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ABSTRACT
The invertebrate Galleria mellonella has increasingly and widely been used in the last few years to 
study complex host–microbe interactions. Aspergillus fumigatus is one of the most pathogenic 
fungi causing life-threatening diseases in humans and animals. Galleria mellonella larvae has been 
proven as a reliable model for the analysis of pathogenesis and virulence factors, enable to screen 
a large number of A. fumigatus strains. This review describes the different uses of G. mellonella to 
study A. fumigatus and provides a comparison of the different protocols to trace fungal patho
genicity. The review also includes a summary of the diverse mutants tested in G. mellonella, and 
their respective contribution to A. fumigatus virulence. Previous investigations indicated that 
G. mellonella should be considered as an interesting tool even though a mammalian model 
may be required to complete and verify initial data.
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Introduction

Rodent models are the gold standard in clinical studies 
and in vivo experiments and have been extensively used 
for a better understanding of the physiopathology of 
infectious diseases. International fundamental regula
tion 3Rs rules (Replacement, Reduction, and 
Refinement) guarantee welfare of animals and encou
rage researchers to replace traditional rodent models 
with alternative, non-mammalian models [1]. Since the 
early 2000s, and particularly over the last few years, 
many articles on invertebrate and mini-host models 
have been published in the literature. Until now, the 
ethical rules have never been applied to the use of 
insects and nematodes [2]. For instance, fruit fly 
Drosophila melanogaster has been the best-known 
invertebrate model used in genetic and developmental 
biology studies for over 100 years [3]. Other inverte
brates such as the beetle Tribolium castaneum, the 
nematode Caenorhabditis elegans, the butterfly 
Bombyx mori, the moth Galleria mellonella, or the non- 
mammalian vertebrate model Danio rerio are also used 
[3–7]. Their genome, immunity, and physiology were 
analyzed through many environmental and medical 
studies. In microbiology, C. elegans, D. melanogaster, 
and G. mellonella have recently been demonstrated as 

interesting tools to evaluate the virulence and the 
pathogenesis of human pathogens, e.g. fungi. These 
models were successfully used in virulence assays, 
immunity tests, histopathology analyses, or new anti
microbial drugs testings [8].

One of these alternative models, G. mellonella, has 
attracted increasing attention in recent years because of 
the many advantages it provides to study microorgan
isms. Galleria mellonella is become one of the most 
popular invertebrate models with more than 2,200 
scientific articles published (search terms “Galleria mel
lonella” on Pubmed) (Figure 1). The moth G. mellonella 
belongs to the Lepidoptera order and is present world
wide as a ubiquitous pest of honeybees that destroys 
honeycombs by feeding on bee wax, honey, and bee 
pollen [9]. In research laboratories, its last larval stage 
can be used, just before transformation into a pupa. 
Many recent reviews [10–15] describe very well all the 
advantages and disadvantages of this mini-host model, 
and some benefits deserve attention. Larvae are natu
rally exposed to pathogens and have developed immune 
defense systems, which have many similarities with the 
innate immune system of vertebrates. The moth innate 
immune system, mediated by hemocytes, can fight 
against a large spectrum of pathogens via phagocytosis, 
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melanization, and secretion of antimicrobial peptides 
[16]. Other intriguing points are its fast and high 
reproductive rate at low cost and the easy maintenance 
of its larvae in laboratory without the need for expen
sive equipment [17,18]. In comparison with other 
invertebrate models, G. mellonella can survive within 
a wide temperature range (18°C to 37°C) [3,5], an 
essential point to mimic mammals physiology and facil
itate the study of human pathogens. Furthermore, the 
genome of G. mellonella was entirely sequenced in 2018 
[19], which makes it easy to have well-defined popula
tions of larvae, and perhaps allows to create a biobank 
with database as with other invertebrate models, 
Flybase and WormBase [12]. In our experience and 
according to Amorim-Vaz et al., Eisenman et al., and 
more recently Champion et al., the main limitation of 
this model is the difficulty to have reproducibility of 
results compared with the mice models [20–22]. The 
reasons for this are probably the origin of larvae, the 
different rearing conditions, temperature of storage, 
nutrition, genetics, and age of larvae used in the experi
ments [23–26]. This limitation highlights the need for 
standardization to make G. mellonella a more reliable 
model [22].

Galleria mellonella has been used for the complex 
study of host–microbe interactions, especially host- 
fungi interactions [4,6,24–30]. This model is now 
recognized as a pertinent model to the study of the 
fungal infections [31,32]. Aspergillus fumigatus remains 
one of the most common pathogenic fungi known to 
colonize the respiratory tract of patients with chronic 

lung diseases (e.g. cystic fibrosis), and to cause invasive 
fungal infections in immunocompromised patients [
33–35]. The mini-host model G. mellonella has been 
used to evaluate the virulence of A. fumigatus, where 
mutants are tested to investigate the role of specific 
protein in the pathogenicity, and eventually to try to 
find a target for novel antifungal therapies.

