorescent tracker, it showed the AUC of WGA-NPs
in various brain tissues (olfactory bulb, olfactory tract, cerebrum and
cerebellum) was approximately 2-fold higher than that of unmodified
NPs. Importantly, the nasal ciliotoxicity of WGA-NPs and unmodified
NPs was negligible as demonstrated by cilial movement, morphology
and integrity. WGA-NPs were used for delivering vasoactive intestinal
peptide (VIP), a peptide for AD treatment. The intact VIP in brain
delivered by WGA-NPs was as high as 11.48% ID h/g tissue, which
was 7.74- and 2.17-fold higher than intranasal administration of VIP
solution and unmodified NPs, respectively123. The better delivery
effect was attributed to the higher affinity of WGA-NPs for olfactory
mucosa and better penetrating ability through olfactory mucosa.
Intranasally administered WGA-NPs could reach the CNS via the
olfactory pathway and the trigeminal nerve pathway using extracellular
transport along these nerves124. Consequently, the VIP-loaded WGA-
NPs showed a better AD treatment outcome than the unmodified NPs
and VI solution123. Besides WGA, Ulex europeus agglutinin I (UEA
I), Solanum tuberosum lectin and odorranalectin was also demon-
strated to improve intranasal delivery of NPs125-127.

3.3.3. CPP mediated transport
CPPs can enhance transport through endothelial cells of nasal
cavity and therefore improve intranasal delivery. Direct co-
administration of CPP with macromolecules could considerably
enhance the brain delivery. For example, penetratin enabled
intranasally administrated insulin to distribute in regions of the
brain distal to the nasal cavity, including the cerebral cortex,
cerebellum, and brain stem128. Encapsulating insulin into CPP-
modified NPs could deliver 6% of insulin into brain, which was
much higher than that of unmodified NPs129. TAT-modified
micelles could also elevate the brain delivery of drugs. Taki
et al.130 encapsulated camptothecin into TAT-modified micelles.
After intranasal administration, the median survival time of glioma
bearing mice was prolonged significantly from 18.2 to 32.6 days,
which was much longer than that obtained with unmodified
micelles (22 days).
4. Directly targeting diseased cells in brain

4.1. Brain tumor targeting delivery

In brain tumor, especially in malignant brain tumor, the BBB is
compromised in brain tumors14, and thus NPs can reach brain
tumor directly through blood circulation and EPR effect, although
the EPR effect is weak compared with peripheral tumors20.

4.1.1. Passively targeting delivery
Our group showed that docetaxel-loaded nanoemulsion and albumin
NPs could passively target brain tumors, resulting in prolonged median
survival time relative to docetaxel injection131,132. Lapatinib-loaded
albumin NPs also showed enhanced anti-brain tumor effect as compared
to lapatinib tablets133. Guo et al.134 co-loaded tumor necrosis factor-



