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ABSTRACT

The invertebrate Galleria mellonella has increasingly and widely been used in the last few years to
study complex host-microbe interactions. Aspergillus fumigatus is one of the most pathogenic
fungi causing life-threatening diseases in humans and animals. Galleria mellonella larvae has been
proven as a reliable model for the analysis of pathogenesis and virulence factors, enable to screen
a large number of A. fumigatus strains. This review describes the different uses of G. mellonella to
study A. fumigatus and provides a comparison of the different protocols to trace fungal patho-
genicity. The review also includes a summary of the diverse mutants tested in G. mellonella, and
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their respective contribution to A. fumigatus virulence. Previous investigations indicated that
G. mellonella should be considered as an interesting tool even though a mammalian model

may be required to complete and verify initial data.

Introduction

Rodent models are the gold standard in clinical studies
and in vivo experiments and have been extensively used
for a better understanding of the physiopathology of
infectious diseases. International fundamental regula-
tion 3Rs rules (Replacement, Reduction, and
Refinement) guarantee welfare of animals and encou-
rage researchers to replace traditional rodent models
with alternative, non-mammalian models [1]. Since the
early 2000s, and particularly over the last few years,
many articles on invertebrate and mini-host models
have been published in the literature. Until now, the
ethical rules have never been applied to the use of
insects and nematodes [2]. For instance, fruit fly
Drosophila melanogaster has been the best-known
invertebrate model used in genetic and developmental
biology studies for over 100 years [3]. Other inverte-
brates such as the beetle Tribolium castaneum, the
nematode Caenorhabditis  elegans, the butterfly
Bombyx mori, the moth Galleria mellonella, or the non-
mammalian vertebrate model Danio rerio are also used
[3-7]. Their genome, immunity, and physiology were
analyzed through many environmental and medical
studies. In microbiology, C. elegans, D. melanogaster,
and G. mellonella have recently been demonstrated as

interesting tools to evaluate the virulence and the
pathogenesis of human pathogens, e.g. fungi. These
models were successfully used in virulence assays,
immunity tests, histopathology analyses, or new anti-
microbial drugs testings [8].

One of these alternative models, G. mellonella, has
attracted increasing attention in recent years because of
the many advantages it provides to study microorgan-
isms. Galleria mellonella is become one of the most
popular invertebrate models with more than 2,200
scientific articles published (search terms “Galleria mel-
lonella” on Pubmed) (Figure 1). The moth G. mellonella
belongs to the Lepidoptera order and is present world-
wide as a ubiquitous pest of honeybees that destroys
honeycombs by feeding on bee wax, honey, and bee
pollen [9]. In research laboratories, its last larval stage
can be used, just before transformation into a pupa.
Many recent reviews [10-15] describe very well all the
advantages and disadvantages of this mini-host model,
and some benefits deserve attention. Larvae are natu-
rally exposed to pathogens and have developed immune
defense systems, which have many similarities with the
innate immune system of vertebrates. The moth innate
immune system, mediated by hemocytes, can fight
against a large spectrum of pathogens via phagocytosis,
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Figure 1. Publications mentioning A. fumigatus and G. mellonella on Pubmed.

(A) Evolution of the number of publications on A.fumigatus and G.mellonella over the period 2010 — august 2020; (B) Details of the
publication on A. fumigatus studies with virulence, resistance to antifungal in G. mellonella; (C) number of articles in the literature and in the

review on the G. mellonella model

melanization, and secretion of antimicrobial peptides
[16]. Other intriguing points are its fast and high
reproductive rate at low cost and the easy maintenance
of its larvae in laboratory without the need for expen-
sive equipment [17,18]. In comparison with other
invertebrate models, G. mellonella can survive within
a wide temperature range (18°C to 37°C) [3,5], an
essential point to mimic mammals physiology and facil-
itate the study of human pathogens. Furthermore, the
genome of G. mellonella was entirely sequenced in 2018
[19], which makes it easy to have well-defined popula-
tions of larvae, and perhaps allows to create a biobank
with database as with other invertebrate models,
Flybase and WormBase [12]. In our experience and
according to Amorim-Vaz et al., Eisenman et al., and
more recently Champion et al., the main limitation of
this model is the difficulty to have reproducibility of
results compared with the mice models [20-22]. The
reasons for this are probably the origin of larvae, the
different rearing conditions, temperature of storage,
nutrition, genetics, and age of larvae used in the experi-
ments [23-26]. This limitation highlights the need for
standardization to make G. mellonella a more reliable
model [22].