This review aims to compare the different protocols 
published in the literature to study A. fumigatus in 
G. mellonella, and to present the virulence studies 
already conducted in this mini-host model. We also 
present the currently available literature concerning 
the virulence of A. fumigatus in a G. mellonella model 
with several clinical and environmental strains includ
ing data obtained in our research team [29]. This study 
does not tackle the antifungal treatments tested on 
A. fumigatus in the G. mellonella model. The latter are 
included in an additional review of our team and in 
other recent articles [36,37]

Galleria mellonella model

Galleria mellonella, also known as the wax moth, 
belongs to the Pyralidae family in the Lepidopteran 
order. Morphology and characteristics of every stage 
of its lifecycle are precisely described in Kwadha et al. 
and Ellis et al. [9,17]. Briefly, the larvae have six legs on 
the thorax, eight prolegs on the abdominal segment, 
a digestive tube, vessels, silk glands, and a nervous 
system (Figure 2). Duration of its life cycle can vary 

Figure 1. Publications mentioning A. fumigatus and G. mellonella on Pubmed.
(A) Evolution of the number of publications on A.fumigatus and G.mellonella over the period 2010 – august 2020; (B) Details of the 
publication on A. fumigatus studies with virulence, resistance to antifungal in G. mellonella; (C) number of articles in the literature and in the 
review on the G. mellonella model
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from weeks to month depending on several factors, 
especially food, temperature, and humidity. An artifi
cial food composed of a blend of honey and various 
cereals [38,39] can be used, but the need for food 
diminishes with the successive metamorphosis. Thus, 
food composition could have an impact on pupation, 
larval stage duration, volume of hemolymph, and den
sity of hemocytes. Larvae can spin a silken thread in all 
stages, but they surround themselves with a cocoon 
only during their last stage. Now it is well known that 
food and environmental condition, such as tempera
ture, humidity and darkness could play a role in the 
susceptibility to infection. That is why the scientific 
community endeavors to uniform breeding procedure 
to limit this source of bias. Jorjao et al. and more 
recently Firacative et al. proposed an optimal method 
to rear G. mellonella in laboratories for microbiological 
studies (dietary components, description of environ
mental conditions, and a detailed protocol for all life 
stages of G. mellonella) [32,38].

Immune response of G. mellonella to A. fumigatus

In insects, only the innate immune system is effective 
and can protect against a large spectrum of pathogens 
including fungi [41,42]. G. mellonella immune system is 
an open circulating system of which hemolymph is the 
key element. This innate immune system comprises 
three parts: (i) physical barrier, (ii) cellular and (iii) 
humoral immune systems [13]. The cuticle, composed 
of chitin and many proteins with antimicrobial 

properties, represents the first protection line, that 
acts as a barrier to prevent the entry of pathogens. 
The cellular component consists of several types of 
cells, called hemocytes [16,43], circulating in the hemo
lymph to ensure of phagocytosis [44,45], encapsulation, 
and clotting activities [13]. At early stages of infection, 
the increase in circulating hemocyte density is due to 
release of attached hemocytes from internal organs. 
Furthermore, the humoral component, released by the 
hemolymph and body fat, consists of soluble effector 
molecules including opsonin, e.g. ApoLp-III, a pattern 
recognition molecule which can bind to ß-1,3 glucan of 
numerous fungus cell wall [46]. Another element of the 
humoral system is lytic enzymes which harbor several 
antimicrobial peptides (AMPs).

The process of melanization, a fundamental role of 
the humoral system in arthropods, is activated upon 
the penetration of a foreign particle into the larva body 
[13]. Melanin synthesis, catalyzed by phenoloxidase, 
limits the spread of microorganisms through the for
mation of nodules visible on histological sections. 
Once inside the larva, A. fumigatus stimulate hemo
cytes to increase in density at early stages of infection 
(2 h). However, the action of several fungal toxins, 
such as fumagillin and gliotoxin, can counterbalance 
the physical action of the fungus by inhibiting the 
action of hemocytes [47,48]. After several hours, 
A. fumigatus can invade larvae with hyphae. This 
process results in the formation of nodules dissemi
nated all over the body of larva and not only near the 
site of inoculation (Figure 3). If the infection is 

Figure 2. Anatomy of a larva of Galleria mellonella, adapted from Singkum et al., 2018 [15] and Engel and Moran, 2013 [40].
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controlled by the immune system, the larva can sur
vive. On the contrary, if the immune system cannot 
control infection, the larvae become completely mela
nized and die. Many factors can influence the immune 
response of larvae, such as physical, nutritional, ther
mal stress, or exposure to cell wall components [44–
44–49]. Recently, Sheehan et al described the immune 
response of G. mellonella larvae and the factors influ
encing it [49].

