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ABSTRACT

High-throughput immunoglobulin sequencing
promises new insights into the somatic hypermuta-
tion and antigen-driven selection processes that
underlie B-cell affinity maturation and adaptive
immunity. The ability to estimate positive and
negative selection from these sequence data has
broad applications not only for understanding the
immune response to pathogens, but is also critical
to determining the role of somatic hypermutation in
autoimmunity and B-cell cancers. Here, we develop
a statistical framework for Bayesian estimation of
Antigen-driven SELectloN (BASELINe) based on
the analysis of somatic mutation patterns. Our
approach represents a fundamental advance over
previous methods by shifting the problem from
one of simply detecting selection to one of quan-
tifying selection. Along with providing a more
intuitive means to assess and visualize selection,
our approach allows, for the first time, comparative
analysis between groups of sequences derived from
different germline V(D)J segments. Application of
this approach to next-generation sequencing data
demonstrates different selection pressures for
memory cells of different isotypes. This framework
can easily be adapted to analyze other types of DNA
mutation patterns resulting from a mutator that
displays hot/cold-spots, substitution preference or
other intrinsic biases.

INTRODUCTION

Large-scale characterization of B-cell immunoglobulin
(Ig) repertoires is now feasible in humans, as well as
model systems through the applications of next-generation
sequencing approaches (1-3). During the course of an
immune response, B cells that initially bind antigen with
low affinity through their Ig receptor are modified by

cycles of somatic hypermutation (SHM) and affinity-
dependent selection to produce high-affinity memory
and plasma cells. This affinity maturation is a critical com-
ponent of T-cell dependent adaptive immune responses,
helps guard against rapidly mutating pathogens and
underlies the basis for many vaccines (4). Characterizing
this mutation and selection process can provide insights
into the basic biology that underlies physiological and
pathological adaptive immune responses (5,6), and may
further serve as diagnostic or prognostic markers (7,1).
However, analyzing seclection in these large datasets,
which can contain millions of sequences, presents funda-
mental challenges requiring the development of new
techniques.

Existing computational methods to detect selection
work by comparing the observed frequency of replace-
ment (i.e. non-synonymE)us) mutations (RL;S) to the
I%ﬁﬁ
replacement mutations and S being the number of silent
(i.e. synonymous) mutations. The expectations are
calculated based on an underlying targeting model to
account for SHM hot/cold-spots and nucleotide substitu-
tion bias (8). This is critical since these intrinsic biases
alone can give the illusive appearance of selection (9,10).
An increased frequency of replacements indicates positive
selection, whereas decreased frequencies indicate negative
selection. Since the framework region (FWR) provides the
structural backbone of the receptor, while contact residues
for antigen mainly reside in the complementary
determining regions (CDRs), one generally expects to
find negative selection in the FWRs and positive selection
in the CDRs. The statistical significance is determined by a
binomial test (5). In this setup, R+S, R and 7 are the
number of trials (N), number of successes (x) and prob-
ability of success (p) for the binomial process, respectively.
Several variations of this statistical test have been
proposed using somewhat different definitions for these
parameters [see (5,8,10-12) and Table 1 in (13)].
We previously developed the Focused-Z test to detect

expected frequency 7 = with R being the number of
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selection with improved specificity and allow for grouping
sequences with different baseline probabilities of replace-
ment (77) (13). Regardless of the particular approach, it is
not possible to use the P-value from these statistical tests
to compare the extent of selection between experimental
groups since lower P-values are not equivalent to stronger
selection strengths (see for example Supplementary Figure
S1). In addition, results are not easily interpretable when
analyzing more than a handful of sequences. There are
several reasons why selection strengths can differ. For
example, positive selection will increase over time as
multiple mutations with subtle effects on affinity become
fixed in the population. Second, a more highly competitive
environment (e.g. with limited survival niches) should
produce increased selection strengths. Finally, the
observed selection strength can be impacted by alterations
in the balance of positive and negative selection. Here we
derive a new approach for Bayesian estimation of
Antigen-driven SELectloN (BASELINe) in Ig sequecnes.
BASELINe provides a more intuitive means to analyze
selection by shifting the problem from one of detecting
selection to one of quantifying selection. By operating in
log-odds ratio space, the approach also allows, for the first
time, comparative analysis between groups of sequences
derived from different germline V(D)J segments. An
online implementation of our method for BASELINe
along with R source code, is available at: http://clip.
med.yale.edu/baseline.