Galleria mellonella has been used for the complex
study of host-microbe interactions, especially host-
fungi interactions [4,6,24-30]. This model is now
recognized as a pertinent model to the study of the
fungal infections [31,32]. Aspergillus fumigatus remains
one of the most common pathogenic fungi known to
colonize the respiratory tract of patients with chronic

lung diseases (e.g. cystic fibrosis), and to cause invasive
fungal infections in immunocompromised patients [-
33-35]. The mini-host model G. mellonella has been
used to evaluate the virulence of A. fumigatus, where
mutants are tested to investigate the role of specific
protein in the pathogenicity, and eventually to try to
find a target for novel antifungal therapies.

This review aims to compare the different protocols
published in the literature to study A. fumigatus in
G. mellonella, and to present the virulence studies
already conducted in this mini-host model. We also
present the currently available literature concerning
the virulence of A. fumigatus in a G. mellonella model
with several clinical and environmental strains includ-
ing data obtained in our research team [29]. This study
does not tackle the antifungal treatments tested on
A. fumigatus in the G. mellonella model. The latter are
included in an additional review of our team and in
other recent articles [36,37]

Galleria mellonella model

Galleria mellonella, also known as the wax moth,
belongs to the Pyralidae family in the Lepidopteran
order. Morphology and characteristics of every stage
of its lifecycle are precisely described in Kwadha et al.
and Ellis et al. [9,17]. Briefly, the larvae have six legs on
the thorax, eight prolegs on the abdominal segment,
a digestive tube, vessels, silk glands, and a nervous
system (Figure 2). Duration of its life cycle can vary
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Figure 2. Anatomy of a larva of Galleria mellonella, adapted from Singkum et al., 2018 [15] and Engel and Moran, 2013 [40].

from weeks to month depending on several factors,
especially food, temperature, and humidity. An artifi-
cial food composed of a blend of honey and various
cereals [38,39] can be used, but the need for food
diminishes with the successive metamorphosis. Thus,
food composition could have an impact on pupation,
larval stage duration, volume of hemolymph, and den-
sity of hemocytes. Larvae can spin a silken thread in all
stages, but they surround themselves with a cocoon
only during their last stage. Now it is well known that
food and environmental condition, such as tempera-
ture, humidity and darkness could play a role in the
susceptibility to infection. That is why the scientific
community endeavors to uniform breeding procedure
to limit this source of bias. Jorjao et al. and more
recently Firacative et al. proposed an optimal method
to rear G. mellonella in laboratories for microbiological
studies (dietary components, description of environ-
mental conditions, and a detailed protocol for all life
stages of G. mellonella) [32,38].

Immune response of G. mellonella to A. fumigatus

In insects, only the innate immune system is effective
and can protect against a large spectrum of pathogens
including fungi [41,42]. G. mellonella immune system is
an open circulating system of which hemolymph is the
key element. This innate immune system comprises
three parts: (i) physical barrier, (ii) cellular and (iii)
humoral immune systems [13]. The cuticle, composed
of chitin and many proteins with antimicrobial

properties, represents the first protection line, that
acts as a barrier to prevent the entry of pathogens.
The cellular component consists of several types of
cells, called hemocytes [16,43], circulating in the hemo-
lymph to ensure of phagocytosis [44,45], encapsulation,
and clotting activities [13]. At early stages of infection,
the increase in circulating hemocyte density is due to
release of attached hemocytes from internal organs.
Furthermore, the humoral component, released by the
hemolymph and body fat, consists of soluble effector
molecules including opsonin, e.g. ApoLp-III, a pattern
recognition molecule which can bind to 8-1,3 glucan of
numerous fungus cell wall [46]. Another element of the
humoral system is lytic enzymes which harbor several
antimicrobial peptides (AMPs).

The process of melanization, a fundamental role of
the humoral system in arthropods, is activated upon
the penetration of a foreign particle into the larva body
[13]. Melanin synthesis, catalyzed by phenoloxidase,
limits the spread of microorganisms through the for-
mation of nodules visible on histological sections.
Once inside the larva, A. fumigatus stimulate hemo-
cytes to increase in density at early stages of infection
(2 h). However, the action of several fungal toxins,
such as fumagillin and gliotoxin, can counterbalance
the physical action of the fungus by inhibiting the
action of hemocytes [47,48]. After several hours,
A. fumigatus can invade larvae with hyphae. This
process results in the formation of nodules dissemi-
nated all over the body of larva and not only near the
site of inoculation (Figure 3). If the infection is
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Figure 3. Histological analysis of A. fumigatus infection in Galleria mellonella.