Experimental design for virulence assay

Infection with filamentous fungi

Homogenous groups of 10 to 20 larvae with cream- 
color cuticle, of about 200–300 mg weight, 1–3 cm 
length and spontaneous mobility, are generally used. 
The larvae should be manipulated delicately to avoid 
physical stress. After infection, larvae are maintained 
up to 37°C without feeding. Control groups are also 
essential to ensure that the trauma of inoculation or the 
use of buffer do not affect the larvae survival. Three 

methods are used to infect the larvae: topical applica
tion, ingestion, and injection.

Topical application of fungi causes penetration into 
the exoskeleton, which is close to natural fungal con
tamination. Some authors utilized this trauma-free 
method to inoculate larvae by immersion in a conidial 
suspension of Beauveria bassiana for about 10s [50,51]. 
In another study, 5 µL containing Aspergillus flavus 
(1x103 to 1 × 108 conidia/mL) was directly applied on 
the dorsal surface of larvae [52]. Overall, this method is 
rarely used because of reproducibility issues linked to 
the difficulty having a precise inoculum delivery into 
the larvae.

Forced-feeding (ingestion) consists in inserting 
10 µL of fungal suspension into the larval mouthpart 
using a micro-injector and a needle [53,54,68].

The preferred and the most commonly used method 
to study interaction between filamentous fungi and 
G. mellonella is the injection of inoculum into larval 
hemocoel by pricking the cuticle with a needle at the 
last proleg [26]. The last left proleg is the preferred site 
for injection but other sites are possible, if necessary 
[27]. The main upside of this method is the better 

Figure 3. Histological analysis of A. fumigatus infection in Galleria mellonella.
Sagittal section of G. mellonella infected with A. fumigatus. (A) Larvae fixed in paraffin; (B) Gomori-Grocott stain; (C) A. fumigatus nodules 
after 3 days of infection (105 conidia/larva); (D) A. fumigatus nodules after 7 days of infection (106 conidia/larva)
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delivery of a precise inoculum (5 to 20 µL per larva) 
using either an insulin or a Hamilton syringe. The latter 
is more precise to inoculate small volumes. An insulin 
syringe with an automatic applicator could be used for 
larger quantities and faster inoculations [26,55,56]. The 
injection is almost scarless for the larva but there is 
some risk for the operator (especially for BSL-3 micro
organisms) that could be avoided with proper restraint 
and handling techniques [55,57]. Differences between 
the employed protocols in terms of inoculum prepara
tion, technique of inoculation, and experimental con
ditions are described in Table 1.

Follow-up of A. fumigatus infection

Mortality monitoring
For the analysis of strains virulence, larvae survival is 
monitored over time after inoculation, most often every 
24 h for 5 days. Larvae movements gradually decreases, 
reflecting the progression of fungal infection, but to 
a variable extent depending on fungal species and 
strains. Determining the best concentration of fungal 
inoculum is crucial to achieve a substantial killing rate 
[27]. Inoculum-finding experiments allow to calculate 
the median and 90% lethal doses (LD50 and LD90), 
and to compare the survival after wild-type and mutant 
strains inoculation to assess different virulence factors 
[56,71].

Morbidity monitoring
Another method can be used to assess the morbidity of 
larvae, based on several criteria of follow-up. The eva
luation of morbidity gives more details on the progres
sion of infection within the larvae. A scoring system 
that comprises four main criteria, melanization, mobi
lity, capacity to form silk cocoon, and survival, has been 
used in some studies [14,22,72]. Melanization is an 
immune process visible to the naked eye and deemed 
completed when the larva is dead, and the immune 
response is overtaken. Thus, the degree of melanization 
is correlated with morbidity and a key element to assess 
the general condition of the larva. Larval mobility is 
evaluated individually on spontaneous and stimulated 
movements. The capacity of larva to turn around and 
move forward is a strong indicator of good health. The 
same is said for its capacity to form a silk cocoon. 
Initially, when the larva is not infected, a whole, highly 
resistant cocoon forms around it. As the infection 
spreads, the ability of the larva to form a cocoon 
decrease. In the pre-mortem phase, the larva can only 
form a few silk threads. The last criterion is the larval 
survival as shown in the details of morbidity score and 
modified by our team (Table 2). Each group obtains 

a final score 24 h after injection that seems predictive of 
the end of the experiment [29].