Figure 4 In vivo and ex vivo imaging. (A) Fluorescent imaging of glioma-bearing mice 2 h after administered DiR-loaded IL-13p-modified NPs
(ILNPs). (B) Fluorescent imaging of glioma-bearing mice 2 h after administration of DiR-loaded NPs. (C) Ex vivo imaging of brains 2 h after
administration of DiR-loaded ILNPs and NPs. (D) Semi-quantitative results of fluorescence intensity of gliomas, **Po0.01 vs. control. This study
demonstrated that modification with IL-13p could specifically enhance the brain tumor–targeting delivery of NPs. Reprinted from Ref. 142 with
permission of the copyright holder, Huile Gao.
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related apoptosis-inducing ligand (TRAIL) and doxorubicin into
PEGylated liposomes, which could prolong the median survival time
of brain tumor-bearing mice from 32 to 48 days. NPs formed by
assembly of poly(β-amino ester) with siRNA were able to effectively
knockdown gene expression in 91% of glioma cells without significant
cytotoxicity. At a low concentration of siRNA (4 nmol/L), the poly(β-
amino ester) NPs showed higher gene knockdown efficiency than
commercial lipofectamine 2000 at relative high concentration (20 nmol/
L siRNA)135.
4.1.2. Aptamer-mediated targeted delivery
To further improve brain tumor targeting effectiveness, ligands
could be modified onto the surface of NPs. The AS1411 aptamer
was discovered by SELEX to bind with nucleolin, a brain tumor-
overexpressed receptor136,137. AS1411-modified NPs (AsNPs)
showed about 2-fold higher uptake by brain tumor cells than that
of unmodified NPs138. In vivo, paclitaxel-loaded AsNPs delivered
significantly more paclitaxel to tumor tissue than did the unmo-
dified NPs, effectively reducing tumor growth (81.68% slower
than controls) and greatly prolonging the median survival time of
brain tumor-bearing mice (72% longer than controls)138. Another
aptamer, GMT-8 aptamer, also showed the ability to enhance brain
tumor-targeted delivery of NPs and improve its anti-brain tumor
effect139.
4.1.3. Peptide-mediated targeted delivery
Several peptides also have been utilized for improving brain tumor
targeting delivery. As a peptide derived from interlulin-13 protein,
interlukin-13 peptide (IL-13p) could specifically bind IL-13Rα2, a
receptor specifically overexpressed in brain tumor over normal brain
tissue140. Fillmore et al.141 demonstrated that modification of IL-13p
onto metallofullerenes could considerably increase uptake by brain
tumor cells. Our lab also showed that IL-13p-modified NPs (ILNPs)
could significantly and specifically elevate the uptake by brain tumor
cells rather than macrophage cells, resulting in better cell selectivity.
In vivo the brain tumor accumulation of ILNPs was 3.81-fold higher
than that of unmodified NPs (Fig. 4)142. Consequently, docetaxel-loaded
ILNPs showed better antitumor effect than unmodified NPs. The
median survival time of brain tumor bearing mice treated with ILNPs
was 1.83-fold longer and the tumor weight was 68.6% lower than that
of controls142-144. Other groups also demonstrated that the brain tumor
targeting ability of IL-13p through the modification of it onto polymer
NPs and mesoporous silica–coated graphene nanosheet145,146.

RGD also is a peptide that is widely used in brain tumor targeting
delivery because its target, integrin receptor αvβ3, is overexpressed on
brain tumor cells and especially on brain tumor neovessels147. In vitro,
RGD modification elevated the uptake by brain tumor cells of
dendrimers and upconversion NPs148,149. In vivo, RGD-modified NPs
delivered significantly more paclitaxel to the brain tumor, resulting in
higher tumor growth inhibition and longer median survival time of brain
tumor–bearing mice compared with unmodified NPs150. It was demon-
strated that the RGD-modified NPs accumulated more rapidly in brain
tumor and possessed higher permeability from vessels into tumor
parenchyma compared with the untargeted NPs151. After loading with
small hairpin (sh)RNA, the RGD-modified polyethylenimine-coated
gold nanorods (RDG) led to a 70% reduction of protein expression in
U87 glioma cells, which was 1.88-fold higher than obtained with
particles without RGD modification152. These studies demonstrate that
RGD modification could effectively conquer the BBTB.
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VTW peptide (VTWTPQAWFQWV), selected from a 12-mer
library using phage display, showed high binding affinity to U87 brain
tumor cells153. SWDIAWPPLKVP peptide was selected for affinity to
A172 brain tumor cells by phage display154. RGERPPR is a tumor-
penetrating peptide that could target neuropilin-1 on brain tumor
cells155. Heat shock protein (Hsp) 70 can target CD40 that is
overexpressed on brain tumor cells156. Chlorotoxin is a 36-amino acid
long peptide that can target matrix matalloproteinase-2 in brain
tumors157. After anchoring to NPs, these peptides could effectively
enhance the genes, drugs and imaging probe delivery to brain tumor
cells158–164. For example, chlorotoxin-coupled lipid NPs effectively
delivered anti-miR-21 oligonucleotides to glioma and promoted miR-21
silencing, resulting in decreased tumor cell proliferation and improved
animal survival165.