Sagittal section of G. mellonella infected with A. fumigatus. (A) Larvae fixed in paraffin; (B) Gomori-Grocott stain; (C) A. fumigatus nodules
after 3 days of infection (10° conidia/larva); (D) A. fumigatus nodules after 7 days of infection (10° conidia/larva)

controlled by the immune system, the larva can sur-
vive. On the contrary, if the immune system cannot
control infection, the larvae become completely mela-
nized and die. Many factors can influence the immune
response of larvae, such as physical, nutritional, ther-
mal stress, or exposure to cell wall components [44—-
44-49]. Recently, Sheehan et al described the immune
response of G. mellonella larvae and the factors influ-
encing it [49].

Experimental design for virulence assay

Infection with filamentous fungi

Homogenous groups of 10 to 20 larvae with cream-
color cuticle, of about 200-300 mg weight, 1-3 cm
length and spontaneous mobility, are generally used.
The larvae should be manipulated delicately to avoid
physical stress. After infection, larvae are maintained
up to 37°C without feeding. Control groups are also
essential to ensure that the trauma of inoculation or the
use of buffer do not affect the larvae survival. Three

methods are used to infect the larvae: topical applica-
tion, ingestion, and injection.

Topical application of fungi causes penetration into
the exoskeleton, which is close to natural fungal con-
tamination. Some authors utilized this trauma-free
method to inoculate larvae by immersion in a conidial
suspension of Beauveria bassiana for about 10s [50,51].
In another study, 5 pL containing Aspergillus flavus
(1x10° to 1 x 10® conidia/mL) was directly applied on
the dorsal surface of larvae [52]. Overall, this method is
rarely used because of reproducibility issues linked to
the difficulty having a precise inoculum delivery into
the larvae.

Forced-feeding (ingestion) consists in inserting
10 uL of fungal suspension into the larval mouthpart
using a micro-injector and a needle [53,54,68].

The preferred and the most commonly used method
to study interaction between filamentous fungi and
G. mellonella is the injection of inoculum into larval
hemocoel by pricking the cuticle with a needle at the
last proleg [26]. The last left proleg is the preferred site
for injection but other sites are possible, if necessary
[27]. The main upside of this method is the better
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delivery of a precise inoculum (5 to 20 pL per larva)
using either an insulin or a Hamilton syringe. The latter
is more precise to inoculate small volumes. An insulin
syringe with an automatic applicator could be used for
larger quantities and faster inoculations [26,55,56]. The
injection is almost scarless for the larva but there is
some risk for the operator (especially for BSL-3 micro-
organisms) that could be avoided with proper restraint
and handling techniques [55,57]. Differences between
the employed protocols in terms of inoculum prepara-
tion, technique of inoculation, and experimental con-
ditions are described in Table 1.

Follow-up of A. fumigatus infection

Mortality monitoring

For the analysis of strains virulence, larvae survival is
monitored over time after inoculation, most often every
24 h for 5 days. Larvae movements gradually decreases,
reflecting the progression of fungal infection, but to
a variable extent depending on fungal species and
strains. Determining the best concentration of fungal
inoculum is crucial to achieve a substantial killing rate
[27]. Inoculum-finding experiments allow to calculate
the median and 90% lethal doses (LD50 and LD90),
and to compare the survival after wild-type and mutant
strains inoculation to assess different virulence factors
[56,71].

Morbidity monitoring

Another method can be used to assess the morbidity of
larvae, based on several criteria of follow-up. The eva-
luation of morbidity gives more details on the progres-
sion of infection within the larvae. A scoring system
that comprises four main criteria, melanization, mobi-
lity, capacity to form silk cocoon, and survival, has been
used in some studies [14,22,72]. Melanization is an
immune process visible to the naked eye and deemed
completed when the larva is dead, and the immune
response is overtaken. Thus, the degree of melanization
is correlated with morbidity and a key element to assess
the general condition of the larva. Larval mobility is
evaluated individually on spontaneous and stimulated
movements. The capacity of larva to turn around and
move forward is a strong indicator of good health. The
same is said for its capacity to form a silk cocoon.
Initially, when the larva is not infected, a whole, highly
resistant cocoon forms around it. As the infection
spreads, the ability of the larva to form a cocoon
decrease. In the pre-mortem phase, the larva can only
form a few silk threads. The last criterion is the larval
survival as shown in the details of morbidity score and
modified by our team (Table 2). Each group obtains

a final score 24 h after injection that seems predictive of
the end of the experiment [29].