Histological analyses
To study pathogenesis and the host–pathogen interac
tions, histological analysis is recommended, especially 
to describe tissue damage caused by fungal infection. 
A procedure was developed to analyze C. albicans viru
lence and to assess morphological changes in larva 
body [73]. This procedure can also be used with other 
fungal species. It consists in injecting formalin into the 
larvae which are then stored at 4°C for a few days. 
Later, larvae are carefully dissected from sagittal or 
transversal lines and stained with Gomori-Grocott or 
Hematoxylin and Eosin (HE). Recently, Sheehan et al. 
have provided histological data on invasive 
A. fumigatus infection, and highlighted the usefulness 
of G. mellonella larvae, albeit they have no respiratory 
system [74]. Indeed, the development of invasive asper
gillosis in larvae shows similarities to that occurring in 
mammals. Sheehan et al. showed that the inoculation of 
conidia is followed by (i) the formation of melanized 
nodules and (ii) an increase in the density of hemocytes 
and antimicrobial peptides. These nodules have 
a histological structure similar to the granulomas 
detected in the mouse model of aspergillosis. In their 
work, they utilized a technique that does not require 
the use of formalin: larvae were embedded in 
Bioinvision Cryo-Imaging Embedding Compound, 
and flash-frozen in liquid nitrogen. Then, slides were 
made with Cryoviz for a specific cryo-imaging.

Infected larvae melanized with time by forming mel
anized capsules that surrounded the pathogens, and 
their internal organs were disorganized by the infec
tion. Many authors used the melanization or tissue 
damage to better understand the progress of infection 
and the effect of fungal mutants on larvae as visualized 
by histological analysis and Gomori-Grocott staining 
[75,76]. In a work of our team, we analyzed the pro
gress of A. fumigatus infection in larvae after 3 days (A) 
and 7 days (B) with appearance of melanized nodules 
and granulomas containing both conidia and hyphae 
(Figure 3). Number and size of these granulomas, 
which are distributed all over the larva, increased over 
time after infection (personal data).

Galleria mellonella-based screening to study 
virulence factors of Aspergillus fumigatus

Origin of strains

The relationship between virulence and the origin of 
the strains has insufficiently been studied.
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Table 1. Comparison between protocols to analyze virulence of A. fumigatus in G. mellonella.

Ref.

Larva 
selection 
criteria

Larva/ 
group

Inoculation 
(in hemocoel)

Inoculum 
conidia/larva

Maintenance of larva Monitoring 
(during of 
experiment)Before inoculation After inoculation

[85,86,96] 0.3–0.5 g 
No gray 

marking

16 10 µL 5x105 / In Petri dishes, in the dark, at 
37°C

Every 12 h 
(8 days)

[95] / 20 5 µL 5x106 / At 37°C Daily 
(5 days)

[88,91,94] 6th -instar 
larvae

15 5 µL 2x105 / At 37°C Daily 
(5 days)

[43] 6th -instar 
larvae 

0.2–0.4 g

20 20 µL 
Myjector U-100 Insulin 

needle

1x104 In wood shavings, in the 
dark, at 15°C

In Petri dishes, in the dark, at 
30°C

Daily 
(5 days)

[29,58] / 10 10 μL 
Hamilton syringe

� 3 × 106 

to 
3 × 103

/ At 37°C Daily 
(7 days)

[108] / 30 20 µL 1x106 or 
1 × 107

/ / Daily 
(7 days)

[59,60,112] 6th -instar 
larvae 

0.3–0.4 g

20 20 µL 1x107 In the dark, at 18°C In the dark, at 30°C Daily 
(6 days)

[110] 0.275 and 
0.300 g 

No gray 
marking

30 Hamilton syringe 1x106 / In Petri dish, in the dark, at 37° 
C

After 16 h, 
every 2 h 

(30 h)

[61] 6th -instar 
larvae

/ 20 µL 1x107 In the dark, at 18°C In the dark, at 30°C Daily 
(6 days)

[106] 6th -instar 
larvae 

0.2–0.4 g

/ Myjector U-100 insulin 
syringe

1x104 to 
1 × 107

In the dark, at 15°C At 30°C /

[97] 6th -instar 
larvae 

0.25–0.35 g

12 5 µL 
Hamilton syringe

5x105 / In Petri dishes, in the dark, at 
37°C

Daily, 
(5 days)

[62] / 30 5 µL 5x107 / / Every 12 h 
(5 days)

[109] No gray 
marking 

0.2 g

10 to 
15

20 μL 
Disposable 29.5-gauge 

hypodermic needle

5x105 

2x105
/ / Daily 

(7 days)