Another effective strategy is modification of NPs with two ligands
that target different part of brain tumors. Our laboratory modified NPs
with RGD and IL-13p to target both brain tumor neovessels and brain
tumor cells166–168. In an endothelial cell and brain tumor cell cocultured
model, RGD modification selectively elevated the uptake of NPs by
endothelial cells, IL-13p modification selectively elevated the uptake by
brain tumor cells while dual modification enhanced uptake by both
cells. In vivo immunofluorescent imaging also demonstrated the specific
targeting ability of RGD and IL-13p. Because RGD and IL-13p dual
modified NPs could deliver docetaxel to both neovasculature and tumor
cells of brain tumor, they showed better anti-brain tumor effect than the
single ligand modified NPs, suggesting it was a promising strategy to
target more than one cell type in a tumor.

4.2. Other diseased brain cell targeting

Cerebral amyloid angiopathy (CAA) is characterized by the
accumulation of amyloid beta (Aβ) proteins within the walls of
brain blood vessels169. Thus drug could directly target to Aβ
through the blood circulation without the need for penetrating
through BBB. Agyare et al.170 modified F(ab0)2 fragment of anti-
amyloid antibody, IgG4.1 (pF(ab0)24.1) directly onto cyclopho-
sphamide loaded theranostic NPs. In vivo the pF(ab0)24.1 modified
NPs could effectively target cerebrovascular amyloid and reduce
pro-inflammatory cytokine production by the Aβ-challenged BBB
endothelium, which was better than that obtained with
unmodified NPs.
5. BBB and diseased cell dual targeted delivery

Although brain targeting delivery systems could enhance the
distribution of drugs in brain, the distribution of NPs in brain
after penetrating through BBB or after bypassing the BBB is a big
concern. If the NPs unselectively distribute in the whole brain, the
improvement of treatment outcome caused by elevated drug
concentration might accompany even worse side effect to CNS2.
Additionally, as one of the most important organs, brain is more
sensitive to toxicants. Thus an ideal brain targeting drug delivery
system should possess two characteristics: (1) effective penetration
of the BBB or bypassing BBB, (2) selectively targeting diseased
cells while minimizing the distribution into normal brain cells. To
achieve these two goals, dual brain targeting drug delivery systems
were developed. Normally, the “dual brain targeting” means there
are ligands for brain targeting and ligands for diseased cells in one
drug delivery system. If a ligand could target both brain and
diseased brain cells, ligand-modified drug delivery system also can
be considered as dual brain targeting drug delivery system.
5.1. Two ligand modification for two targets

To demonstrate the possibility, we constructed a kind of angiopep-2 and
EGFP–EGF1 dual modified NPs (AENPs) for specifically targeting
neuroglial cells in normal brain because the low-density lipoprotein
receptor–related protein (LRP) (receptor of angiopep-2) is overexpressed
on the BBB, and thus could bind with EGFP-EGF1, which is
overexpressed on neuroglial cells while minimally expressed on
endothelial cells171–173. In vitro, the angiopep-2 modification specifically
increased cellular uptake of NPs by bEnd.3 cells (a generally used cell
line to represent BCECs) rather than neuroglial cells, while the EGFP-
EGF1 modification specifically improved cellular uptake by neuroglial
cells rather than bEnd.3 cells. Consequently, the dual modification could
improve cellular uptake by both kinds of cells. As a result, AENP could
not only target to brain but also specifically colocalize with neuroglial
cells as demonstrated by in vivo fluorescent imaging and immuno-
fluorescence of brain slices172. These results demonstrated that the dual
targeting delivery system could indeed enhance both brain targeting and
cell selectivity in brain.

This strategy was used for treatment of several brain disorders. TGN
peptide was selected by phage display and showed good BBB-targeting
efficiency, and AS1411 aptamer is a brain tumor targeting ligand which
has been discussed above136,174. We functionalized these two ligands
onto NPs for brain tumor dual targeting drug delivery175. In vitro, the
constructed system, AsTNPs, could penetrate through the BBB model
and then be taken up by brain tumor cells, with a significantly higher
penetration ratio and uptake intensity than the single ligand-modified
NPs176. In vivo, the accumulation of AsTNPs in brain tumor was 4.91-
fold higher than that of unmodified NPs (Fig. 5)175. More importantly,
to evaluate the glioma-selective distribution in brain, the intensity ratio
of glioma to brain (T/N ratio) was evaluated. It was discovered that
although TGN modification could enhance the glioma intensity
resulting from BBB penetration, the T/N ratio of TGN modified NPs
was only 1.2, which was even lower than unmodified NPs (T/N ratio
was 1.6). In contrast, T/N ratio of AsTNPs was as high as 2.6,
suggesting that dual modification could not only improve the accumula-
tion in brain tumor but also the selectivity in brain. Consequently, a low
dose of docetaxel-loaded AsTNPs could effectively prolong the median
survival time of brain tumor–bearing mice from 17 to 32 days, while at
this dose, the unmodified NPs and free docetaxel showed no therapeutic
effect175. This study clearly demonstrated the superiority of dual
targeting drug delivery systems to traditional brain targeting drug
delivery systems.