MATERIALS AND METHODS

The workflow begins with a set of Ig sequences along
with their associated germlines, which can be determined
using available approaches (for example: 14,15). These
data are then analyzed in five steps (Figure 1), which we
briefly outline below, and then further expand in subse-
quent sections:

(1) Mutation analysis: point mutations are identified in
each sequence and grouped by location (CDR or
FWR) and type (R or S) resulting in four categories
(Rcprs Rewrs Scpr. Srwr). The expected number of
mutations for each category (Rcpr, RFWR> SCDR>SFWR)
is then calculated based on an underlying targeting
model as described previously (13).

(2) Bayesian estimation of replacement frequency (m):
a posterior probability distribution function (PDF)
is calculated for m using a binomial likelihood
function and a B prior. The hyperparameters for
the B distribution are optimized to estimate selection
strength through a numerical approach (see further
Figures 2 and 3).

(3) Germline normalization: the posterior distributions for
the replacement frequency (r) are not directly compar-
able between sequences. High values for one sequence
may be low for another, as the expected frequency (7)
varies depending on the germline segments (Figure 1).
For that reason, the well-known concept of log-odds
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ratios is applied to transform the PDF of m into

¥ =log ZE::Q, which is referred to below as the selec-
tion strength. This normalization step allows for direct
comparison between sequences with different baseline
expected replacement frequencies (7).

(4) Aggregation of results from multiple sequences: a
single PDF for the selection strength is obtained
from a group of multiple independent sequences
(e.g. collected following a defined treatment). This
is accomplished through a fast numerical convolution
technique we have developed for this purpose.

(5) Selection detection and comparison between groups: a
numerical integration approach is used to identify
differences between selection strength PDFis,
allowing for the statistical detection of positive and
negative selection and the comparison between two
independent sequences or groups of sequences.

Mutation analysis

The first step in BASELINe involves the analysis of each
sequence to: (i) identify the occurrence of point mutations,
and (ii) estimate the expected number of mutations. These
observed and expected numbers are calculated separately
for each mutation type (R and S) and region (CDR and
FWR). Mutations within the same codon are considered
independently and the germline context is used to deter-
mine the mutation type. The observed numbers are used to
define the number of trials (N) and the number of
successes (x) in the Binomial formulation, whereas the
expected numbers define the Binomial probability of
success (p = 7). The precise definition of these relation-
ships depends on the statistical formulation being used
as defined in Table 1 from (13) . For example, when
testing for selection in the CDR using the focused test
formulation (used throughout this article), we define
x as the number of observed replacement mutations
in the CDB (RCDR)'J NA: RCDR+SCDR+SFWR and
T= Rcpr/(Rcpr+ScpR + SFWR)- When calculating the
expectations, we use Equation (1) (13). We derived this

formula to fully account for the effects of microsequence
specificity (16) and also to introduce the well-characterized
substitution bias of somatic hypermutation (17,18). For
example, the expected number of R mutations in the
CDR (Rcpr) is the sum of the product of two factors:
(1) the relative probability that a point mutation will fall
in the CDR, and (2) the probability that the base substi-
tution results in an amino acid replacement:

Recgion = Y Y [ () Margnl g (i, b) 1)
b

i

where 7 is summed over all positions (excluding gaps and
N’s) in the region (i.e. CDR or FWR) and b over all
possible nucleotides ({4, C, T, G}). In this equation GL
is a vector containing the nucleic content of each position
in the germline sequence, f; () is the mutability index for
position i in germline GL, M,_,, is the relative rate in
which nucleotide a mutates to » (while M,_,, = 0) and
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Figure 2. Fitting the hyperparameters of the B prior. The observed and expected selection strengths are compared for different choices of the
hyperparameters for the § prior for (a) N =1 and (b) N = 10. In both cases 7 = 0.5.
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Figure 3. The interval of optimal estimation depends on 7. The hyperparameters for the Bayesian prior were estimated for each value of N (N = 10
here) at 7 = 0.5 by fitting within the shaded region (b). Although the hyperparameters remain fixed, the interval of optimal estimation (shaded) will

shift for different values of 7 [0.25 in (a) and 0.75 in (c)].

1 (i, b) is an indicator function that is 1 in cases where a
mutation in position i from GLJ[i] to b results in a replace-
ment mutation and 0 otherwise. As explained in (8), /5 (i)
is calculated by averaging over the relative mutabilities of
the three trinucleotide motifs that include the nucleotide
GL[i]. In the present implementation of BASELINe, the
relative mutatbilities of each trinucleotide are taken from
previous studies (16) which calculate these for mouse and
human separately and M,_,, is taken from (17). It is im-
portant to note that BASELINe could take into account
any mutability and substitution matrix: in the case where
new studies will come up with more accurate models for
somatic hypermutation targeting, the available code could
be easily adapted to use them.

Bayesian estimation of replacement frequency ()

Following the mutation analysis step, BASELINe utilizes
the observed point mutation pattern along with Bayesian
statistics to estimate the posterior distribution for the

replacement frequency (P(w|x)) in each sequence, accord-
ing to:

P(x|m)P(n) _ (3)7*(1 —m)"*p(mla. b)

Pl ==—505 P(x)

2

where P(x) is the marginal probability of x and can be
thought of as a normalization factor. P(x|n) is a
Binomial likelihood function and P(r) is a prior distribu-
tion. We chose a B prior (B(r|a, b)) as it forms a conjugate
pair with the Binomial likelihood (i.e. using a B prior
implies a B posterior).

Germline normalization

In order to allow for the comparison between sequences,
we use a log-odds ratio formulation and normalize 7 using
its expected value to arrive at an estimate of selection
strength: ¥ = log g%:g Using this formula, positive
(negative) values

of "X arise when the estimated
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replacement-to-silent frequency is higher (lower) than
expected, indicating positive (negative) selection. This is
why we refer to X as the selection strength.

The PDF for X 1is derived by the following
transformation:

P(X|x)dE =P(r|x)| Z’—; |dr

L= Dfe” 3)
ZQEW%P(”(E)M)W

where

I
—TT

= 4

1+ % e* “@
and P(n(X)|x)dr is the B posterior PDF from Equation
2.

Aggregation of results from multiple sequences

While the selection strengths predicted by BASELINe
perform well on average, the estimates for individual se-
quences can be highly variable, especially when the
number of mutations is small. Experimentally, many
data sets include a mix of sequences with and without
detectable selection (12,19) making interpretation difficult.
Therefore, we included in BASELINe a method for
aggregating results from multiple sequences to provide a
single result. The selection strength PDFs for any two in-
dependent sequences [P(X) and P»(X,)] can be combined
using standard numerical convolution to derive the PDF
for the sum (X;+ X») by the following formula:

P12(Z1 + o) =(P1 * P2)(Z1 + X2)

> 3
:/ Pi(Z1 + 2)P(Z) + X0 — 1)de
—00
Since convolution is an associative operation (the order
of more than two consecutive operations does not affect
the result), extending this technique to G sequences is
straight forward:

G G
P1,2,....G<Z E[) :(P]*Pz*... ,P(;)(ZE[). (6)
i=1 i=1

This equation can be implemented directly by carrying
out G sequential convolution steps from Equation (5) to
arrive at a single PDF estimating the selection strength
acting on the G independent sequences. Although numer-
ical convolution is a well-studied problem with highly ef-
ficient implementations, these approaches scale poorly
when the number of sequences (G) is large, such as for
high-throughput sequencing data. The problem is that X is
a continuous variable, whose PDF is sampled at a finite
number of points (S), and each convolution step adds
more points to the estimated PDF. The complexity of
this approach is G* - Slog(S+/G) where S is the number
of sampling points in the PDFs and G is the number of
sequences to combine, leading to unrealisitic computation
times for many current data sets. Thus, we developed the
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following approach to group the posterior PDFs obtained
from a large number of individual sequences:

(1) First, we recognized that convolution can be carried
out efficiently for groups composed of an integer
power of two (2") sequences. This is done by:
(i) dividing the group into pairs and performing a
convolution between each pair (resulting in 2"
PDFs in 2S+1 points), (ii) sampling the resulting
PDFs in S points, and then (iii) repeating these
steps until a single PDF is obtained.

(2) Any arbitrary G sequences can be divided into
distinct powers of 2: G =YK 2% where n; are
integers and n; <np <..<ng. For each group i, we
calculate a single PDF using the method described in
item 1 above for powers of two. These PDFs are
then combined serially (i = 1...K) using a weighted
convolution, with weights that are equal to
w o= 2" /Z]’;% 2% for the i-th added group.
Weighting is implemented by interpolating the next
PDF to be included in the convolution at S-w points.
Following the convolution, the PDF is again
sampled in S points. Having w greater than 1
ensures that we do not lose information in the
sampling stage.

(3) It can still be the case that some of the weights are
very large [O(G)] leading to long computation times
for the convolution step. For example, if G = 1025
and S = 4000 (our default value) the approach above
will produce a weight of 1024, requiring a convolu-
tion between PDFs with 4000 and 4000-1024 points.
To overcome this obstacle, we do not divide G into
distinct powers of 2. Rather, we divide G into as
many groups of size 2roundloe2v/G) 45 possible, and
up to one larger group that may not be a power of
2. Sequences in this larger group are handled as
described in item 2 producing a single PDF. The re-
maining groups that are an integer power of 2 are
first combined individually as described in item 1,
and then the resulting PDFs are combined using
weighted convolution as described in item 2.
Finally, these two PDFs are combined using
weighted convolution with the weight of the larger
group adjusted appropriately for the number of se-
quences it contains.

This approach decreases the complexity of sequence ag-
gregation by more than a factor of G, greatly facilitating
the analysis of large data set. The ability to efficiently ag-
gregate results from multiple sequences dramatically in-
creases the statistical power of BASELINe by improving
the confidence of the mean estimated selection strength
(Zobserved, see Figure 4b and Supplementary Figure S4b).

Selection detection and comparison between groups

Aggregation provides a single estimate of the selection
strength PDF for a group of sequences. Similar to
previous methods for detecting selection, BASELINe
can use this PDF to supply a single P-value for detecting
the presence of positive (or negative) selection. This is
done by calculating the areca under the curve of the
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Figure 4. Simulation-based validation of BASELINe. Ten thousand mutated sequences were generated using a sequence-based simulation starting
from the IGHV3-23 germline segment. The mean estimated selection strength obtained by BASELINe was recorded for each sequence. (a) The mean
of these values along with the 50 and 95% confidence intervals. (b) Tighter 95% confidence intervals are obtained by aggregating data from groups

of G = 1,2,4,8 or 16 sequences.