[63] Final-instar 
larvae 

0.2 g

10 10 µL 
Hamilton syringe

1x105 In wood shavings, in the dark In Petri dishes, in the dark, at 
37°C

Daily 
(5 days)

[64] Final-instar 
larvae 

0.275–0.300 g

10 5 µL 1x106 Without food, at 37°C, in the 
dark for 24 h

In Petri dishes, in the dark, at 
37°C

Daily 
(10 days)

[76] Sixth instar 
larvae

/ 1x105 / In the dark, at 37°C Daily 
(10 days)

[77] 6th -instar 
larvae 

0.3 g

/ 5 µL 1x105 / In the dark, at 37°C Daily 
(10 days)

[65] 6th -instar 
larvae

30 to 
35

5 μL 
Hamilton syringe

5x106 In wood shavings, in the 
dark, at room temperature

In Petri dishes, in a dark 
humidified incubator at 37°

Daily 
(8 days)

[89] 0.30–0.35 g 16 10 µL 5x105 / In the dark, at 37°C Every 12 h 
(5 days)

[66] / 30 20 μL 5x106 / / Daily 
(3 days)

[97] 0.275–0.300 g 30 10 µL 1x 105 or 
1x106

/ In Petri dishes, in the dark, at 
37°C

After 16 h, 
every 2 h 

(7 days)
[107] 6th-instar 

larvae 
0.2–0.4 g

20 or 
30

20 µL 1x106 or 
1x107

In wood shavings, in the 
dark, at 15°C

/ Daily 
(4 days)

[67) / 12–28 20 µL 8x104 / At 37°C Daily 
(7 days)

[98] 0.3–0.5 g 10 10 µL 5x105 At 8°C In the dark, at 37°C Every 8 h 
(6 days)

[90] 0.275–0.300 g 10 5 µL 1x106 (37° 
C) 

5x106 (30° 
C)

/ At 37°C or 30°C Every 12 h 
(6 days)

[81] / 30 10 µL 
Hamilton 1 mL gas-tight 

syringe

1x108 to 
1x103

In wood shavings, in the 
dark, at 4°C for up to 
10 days

In Petri dishes, in the dark, at 
37°C

Daily 
(7 days)

[83] 0.25–0.30 g 10 5 μL 
Hamilton syringe 25 μL

500 CFU/ 
μL

/ In Petri dishes, in the dark, at 
37°C, with pine wood chips

Daily 
(8 days)

[69] 6th instar 
larvae 

15–25 mm 
length

30 10 μL 
Braun Omnican 50-U 100 

0.5 mL insulin syringe

1x106 / In the dark, at 37°C Daily 
(7 days)
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In rodents models, studies showed that 
A. fumigatus environmental isolates were less virulent 
than clinical isolates [77–79]. Similarly, Alshareef 
et al. observed that clinical strains (n = 10) appeared 
to be more virulent than the environmental ones 
(n = 20) in a G. mellonella model [80]. However, 
high variability was also observed between isolates 
of the same origin [80], even between isogenic strains 
isolated from a single chronic granulomatous disease 
patient [81].

Other studies showed opposite results; Cheema 
and Christians [82] observed a lower survival rate 
of G. mellonella larvae inoculated with environmen
tal strains (n = 8) compared with clinical isolates 
(n = 8). In the same way, Knox et al. showed that 
two A. fumigatus isolates collected in the 
International Space Station were more lethal than 
the clinical reference strain in zebrafish model [83].

These discordant results preclude any conclusion 
of isolate origin effect on virulence of A. fumigatus in 
G. mellonella model. Moreover, a recent study [84] 
has analyzed the whole-genome sequence of 
A. fumigatus isolates to determine their virulence 
genes content and revealed a high genetic diversity 
between environmental and clinical isolates, as well 
as between clinical isolates from the same patient, but 
a similar virulence genes content.

Up to now, no animal-origin strains have been 
tested in G. mellonella model. In our team, we have 
tested for the first-time the pathogenicity of two differ
ent animal A. fumigatus strains collected from wild 
fauna (AF_A1) and from a duck (AF_A2) [29]. Ten 
larvae were infected by injecting the hemocoel with 
10 µL at the concentration of 106 conidia/larva. After 
7 days of infection, AF_A1 had a 10% survival rate 
compared with 30% survival rate for AF_A2. The varia
bility of virulence observed for the animal strains is 
similarly for the clinical and the environmental strains. 
These results are consistent with those of other studies. 
However, currently, no link could be established 
between the origin and the pathogenicity of 
A. fumigatus strains [80,82,84].