This strategy was also used in AD treatment. The accumulation
and aggregation of Aβ forms the amyloid plaque, which is the
dominant characteristic of AD177. Approximately 96% of the total
Aβ is Aβ1–42, the most toxic isoform that possesses high tendency
toward aggregation178. Thus Aβ1–42 is a promising target for
treatment of AD. QSH peptide (QSHYRHISPAQV) was selected
using mirror-image phage display against Aβ1–42

179. Both in mice
and humans, QSH showed high binding affinity with Aβ1–42

180.
Therefore, Zhang et al.181 conjugated QSH and TGN onto NPs
(TQNPs) for dual targeted delivery to amyloid plaque of AD mice.
Compared with TGN-modified NPs (TNPs which could only
penetrate through BBB), TQNPs delivered 1.62-fold and 1.84-
fold higher amounts of fluorescent probe and H102 peptide (a
therapeutic peptide for AD), respectively, to the brain hippocam-
pus, where the Aβ1–42 was pre-implanted to establish an AD
mouse model181,182. This indicated that modification with QSH
considerably improved the selectivity of NPs in brain when they
penetrated BBB as mediated by TGN peptide. Consequently,
the spatial learning and memory of the AD model mice in the



Figure 5 (A) The in vivo imaging of DiR-loaded NPs, AS1411 conjugated NPs (AsNPs), AsTNPs and TGN modified NPs (TNP) in the brain
glioma-bearing nude mice at several time points with ex vivo imaging of the brain at 24 h. (B) Brain and glioma fluorescent intensity at 24 h.
(C) The T/N ratio of the brains 24 h after treatment with different formulations. This study demonstrated that the dual targeting delivery strategy
could not only increase the brain targeting efficiency but also improve the selectivity to brain tumor cells. Reprinted from Ref. 175 with permission
of the copyright holder, Elsevier, Amsterdam.

Huile Gao278
H102-loaded TQNPs group, as demonstrated by Morris water
maze experiment, were significantly improved compared with the
AD control group as well as the other treatment group including
the H102-loaded TNPs group. The nerve cell damage caused by
Aβ accumulation in hippocampus was significantly attenuated by
treatment of H102 loaded TQNPs, which was similar to a healthy
brain. These results demonstrated that the dual brain targeting
delivery system could considerably improve the treatment outcome
of AD, which is better than traditional brain targeting drug
delivery system, and thereby represents a promising direction in
this field.

There are many studies developing various kinds of dual
ligands–modified drug delivery systems, which all showed better
drug delivery efficiency than the single ligand-modified drug
delivery systems, including B6 peptide (for Tf receptor) and
RGD peptide (for integrin receptor)183, Tf and RGD184,185, Tfn
and tamoxifen (to inhibit MDR protein)186, WGA and Tf187, D-
manno-pyranoside and Tf188, cationic bovine serum albumin and
mannose189, angiopep-2 and RGD190, angiopep-2 and tLyP-1 (for
neuropilin-1 receptor)191, des-octanoyl ghrelin (for Tf receptor)
and folate (for folate receptor)192, Tf and folate193, mannose-
vitamin E derivative (for glucose transporters) and dequalinium-
lipid derivative (for adsorptive mediated transportation)194, OX26
and chlorotoxin195, lactoferrin and folate196, c(RGDyK) and
folate197, phosphatidic acid (for Aβ binding) and an ApoE-
derived peptide198, Tf and vitamin E199. However, these studies
focused mainly on the enhanced cell selectivity and internalization
by multivalent effect200 rather than the ability to conquer different
barrier sequentially.
5.2. Fusion proteins and peptides