Histological analyses
To study pathogenesis and the host-pathogen interac-
tions, histological analysis is recommended, especially
to describe tissue damage caused by fungal infection.
A procedure was developed to analyze C. albicans viru-
lence and to assess morphological changes in larva
body [73]. This procedure can also be used with other
fungal species. It consists in injecting formalin into the
larvae which are then stored at 4°C for a few days.
Later, larvae are carefully dissected from sagittal or
transversal lines and stained with Gomori-Grocott or
Hematoxylin and Eosin (HE). Recently, Sheehan et al.
have provided histological data on
A. fumigatus infection, and highlighted the usefulness
of G. mellonella larvae, albeit they have no respiratory
system [74]. Indeed, the development of invasive asper-
gillosis in larvae shows similarities to that occurring in
mammals. Sheehan et al. showed that the inoculation of
conidia is followed by (i) the formation of melanized
nodules and (ii) an increase in the density of hemocytes
and antimicrobial peptides. These nodules have
a histological structure similar to the granulomas
detected in the mouse model of aspergillosis. In their
work, they utilized a technique that does not require
the use of formalin: larvae were embedded in
Bioinvision Cryo-Imaging Embedding Compound,
and flash-frozen in liquid nitrogen. Then, slides were
made with Cryoviz for a specific cryo-imaging.
Infected larvae melanized with time by forming mel-
anized capsules that surrounded the pathogens, and
their internal organs were disorganized by the infec-
tion. Many authors used the melanization or tissue
damage to better understand the progress of infection
and the effect of fungal mutants on larvae as visualized
by histological analysis and Gomori-Grocott staining
[75,76]. In a work of our team, we analyzed the pro-
gress of A. fumigatus infection in larvae after 3 days (A)
and 7 days (B) with appearance of melanized nodules
and granulomas containing both conidia and hyphae
(Figure 3). Number and size of these granulomas,
which are distributed all over the larva, increased over
time after infection (personal data).

invasive

Galleria mellonella-based screening to study
virulence factors of Aspergillus fumigatus

Origin of strains

The relationship between virulence and the origin of
the strains has insufficiently been studied.
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Larva Maintenance of larva Monitoring
selection Larva/ Inoculation Inoculum (during of
Ref. criteria group (in hemocoel) conidia/larva Before inoculation After inoculation experiment)
[85,86,96] 0.3-0.5¢ 16 10 uL 5x10° / In Petri dishes, in the dark, at Every 12 h
No gray 37°C (8 days)
marking
[95] / 20 54 5x10° / At 37°C Daily
(5 days)
[88,91,94] 6th -instar 15  5uL 2x10° / At 37°C Daily
larvae (5 days)
[43] 6™ -instar 20 20 pL 1x10* In wood shavings, in the In Petri dishes, in the dark, at Daily
larvae Myjector U-100 Insulin dark, at 15°C 30°C (5 days)
0.2-04 g needle
[29,58] / 10 10l 03x10° / At 37°C Daily
Hamilton syringe to , (7 days)
3x10
[108] / 30 20 uL 1x10%0r  / / Daily
1% 10 (7 days)
[59,60,112] 6™ -instar 20 20 pL 1x107 In the dark, at 18°C In the dark, at 30°C Daily
larvae (6 days)
03-04 g
[110] 0.275 and 30  Hamilton syringe 1x10° / In Petri dish, in the dark, at 37° After 16 h,
0.300 g C every 2 h
No gray (30 h)
marking
[61] 6™ -instar / 20 pL 1x107 In the dark, at 18°C In the dark, at 30°C Daily
larvae (6 days)
[106] 6™ -instar / Myjector U-100 insulin 1x10* to In the dark, at 15°C At 30°C /
larvae syringe 1% 107
0.2-04 g
[97] 6" -instar 12 54 5x10° / In Petri dishes, in the dark, at Daily,
larvae Hamilton syringe 37°C (5 days)
0.25-0.35 g
[62] / 30 5L 5x107 / / Every 12 h
(5 days)
[109] No gray 10to 20 pL 5x10° / / Daily
marking 15 Disposable 29.5-gauge 2x10° (7 days)
029 hypodermic needle
[63] Final-instar 10 10 L 1x10° In wood shavings, in the dark In Petri dishes, in the dark, at Daily
larvae Hamilton syringe 37°C (5 days)
02g
[64] Final-instar 10 5uL 1x10° Without food, at 37°C, in the In Petri dishes, in the dark, at Daily
larvae dark for 24 h 37°C (10 days)
0.275-0.300 g
[76] Sixth instar / 1x10° / In the dark, at 37°C Daily
larvae (10 days)
[771 6™ -instar /5 1x10° / In the dark, at 37°C Daily
larvae (10 days)
03g
[65] 6" -instar 30to 5L 5x10° In wood shavings, in the In Petri dishes, in a dark Daily
larvae 35 Hamilton syringe dark, at room temperature  humidified incubator at 37° (8 days)
[89] 0.30-0.35 g 16 10 pL 5x10° / In the dark, at 37°C Every 12 h
(5 days)
[66] / 30 20l 5x10° / / Daily
(3 days)
[97] 0.275-0300g 30 10 pL 1x10°or / In Petri dishes, in the dark, at  After 16 h,
1x10° 37°C every 2 h
(7 days)
[107] 6M-instar 20 or 20 pL 1x10° or In wood shavings, in the / Daily
larvae 30 1x107 dark, at 15°C (4 days)
0.2-04 g
167) / 12-28 20 uL 8x10" / At 37°C Daily
(7 days)
[98] 03-054g 10 10 L 5x10° At 8°C In the dark, at 37°C Every 8 h
(6 days)
[90] 0.275-0.300 g 10 5uL 1x10° 37°  / At 37°C or 30°C Every 12 h
(@] (6 days)
5x10° (30°
(@]
[81] / 30 10uL 1x108 to In wood shavings, in the In Petri dishes, in the dark, at Daily
Hamilton 1 mL gas-tight ~ 1x10° dark, at 4°C for up to 37°C (7 days)
syringe 10 days
[83] 0.25-030 g 10 5pL 500 CFU/  / In Petri dishes, in the dark, at Daily
Hamilton syringe 25 pL uL 37°C, with pine wood chips (8 days)
[69] 6™ instar 30 10pL 1x10° / In the dark, at 37°C Daily
larvae Braun Omnican 50-U 100 (7 days)
15-25 mm 0.5 mL insulin syringe