The relationship between virulence and fungal devel
opment (conidiation, germination, and fungal growth) 
involves several mechanisms not completely elucidated. 
Understanding these mechanisms is essential mainly to 
find new therapeutic targets against A. fumigatus. 
A large number of A. fumigatus mutants involved in 
these signaling pathways have been tested in 
G. mellonella model with sometimes discordant results, 
especially compared to mice models [85–98] (Table 3).

Conidiation and germination
In fungi, six regulators of G protein signaling (RGS) 
domain proteins (flbA, gprK, rgsA, rax1, rgsC, and 
rgsD) are involved in fungal growth, sporulation, 
stress response, secondary metabolites, and virulence. 
Some of them negatively or positively regulate asex
ual development, gliotoxin or melanin production, 
and virulence of A. fumigatus in G. mellonella 
(Table 3). Thus, the ΔrgsD mutant displayed 
increased conidiation and elevated virulence [101], 
while the ΔrgsC [75] and ΔgprK [76] mutants showed 
reduced conidiation and increased germination, and 
decreased virulence in the larvae.

Other proteins are involved in cytoskeletal dynamics 
of A. fumigatus, as myosin (actin-based motor proteins 
family) that seems to have an important role in regulat
ing virulence of A. fumigatus (Table 3). The ∆myoE and 
∆myoB mutant strains had distinct effect on fungal 
development (delayed germination and reduced or 
increased conidiation, respectively) but were both 
hypovirulent in G. mellonella larvae [85].

Fungal growth
The calcium-calcineurin signaling pathway has an 
important role in fungal physiological processes, stress 
responses, and virulence [70, 86,87]

Table 2. Examples of scores for monitoring pathogenicity in 
Galleria mellonella.

Loh et al., health 
index scoring 
system [73]

Melloul et al., 2018 [29]

Category Description Score Description Score
Activity No movement 

Minimal 
movement 
on 
stimulation 

Move when 
stimulated 

Move without 
stimulation

0 
1 
2 
3

No movement 
No turn around and 

minimal movement 
on stimulation 

Difficult turn around 
and weak 
spontaneous mobility 

Normal, able to turn 
around and move

0 
1 
2 
3

Cocoon 
formation

No cocoon 
Partial cocoon 
Full cocoon

0 
0.5 
1

No cocoon 
Full cocoon

0 
1

Melanization Black larvae 
Black spots on 

brown 
larvae 

≥3 spots on 
beige larvae 

<3 spots on 
beige larvae 

No 
melanization

0 
1 
2 
3 
4

Melanized larvae 
No melanized larva

0 
1

Survival Dead 
Alive

0 
2

Dead 
Alive

0 
1
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The Rab (Ras-related in brain) family of small 
GTPases (srgA A, srgA B, srgA C) were evaluated in 
G. mellonella model and showed their involvement in 
fungal development and filamentation. Only the ∆srgA 
C strain showed lower fungal virulence in G. mellonella 
larvae [89].

Septation
Septins, a conserved family of GTPases, are involved in 
a variety of critical cellular functions, including cell wall 
integrity and septation in A. nidulans [90,91]. On the 
other hand, A. fumigatus has five septins (aspA, aspB, 
aspC, aspD, and aspE) that seem necessary for septa
tion but not for fungal growth [92] (Table 3). The 
∆aspA, ∆aspB, and ∆aspC mutant strains were hyper
virulent in G. mellonella. The virulence of ∆aspB strain 
was similar to that of the wild type strain in murine 
model [92].

Secondary metabolites

A. fumigatus produces a wide range of secondary meta
bolites that can be harmful or beneficial. These small 
molecules of low molecular weight often have complex 
biosynthesis. Thus, Non-Ribosomal Peptide Synthetases 

(NRPS), key-enzymes involved in the biosynthesis of 
secondary metabolites in fungi [93], have many meta
bolic functions not yet elucidated. These secondary 
metabolites are necessary components since they enable 
the fungus to adapt itself to the host and grow inside it 
by escaping the immune response mechanisms. Other 
functions of these secondary metabolites are to facilitate 
tissue colonization and help the fungus tolerate external 
aggressions such as UV, desiccation, or competition 
with other micro-organisms [94]. Sequencing of the 
A. fumigatus genome showed the presence of 14 genes 
encoding for NRPS. G. mellonella model allowed 
researchers to study some NRPS functions, including 
gliotoxin production, as well as other molecules 
involved in acquisition of nutrients essential for fungal 
survival, such as iron (siderophores) (Table 3).