Fusion proteins and peptides could be used for dual targeting
because they can combine the active domains of two ligands into
one ligand. Pardridge's group201 developed many fusion proteins
to produce therapeutic monoclonal antibodies with BBB-
penetrating ability. However, these proteins were mostly used as
drugs directly rather than targeting ligands in the reported studies.
5.3. One ligand for one target on two site

In addition to fusion proteins or peptides, some ligands can
directly target two sites because their receptors or transporters
are overexpressed on both BBB and diseased brain cells, such as
LRP and Tf receptor202–204.

Angiopep-2 (TFFYGGSRGKRNNFKTEEY, molecular weight
2.4 kDa) belongs to a family called angiopep, which was derived
from the Kunitz domain of aprotinin205. Angiopep-2 shows high
binding affinity with LRP, and thus it could act as a dual-targeting
ligand to deliver NPs that penetrate BBB and target brain tumors.
Xin et al.206 demonstrated that angiopep-2 modification enhanced
BBB penetration and distribution of NPs in brains of normal mice.
In brain tumor–bearing mice angiopep-2 modification could not
only increase the distribution in brain but also the distribution in
brain tumor207. Consequently, the median survival time of brain
tumor–bearing mice treated with paclitaxel-loaded angiopep-2-
modified NPs lasted from 22 to 37 days, which was significantly
longer than that obtained with unmodified NPs27. The angiopep-2
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modification also could elevate gene expression in brain when
using liposomes as gene delivery vectors208. Recently, there were
several studies using angiopep-2 as a dual targeting ligand to
successfully deliver inorganic NPs, such as gold NPs and
upconversion nanoprobes, to brain tumor for diagnosis or treat-
ment209,210. Lactoferrin could also target to LRP. Lactoferrin
modification could enhance the uptake of NPs by both bEnd.3
cells and C6 glioma cells. In vivo, the doxorubicin concentration in
glioma of mice treated with lactoferrin-modified NPs was almost
4-fold higher than that of unmodified NPs211. These studies from
different groups demonstrated that the dual targeting delivery
using a single ligand is a promising strategy for brain, especially
brain tumor, targeted delivery.

In addition to receptors, there also are some transporters over-
expressed on both the BBB and in brain tumor cells. D-Glucose
transporter protein (GLUT) shows particularly high concentration in
brain microvessels, about 100-fold higher than the Tf receptor30,212.
P-aminophenyl-α-D-mannopyranoside, a substrate of GLUT1 and
GLUT3, showed the ability of improving brain accumulation of
liposomes213,214. Additionally, GLUT is also over-expressed on brain
tumor cells33. Thus, Jiang et al.215 utilized 2-deoxy-D-glucose as dual
targeting ligand for brain tumor-targeted delivery. Both the bEnd.3
monolayer transportation and brain tumor cell uptake of NPs were
significantly elevated after 2-deoxy-D-glucose modification. In vitro,
the brain tumor accumulation of 2-deoxy-D-glucose-modified NPs was
considerably higher than that of unmodified NPs, resulting in greatly
longer median survival time of brain tumor-bearing mice. Large amino
acid transporter 1 (LAT1) also is overexpressed on both BBB and
glioma cells, thus both glutamate and phenylalanine could effectively
improve the delivery efficiency of NPs to glioma through dual
targeting strategy34,216.

5.4. Combining intranasal administration and diseased cell
targeting

Combining intranasal delivery and diseased brain cell targeting
ligand is another strategy to construct a dual targeting delivery
system. Histological studies showed that the lactoferrin receptor
was overexpressed on the apical surface of respiratory epithelia
cells, brain endothelial cells and neurons, and the overexpression
of lactoferrin receptor in the CNS was associated with age-rel-
ated neurodegenerative diseases217,218. Thus, Liu et al.219 modi-
fied lactoferrin onto NPs to intranasally deliver a short neuropep-
tide (NAP) to the brain of AD-bearing mice. The AUC of
lactoferrin-modified NPs in hippocampus was 2.23-fold higher
than that of unmodified NPs. Consequently, the memory of AD
mice treated with NAP-loaded lactoferrin-modified NPs was
significantly better than that of mice treated with unmodified
NPs. The neuron density in the hippocampus was also consider-
ably higher than that of mice treated with unmodified NPs.