length
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Table 2. Examples of scores for monitoring pathogenicity in
Galleria mellonella.
Loh et al., health

index scoring
system [73]

Melloul et al., 2018 [29]

Category Description Score Description Score
Activity No movement 0  No movement 0
Minimal 1 No turn around and 1
movement 2 minimal movement 2
on 3 on stimulation 3
stimulation Difficult turn around
Move when and weak
stimulated spontaneous mobility
Move without Normal, able to turn
stimulation around and move
Cocoon No cocoon 0 No cocoon 0
formation Partial cocoon 0.5  Full cocoon 1
Full cocoon 1
Melanization Black larvae 0  Melanized larvae 0
Black spots on 1 No melanized larva 1
brown 2
larvae 3
>3 spots on 4
beige larvae
<3 spots on
beige larvae
No
melanization
Survival Dead 0  Dead 0
Alive 2 Alive 1
In rodents models, studies showed that

A. fumigatus environmental isolates were less virulent
than clinical isolates [77-79]. Similarly, Alshareef
et al. observed that clinical strains (n = 10) appeared
to be more virulent than the environmental ones
(n = 20) in a G. mellonella model [80]. However,
high variability was also observed between isolates
of the same origin [80], even between isogenic strains
isolated from a single chronic granulomatous disease
patient [81].

Other studies showed opposite results; Cheema
and Christians [82] observed a lower survival rate
of G. mellonella larvae inoculated with environmen-
tal strains (n = 8) compared with clinical isolates
(n = 8). In the same way, Knox et al. showed that
two A. fumigatus isolates collected in the
International Space Station were more lethal than
the clinical reference strain in zebrafish model [83].

These discordant results preclude any conclusion
of isolate origin effect on virulence of A. fumigatus in
G. mellonella model. Moreover, a recent study [84]
has analyzed the whole-genome sequence of
A. fumigatus isolates to determine their virulence
genes content and revealed a high genetic diversity
between environmental and clinical isolates, as well
as between clinical isolates from the same patient, but
a similar virulence genes content.