Secondary metabolites interacting with the immune 
response
Gliotoxin is best known secondary metabolites of 
A. fumigatus. It is a virulence factor which inhibits 
macrophage phagocytosis and oxidative response to 
stress, decreases cytotoxic activity of T cells, and hin
ders induction of apoptosis of host cells [95]. Of note, 
G. mellonella larvae mortality with the ΔmtfA strain is 

Figure 4. Iron metabolism of A. fumigatus studied in G. mellonella (adapted from [109]).
Yellow circles: steps of iron metabolism of A. fumigatus studied in G. mellonella
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reduced [96] (Table 3). The mtfA transcription factor 
acts to regulate gliotoxin biosynthesis (via gliZ and gliP 
genes), in addition to its involvement in fungal growth 
and conidiation. On the same line, Reeves et al. showed 
a positive correlation between gliotoxin production and 
pathogenicity of selected A. fumigatus strains [48] ori
ginally differed in gliotoxin production. High rate of 
gliotoxin production by ATCC26933 strain was asso
ciated with high mortality in larvae, whereas 
ATCC16424, ATCC13073, and ATCC14109, the lower 
production of gliotoxin and caused less mortality in 
larvae (Table 3).

Melanin is another secondary metabolite and viru
lence factor of A. fumigatus. Melanin is a polymer of 
dihydroxynaphthalene (DHN) present on the surface of 
conidia to provide protection against UV and desicca
tion, in addition to its capacity to neutralize free radi
cals. Melanin-deficient mutants caused an increase of 
virulence in G. mellonella [97] (Table 3). Perhaps the 
absence of melanin could lead to a modification of the 
fungal cell wall which in turn triggered a greater 
immune response in the larvae.

Fumagillin, among the other mycotoxins of 
A. fumigatus analyzed in G. mellonella as a virulence factor, 
inhibits the action of neutrophils, a central element of the 
immune response to microbial infections. Fumagillin is 
produced during the development of A. fumigatus hyphae. 
A study reported that fumagillin inhibited the phagocyto
sis function of hemocytes, thus facilitating the growth of 
the fungus in the larva [47]. Therefore, pre-administration 
of fumagillin to larvae would increase susceptibility to 
A. fumigatus infection [98,99] (Table 3).

The ergot alkaloids are other metabolites pro
duced by A. fumigatus (Table 3). The role of these 
alkaloids in the pathogenicity of A. fumigatus has 
been well studied in vivo in G. mellonella. 
A. fumigatus strains with ergot alkaloids mutations 
(fumigaclavine C deficiency) showed a virulence 
decrease. Fumigaclavine C is an inhibitor of TNF- 
alpha in human macrophages and could decrease 
expression of inflammatory cytokines in mice. PesL 
and pes1, involved in the final step of fumigaclavine 
C biosynthesis, have a role in the pathogenicity of 
A. fumigatus since ΔpesL was hypovirulent in 
G. mellonella [102]. O ’Hanlon et al. [102] found 
no difference in mortality compared with the refer
ence strain ATCC46645, whereas Reeves et al. [103] 
observed a decrease in virulence upon using the 
wild-type strain Af293.1. Another gene, dmaW, 
implicated in the biosynthesis of fumigaclavine C, 
also had an effect on virulence of A. fumigatus in 
G. mellonella [104]. The mutant ΔdmaW inhibited 
the synthesis of final product fumigaclavine C, and 

consequently lowered the virulence of A. fumigatus 
in G. mellonella.

Secondary metabolites of A. fumigatus involved in 
iron metabolism

Two types of siderophores are described in 
A. fumigatus: extracellular hypha-secreted siderophores 
[fusarinin C (FSC) and triacetylfusarinin C (TAFC)], 
and intracellular siderophores for iron storage and dis
tribution in hyphae (Ferricrocin (FC)) or in conidia 
(hydroxyferricrocin (HFC)). The first stage of sidero
phores biosynthesis consists in hydroxylation of 
ornithine catalyzed by SidA. Schrettl et al. showed 
that ∆sidA led to avirulence of the strain in mice 
[105,106] while Slater et al. found concordant results 
in G. mellonella, regardless of the mutant inoculated 
dose [107]. Other genes implicated in both pathways of 
siderophores biosynthesis, like sidC (intracellular side
rophore) and sidD or sidF (extracellular siderophores), 
have also been tested in rodent or G. mellonella models 
(Figure 4). The ∆sidF, ∆sidD, and ∆sidC mutants 
induce reduced virulence in mice [106] and in 
G. mellonella model [107] (Figure 4). In mice as in 
G. mellonella model, deletion of genes coding for the 
first steps of the siderophore biosynthesis pathway 
could have a big effect on the virulence of 
A. fumigatus. However, deleting genes encoding for 
late-stage mechanisms had no such effect due to the 
presence of alternative pathways (Table 3).