5.5. Combining FUS and diseased cell targeting

As a method to open the BBB, FUS also could be combined with
brain tumor cell-targeting NPs. Vascular endothelial growth factor A
(VEGF-A) can bind with and activate brain tumor endothelial cells
overexpressing VEGF receptor tyrosine kinase type R2 (VEGF-R2) to
regulate brain tumor angiogenesis220. Although FUS combination with
1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) loaded microbubbles
could effectively deliver BCNU to brain, the modification of micro-
bubbles with VEGF-A ligand combined with FUS further improved
the brain concentration from 24.66 to 45.97 μg/g tissue. Consequently,
the brain tumor growth speed of combination treatment (from day 6 to
day 34 increased 5.02 times) was greatly lower than that of FUS
combined with BCNU loaded unmodified microbubbles (from day
6 to day 34 increased 18.54 times), and the median survival time also
increased by 121%221.
5.6. Overview of the dual targeting delivery strategies

Because more than one barrier is often faced in targeting delivery of
drugs to brain disorders, dual targeting delivery strategies was
developed, showing better BBB penetrating efficiency and higher
drug accumulation in diseased brain tissues, and superior to BBB
targeting and diseased brain cells targeting strategy alone. However,
these systems are still lacking. The ligand intensity, especially the
intensity ratio between two ligands, needs to be optimized. Addition-
ally, we have no idea about the transport pathways to diseased brain
cells after the systems penetrate through BBB.
6. Major concerns in constructing brain-targeted delivery
systems

6.1. Potential neurotoxicity of the NPs

CNS is highly protected from exposure to xenobiotics and toxic
substances by the BBB66. The brain targeting delivery system is a
double-edged sword because it improves the drug concentration in
diseased cells of brain as well as the drug and NPs exposure to
normal brain, which may result in elevated side effect. In recent
years, the neurotoxicity of NPs and nanomaterials has gained
increasing attention. BBB targeting delivery system unselectively
improved the concentration of systems in the whole brain, which
may lead to unfavorable side effect. Therefore, dual brain targeting
drug delivery systems will be the future direction in brain targeting
delivery field and should gain increasing attention.
6.2. Drug release during transport of the drug delivery systems

Although the drug delivery systems, and especially the dual
targeting drug delivery systems, enhanced the targeting effective-
ness for diseased brain cells and improved the therapeutic outcome
of drug treatment, the drug-loaded delivery systems also distrib-
uted to normal tissues, which may cause drug-originated adverse
effects. Additionally, drug release in the blood circulation would
diminish the drug concentration in the target site. Thus a desirable
drug delivery system should keep most drug bound during
delivery procedures and in normal tissues, and quickly release
drugs when they arrive at the target site. To address this goal, our
group constructed a pH-sensitive dual targeting delivery system
and the model drug, doxorubicin was anchored using a hydrazone
bond211. The system could target brain tumors because of the
angiopep-2 modification. In brain tumor tissue the doxorubicin
could be specifically released because of the hydrolysis of
hydrazone at low pH222. Shao et al.223 fabricated NPs with a
cross linker to coat the drug-containing core, which effectively
prevented the drug from release during the delivery procedure.
When the system reached the targeted tumor the linker was de-
shielded by the highly concentrated glutathione (GSH) in tumor
cells224.
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6.3. The homogeneity of brain targeting drug delivery systems

In the drug delivery systems there are many factors that can affect
the targeting efficiency, such as particle size, surface properties,
ligand properties, and ligand density. Through optimization
researchers could improve brain targeting drug delivery systems.
For example, Pang et al.39 found the optimized number of OX26
conjugated per polymersome was 34 because more OX26 led to
quicker clearance from blood and less OX26 led to poor targeting
ability. However, this number means that the average density of
OX26 on polymersomes was 34. It is hard, if not impossible, to
ensure that every particle was homogeneously conjugated with 34
OX26 molecules. The lack of homogeneity may diminish the
targeting efficiency of these systems.