Up to now, no animal-origin strains have been
tested in G. mellonella model. In our team, we have
tested for the first-time the pathogenicity of two differ-
ent animal A. fumigatus strains collected from wild
fauna (AF_A1l) and from a duck (AF_A2) [29]. Ten
larvae were infected by injecting the hemocoel with
10 pL at the concentration of 10° conidia/larva. After
7 days of infection, AF_Al had a 10% survival rate
compared with 30% survival rate for AF_A2. The varia-
bility of virulence observed for the animal strains is
similarly for the clinical and the environmental strains.
These results are consistent with those of other studies.
However, currently, no link could be established
between the origin and the pathogenicity of
A. fumigatus strains [80,82,84].

The relationship between virulence and fungal devel-
opment (conidiation, germination, and fungal growth)
involves several mechanisms not completely elucidated.
Understanding these mechanisms is essential mainly to
find new therapeutic targets against A. fumigatus.
A large number of A. fumigatus mutants involved in
these signaling pathways have been tested in
G. mellonella model with sometimes discordant results,
especially compared to mice models [85-98] (Table 3).

Conidiation and germination

In fungi, six regulators of G protein signaling (RGS)
domain proteins (flbA, gprK, rgsA, raxl, rgsC, and
rgsD) are involved in fungal growth, sporulation,
stress response, secondary metabolites, and virulence.
Some of them negatively or positively regulate asex-
ual development, gliotoxin or melanin production,
and virulence of A. fumigatus in G. mellonella
(Table 3). Thus, the ArgsD mutant displayed
increased conidiation and elevated virulence [101],
while the ArgsC [75] and AgprK [76] mutants showed
reduced conidiation and increased germination, and
decreased virulence in the larvae.

Other proteins are involved in cytoskeletal dynamics
of A. fumigatus, as myosin (actin-based motor proteins
family) that seems to have an important role in regulat-
ing virulence of A. fumigatus (Table 3). The AmyoE and
AmyoB mutant strains had distinct effect on fungal
development (delayed germination and reduced or
increased conidiation, respectively) but were both
hypovirulent in G. mellonella larvae [85].

Fungal growth

The calcium-calcineurin signaling pathway has an
important role in fungal physiological processes, stress
responses, and virulence [70, 86,87]
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The Rab (Ras-related in brain) family of small
GTPases (srgA A, srgA B, srgA C) were evaluated in
G. mellonella model and showed their involvement in
fungal development and filamentation. Only the AsrgA
C strain showed lower fungal virulence in G. mellonella
larvae [89].

Septation

Septins, a conserved family of GTPases, are involved in
a variety of critical cellular functions, including cell wall
integrity and septation in A. nidulans [90,91]. On the
other hand, A. fumigatus has five septins (aspA, aspB,
aspC, aspD, and aspE) that seem necessary for septa-
tion but not for fungal growth [92] (Table 3). The
AaspA, AaspB, and AaspC mutant strains were hyper-
virulent in G. mellonella. The virulence of AaspB strain
was similar to that of the wild type strain in murine
model [92].

Secondary metabolites

A. fumigatus produces a wide range of secondary meta-
bolites that can be harmful or beneficial. These small
molecules of low molecular weight often have complex
biosynthesis. Thus, Non-Ribosomal Peptide Synthetases

Major transcrition factors
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- )
HapX citrulline «— citrulline
1
Iron deplete T ArgEF
******* arginine ornithine s
Iron replete AgaA @/ ‘-§
ArgB 2
SreA ~ S
AcuM /\ ornithine glutamate s
\— _J/

(NRPS), key-enzymes involved in the biosynthesis of
secondary metabolites in fungi [93], have many meta-
bolic functions not yet elucidated. These secondary
metabolites are necessary components since they enable
the fungus to adapt itself to the host and grow inside it
by escaping the immune response mechanisms. Other
functions of these secondary metabolites are to facilitate
tissue colonization and help the fungus tolerate external
aggressions such as UV, desiccation, or competition
with other micro-organisms [94]. Sequencing of the
A. fumigatus genome showed the presence of 14 genes
encoding for NRPS. G. mellonella model allowed
researchers to study some NRPS functions, including
gliotoxin production, as well as other molecules
involved in acquisition of nutrients essential for fungal
survival, such as iron (siderophores) (Table 3).