Johns et al. showed that PptA, a putative 4ʹ- 
phosphopantetheinyl transferase (4ʹ-PPTase), has 
a non-redundant role in the production of different 
secondary metabolites, like gliotoxin, DHN-melanin, 
and siderophores (TAFC and FC) [108]. The PptA 
null mutant (∆PptA) is avirulent in G. mellonella larvae 
and in both bronchopulmonary and disseminated mur
ine infection models (Figure 4).

In fungi, siderophores are absorbed by siderophore- 
specific transmembrane transporters, siderophore iron 
transporter (SIT), a subgroup within the major facil
itating superfamily (MFS) [109]. Of those SITs, two 
have been distinguished for their role in mediating 
TAFC uptake (MirB) or in intracellular siderophore 
biosynthesis (MirC) (Figure 4) [110]. When ΔmirC 
mutant was inoculated in G. mellonella in an iron- 
poor environment, production of ferricrocin (intracel
lular siderophore) and virulence decreased [111]. These 
results confirm the involvement of MirC in the regula
tion of iron metabolism and its implication in the 
pathogenicity in G. mellonella.

Although most of the key steps of siderophore bio
synthesis were studied in G. mellonella model (Figure 4), 
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highlighting its importance and its implication in the 
fungal pathogenicity, many of this metal transporters in 
A. fumigatus have not been characterized yet. Other genes 
involved in the homeostasis of nutrients have been stu
died and shown their importance in A. fumigatus viru
lence in G. mellonella model (Table 3) [112].

Comparison between G. mellonella and murine 
models

To validate the G. mellonella model, several authors 
compared the results on G. mellonella with those on 
the murine model, with, in most cases, a good correla
tion. For fungal analysis, studies of virulence factors of 
Mucor circinelloides [71], Fusarium species [56], and 
Candida albicans [113] were compared in both 
G. mellonella and mice, showing that genes activated 
to yield full virulence in larvae and in immunode
pleted mice were the same. The results are compar
able. On the other hand, Amorim-Vaz et al. examined 
transcription factors involved in virulence of 
C. albicans by comparison of the two models [20]. 
They considered G. mellonella as a useful model even 
though there was only 50% concordance between 
results in mice and G. mellonella larvae. Interestingly, 
another publication found discrepancy of pathogeni
city of strains of C. albicans [103]. In our review and 
by analyzing mutants from A. fumigatus in 
G. mellonella, it is important to note that in consis
tency with Amorim-Vaz et al. about half of the com
parisons showed good correlation. All these results 
support the presence of similitudes in the mechanisms 
of fungal infection between the rodent and 
G. mellonella models, but the discrepancies suggest 
that the lack of adaptive immune system in the larvae 
disrupts the perfect alignment between the two model 
types. Although most data are well correlated between 
the two models, in mammals, results can be different 
because of the interaction with a more complex 
immune system than in insect.

Conclusion

Larvae of G. mellonella present several interesting 
criteria that encourage researchers to use it as an 
in vivo model, hence the increased number of pub
lications on molecules or pathogens that have been 
tested on larvae in recent years. The possibility of 
conducting large-scale studies using this mini-host 
model makes it a powerful tool; however, many 
teams have noticed that different outstanding para
meters may modify the larval immune response and 
thus influence the results of experimental infection. It 

is important to remedy these issues with standardiza
tion of study design, which has started to develop 
recently. Additionally, complete sequencing of the 
genome will open the door wide for further research 
using this model.

Thanks to similarities between mammal and insect 
innate immune systems, G mellonella could be used to 
understand infection mechanisms and to assess viru
lence of different pathogens, including fungi, especially 
A. fumigatus. The latter is one of the most pathogenic 
fungi against which researchers endeavor to identify 
new therapeutic targets, as this is becoming one of the 
public health issues of particular concern. Studying 
A. fumigatus isolates’ pathogenicity is necessary by 
analyzing the production of their arsenal of secondary 
metabolites or say virulence factors via the strategy of 
gene disruption. In the last 5 years, several studies have 
explored the impact of metals like iron, and the pro
duction of mycotoxin or proteins on their virulence in 
G. mellonella model. From this review, it appears that 
A. fumigatus can produce a vast array of active biomo
lecules and virulence factors that could enhance its 
pathogenicity. Some signaling pathways were almost 
entirely studied in the larvae, which proves the high 
interest of utilizing them to initiate large-scale pre- 
screening protocols, conducted in mammals, for the 
identification of potential therapeutic drugs, in compli
ance with the 3Rs.

To conclude, the G. mellonella model, by all its 
advantageous characteristics, proven its utility to study 
host-pathogen interactions, particularly for 
A. fumigatus. It can serve as a fast, simple, and low- 
cost pre-screening model to complete data before using 
a mammalian model, in a medical field where a great 
part of progress is necessary to optimize patient 
management.
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