Taking particle size as another example: The particle size of NPs
considerably affects the in vivo behavior and distribution of NPs.
Larger sized NPs tend to be trapped by lung and smaller sized NPs
tend to be eliminated by kidney. Particle size also affected BBB
permeability and diseased cell permeability. For example, the cutoff
pore size of the U87 brain tumor model is 7–100 nm20, which means
drug delivery systems with size higher than 100 nm would have
difficulty accessing U87 brain tumors. Another study showed the gold
NPs at 70 nm possessed the best penetration effect through bEnd.3
monolayers among 20–110 nm gold NPs225. Additionally, the particle
size can affect the elimination and penetration in diseases tissues, such
as tumor226-229. To address this problem, some kinds of size change-
able NPs were developed, which showed both better tumor retention
and tumor penetration229-231. However, there are still other problems.
For most biodegradable NPs, the size range is wide, for example,
“mean particle size is 200 nm” is only a statistical description, which
may actually refer to “a mixture of particles that range from 50 nm to
400 nm”. The response to physical barriers of the mixture of particles
was hard to predict and control. Recently, Particle Replication in Non-
wetting Templates (PRINTs) emerged with the ability to produce
uniform NP232, which may partly solve the above problems. However,
no ligand modified PRINT particles were prepared until early 2016.

6.4. The protein corona may hinder targeted delivery

A protein corona is formed as soon as NPs are introduced into
biological fluids233. The protein corona is formed by serum
proteins which can be divided into opsonin and dyopsonin due
to their different role in the alteration of the blood circulation time
of NPs234. In addition to the alteration of the distribution of NPs,
the protein corona may cover the targeting ligand and hinder the
specific reaction between ligands and their targets. For example,
incubating Tf-modified NPs with serum-containing culture med-
ium considerably decreased the specific interaction between Tf and
Tf receptor on cells235. A consistent result was provided by
Mirshafiee et al.236 using bicyclononyne and azide as model
interaction. Unfortunately, most studies on brain targeted drug
delivery systems did not evaluate the formation and influence of
protein corona.

6.5. The off-target potential of brain-targeted delivery

The basis of ligand-modified NPs for brain-targeted delivery is that
these ligands can specifically react with their receptors or
transporters and these receptors and transporters are highly and
specifically expressed on the BBB and/or brain diseased cells. As
discussed above, the protein corona may attenuate the specific
reaction between ligand and receptor/transporter. In addition, the
expression of receptors/transporters in other tissues could also lead
to off-target effects. Unfortunately, most, if not all, of the
receptors/transporters also expressed on normal cells. For example,
the Tf receptor is overexpressed on BBB and brain tumor cells, but
it is expressed on almost all cells at various levels237. Therefore, it
is hard to avoid off-target effects when using endogenous
receptors/transporters as a target. However, labeling target cells
with exogenous ligand as a target may avoid the off-target effect.
9-Azido sialic acid could be incorporated into brain because the
metabolism of brain cells requires a high level of sialic acid. The
systemic administration of an alkyne-functionalized biotin probe
could then be labeled onto brain cells due to the azide-alkyne click
reaction, resulting in specific imaging of brain sialoglycans in
living animals238.

7. Perspectives

CNS disorders are difficult to treat pharmacologically due to the
protection of the brain by the BBB. Brain-targeted drug delivery
has gained increasing attention. Due to the barriers in delivering
drugs to diseased brain tissues and cells, constructing brain-
targeted drug delivery systems is the most promising strategy to
address this natural defense.

To achieve this purpose, several basic concerns should be
addressed in the future: (1) the materials should be biodegradable
and able to be eliminated from brain, which would provide the
brain-targeted drug delivery systems with biological safety; (2) a
uniform preparation method should be developed to make the NPs
more homogenous and predictable; (3) the factors that influence
in vivo behavior of NPs should be well elucidated and evaluated,
which is fundamental for constructing brain-targeted drug delivery
systems; (4) the targeting efficiency is far from satisfactory, and
considerable improvement should be made before their clinical
application.

Overall, tremendous development has occurred in brain target-
ing during past two decades. Although it is still in development, it
will play an increasingly important role in treating CNS disorders.
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