Secondary metabolites interacting with the immune
response

Gliotoxin is best known secondary metabolites of
A. fumigatus. It is a virulence factor which inhibits
macrophage phagocytosis and oxidative response to
stress, decreases cytotoxic activity of T cells, and hin-
ders induction of apoptosis of host cells [95]. Of note,
G. mellonella larvae mortality with the AmtfA strain is

Siderophores biosynthesis
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Figure 4. Iron metabolism of A. fumigatus studied in G. mellonella (adapted from [109]).
Yellow circles: steps of iron metabolism of A. fumigatus studied in G. mellonella



reduced [96] (Table 3). The mtfA transcription factor
acts to regulate gliotoxin biosynthesis (via gliZ and gliP
genes), in addition to its involvement in fungal growth
and conidiation. On the same line, Reeves et al. showed
a positive correlation between gliotoxin production and
pathogenicity of selected A. fumigatus strains [48] ori-
ginally differed in gliotoxin production. High rate of
gliotoxin production by ATCC26933 strain was asso-
ciated with high mortality in larvae, whereas
ATCCl16424, ATCC13073, and ATCC14109, the lower
production of gliotoxin and caused less mortality in
larvae (Table 3).

Melanin is another secondary metabolite and viru-
lence factor of A. fumigatus. Melanin is a polymer of
dihydroxynaphthalene (DHN) present on the surface of
conidia to provide protection against UV and desicca-
tion, in addition to its capacity to neutralize free radi-
cals. Melanin-deficient mutants caused an increase of
virulence in G. mellonella [97] (Table 3). Perhaps the
absence of melanin could lead to a modification of the
fungal cell wall which in turn triggered a greater
immune response in the larvae.

Fumagillin, among the other mycotoxins of
A. fumigatus analyzed in G. mellonella as a virulence factor,
inhibits the action of neutrophils, a central element of the
immune response to microbial infections. Fumagillin is
produced during the development of A. fumigatus hyphae.
A study reported that fumagillin inhibited the phagocyto-
sis function of hemocytes, thus facilitating the growth of
the fungus in the larva [47]. Therefore, pre-administration
of fumagillin to larvae would increase susceptibility to
A. fumigatus infection [98,99] (Table 3).

The ergot alkaloids are other metabolites pro-
duced by A. fumigatus (Table 3). The role of these
alkaloids in the pathogenicity of A. fumigatus has
been well studied in vivo in G. mellonella.
A. fumigatus strains with ergot alkaloids mutations
(fumigaclavine C deficiency) showed a virulence
decrease. Fumigaclavine C is an inhibitor of TNF-
alpha in human macrophages and could decrease
expression of inflammatory cytokines in mice. PesL
and pesl, involved in the final step of fumigaclavine
C biosynthesis, have a role in the pathogenicity of
A. fumigatus since ApesL was hypovirulent in
G. mellonella [102]. O ’Hanlon et al. [102] found
no difference in mortality compared with the refer-
ence strain ATCC46645, whereas Reeves et al. [103]
observed a decrease in virulence upon using the
wild-type strain Af293.1. Another gene, dmaW,
implicated in the biosynthesis of fumigaclavine C,
also had an effect on virulence of A. fumigatus in
G. mellonella [104]. The mutant AdmaW inhibited
the synthesis of final product fumigaclavine C, and
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consequently lowered the virulence of A. fumigatus
in G. mellonella.

Secondary metabolites of A. fumigatus involved in
iron metabolism

Two types of siderophores are described in
A. fumigatus: extracellular hypha-secreted siderophores
[fusarinin C (FSC) and triacetylfusarinin C (TAFC)],
and intracellular siderophores for iron storage and dis-
tribution in hyphae (Ferricrocin (FC)) or in conidia
(hydroxyferricrocin (HFC)). The first stage of sidero-
phores biosynthesis consists in hydroxylation of
ornithine catalyzed by SidA. Schrettl et al. showed
that AsidA led to avirulence of the strain in mice
[105,106] while Slater et al. found concordant results
in G. mellonella, regardless of the mutant inoculated
dose [107]. Other genes implicated in both pathways of
siderophores biosynthesis, like sidC (intracellular side-
rophore) and sidD or sidF (extracellular siderophores),
have also been tested in rodent or G. mellonella models
(Figure 4). The AsidF, AsidD, and AsidC mutants
induce reduced virulence in mice [106] and in
G. mellonella model [107] (Figure 4). In mice as in
G. mellonella model, deletion of genes coding for the
first steps of the siderophore biosynthesis pathway
could have a big effect on the virulence of
A. fumigatus. However, deleting genes encoding for
late-stage mechanisms had no such effect due to the
presence of alternative pathways (Table 3).

Johns et al. showed that PptA, a putative 4'-
phosphopantetheinyl transferase (4'-PPTase), has
a non-redundant role in the production of different
secondary metabolites, like gliotoxin, DHN-melanin,
and siderophores (TAFC and FC) [108]. The PptA
null mutant (APptA) is avirulent in G. mellonella larvae
and in both bronchopulmonary and disseminated mur-
ine infection models (Figure 4).

In fungi, siderophores are absorbed by siderophore-
specific transmembrane transporters, siderophore iron
transporter (SIT), a subgroup within the major facil-
itating superfamily (MFS) [109]. Of those SITs, two
have been distinguished for their role in mediating
TAFC uptake (MirB) or in intracellular siderophore
biosynthesis (MirC) (Figure 4) [110]. When AmirC
mutant was inoculated in G. mellonella in an iron-
poor environment, production of ferricrocin (intracel-
lular siderophore) and virulence decreased [111]. These
results confirm the involvement of MirC in the regula-
tion of iron metabolism and its implication in the
pathogenicity in G. mellonella.

Although most of the key steps of siderophore bio-
synthesis were studied in G. mellonella model (Figure 4),
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highlighting its importance and its implication in the
fungal pathogenicity, many of this metal transporters in
A. fumigatus have not been characterized yet. Other genes
involved in the homeostasis of nutrients have been stu-
died and shown their importance in A. fumigatus viru-
lence in G. mellonella model (Table 3) [112].

Comparison between G. mellonella and murine
models

To validate the G. mellonella model, several authors
compared the results on G. mellonella with those on
the murine model, with, in most cases, a good correla-
tion. For fungal analysis, studies of virulence factors of
Mucor circinelloides [71], Fusarium species [56], and
Candida albicans [113] were compared in both
G. mellonella and mice, showing that genes activated
to yield full virulence in larvae and in immunode-
pleted mice were the same. The results are compar-
able. On the other hand, Amorim-Vaz et al. examined
transcription factors involved in virulence of
C. albicans by comparison of the two models [20].
They considered G. mellonella as a useful model even
though there was only 50% concordance between
results in mice and G. mellonella larvae. Interestingly,
another publication found discrepancy of pathogeni-
city of strains of C. albicans [103]. In our review and
by analyzing mutants from A. fumigatus in
G. mellonella, it is important to note that in consis-
tency with Amorim-Vaz et al. about half of the com-
parisons showed good correlation. All these results
support the presence of similitudes in the mechanisms
of fungal infection between the rodent and
G. mellonella models, but the discrepancies suggest
that the lack of adaptive immune system in the larvae
disrupts the perfect alignment between the two model
types. Although most data are well correlated between
the two models, in mammals, results can be different
because of the interaction with a more complex
immune system than in insect.

Conclusion

Larvae of G. mellonella present several interesting
criteria that encourage researchers to use it as an
in vivo model, hence the increased number of pub-
lications on molecules or pathogens that have been
tested on larvae in recent years. The possibility of
conducting large-scale studies using this mini-host
model makes it a powerful tool; however, many
teams have noticed that different outstanding para-
meters may modify the larval immune response and
thus influence the results of experimental infection. It

is important to remedy these issues with standardiza-
tion of study design, which has started to develop
recently. Additionally, complete sequencing of the
genome will open the door wide for further research
using this model.

Thanks to similarities between mammal and insect
innate immune systems, G mellonella could be used to
understand infection mechanisms and to assess viru-
lence of different pathogens, including fungi, especially
A. fumigatus. The latter is one of the most pathogenic
fungi against which researchers endeavor to identify
new therapeutic targets, as this is becoming one of the
public health issues of particular concern. Studying
A. fumigatus isolates’ pathogenicity is necessary by
analyzing the production of their arsenal of secondary
metabolites or say virulence factors via the strategy of
gene disruption. In the last 5 years, several studies have
explored the impact of metals like iron, and the pro-
duction of mycotoxin or proteins on their virulence in
G. mellonella model. From this review, it appears that
A. fumigatus can produce a vast array of active biomo-
lecules and virulence factors that could enhance its
pathogenicity. Some signaling pathways were almost
entirely studied in the larvae, which proves the high
interest of utilizing them to initiate large-scale pre-
screening protocols, conducted in mammals, for the
identification of potential therapeutic drugs, in compli-
ance with the 3Rs.

To conclude, the G. mellonella model, by all its
advantageous characteristics, proven its utility to study
host-pathogen interactions, particularly for
A. fumigatus. It can serve as a fast, simple, and low-
cost pre-screening model to complete data before using
a mammalian model, in a medical field where a great
part of progress is necessary to optimize patient
management.
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