selection strength PDF which has positive (or negative)
values. However, a different method is needed for
comparing two groups, since calculating two P-values
for the deviations from the null hypothesis (i.e. no selec-
tion) for two different groups is not the same as
calculating a P-value for the equivalence of both groups
(20). The ability to compare these PDFs across different
groups enables important biological question to be ad-
dressed. For example, we could compare selection
between (i) wild-type and knockout mouse strains
showing defects in germinal center formation, (ii) vaccin-
ation responses that succeed or fail to generate protective
antibody titers, or (iii) autoimmune responses with
matched healthy controls. To answer these questions, we
compare the two posterior selection strength PDFs
(P; and P,) using numerical integration to obtain a
(one-sided) P-value. Specifically, we calculate the prob-
ability that x;, which is a random variable drawn from
Py, is larger than x, (drawn from P,). The resulting
P-value for testing the alternate hypothesis that the selec-
tion strength in the group producing P, is larger than that
for P, is:

P(x) > xp) = _/jo dxi /jo dx; P1(x1) P2(x,)O(x1 — Xx2)
(7

where O(x) is the Heaviside step function equals to 0 when
x <0, 1 when x>0 and 1/2 when x = 0.

RESULTS

Quantifying selection pressure (with a Bayesian estimate
of m or X), rather than simply detecting its presence (with
a single P-value from a binomial test), opens up new
possibilities for analysis. The P-values that result from
previous methods do not provide knowledge about how
selection is altered under different experimental conditions
because lower P-values do not necessarily imply stronger
selection. For example, the two hypothetical Ig sequences

in Figure 1 b and ¢ were derived from the same germline
and thus have the same expected replacement frequency
(m = 0.25), but the pattern of accumulated mutations is
different. Even though the P-value from a binomial-based
test of sequence A (plotted in red) is smaller than that for
sequence B (plotted in blue), the full posterior PDF reveals
stronger selection in sequence B. In this case, the replace-
ment frequencies for these sequences can be directly
compared, since the expected replacement frequency is
the same for both. This is often the case for experiments
using transgenic mice. However, with next-generation
sequencing approaches, a mix of sequences from different
germlines is often obtained so that replacement frequency
estimates are not comparable, even when the overall
number of mutations is equivalent. For example, the
two hypothetical Ig sequences in Figure 1 d and e have
the same pattern of mutations (x = 4, N = 8), but were
derived from non-identical germlines and thus have differ-
ent underlying expectations (7). While the PDF of the
replacement frequency is the same for both sequences,
comparing the selection strength, as we propose, clearly
shows that the sequences are subject to different selection
pressures.

Fitting the hyperparameters of the Bayesian prior

As described in ‘Materials and Methods’ section, the
Bayesian estimation of replacement frequency utilizes a
B prior [Equation (2)]. The beta prior has two parameters
(hyperparameters) a and b, which yield a beta posterior
with parameters ¢+ x and b+ N —x. In principal, many
different criteria can be used to fit the hyperparameters
using features of the posterior distribution. Here, we
applied two constraints to estimate « and b. First, we
require that ¢ = b < 1, which has been shown to give cre-
dential intervals close to the confidence intervals obtained
by frequency methods (21). Second, we fit the
hyperparameters in such a way that the mean of the pos-
terior distribution for selection strength (Zopserved) at
7= 0.5 will be as close as possible to the actual selection
strength  (Zexpected) fOr  Zexpected € [—2.5,2.5]. This is
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accomplished through a least-squares minimization pro-
cedure, in which Xgpserved 18 @ weighted average of the
means of the posterior PDFs for x =0...N, and the
weights are given by the corresponding binomial
probabilities [Bin(x, N, m), where n is calculated from
Y = Yexpected  Using  Equation  (4)].  Since  the
hyperparameters depend on the total number of mutations
(N), our fitting approach provides advantages over
choosing a fixed value (Figure 2). Fitting the
hyperparameters is done separately for each value of N
to obtain a(N) (Supplementary Figure S3). The advantage
of requiring a = b is seen in Figure 3: once the parameters
are chosen (¢ =5b = 0.686 in this case, N = 10), then
changing the expected frequency of replacement muta-
tions (7) does not alter the quality of the fit. However,
the values of ¥ associated with the fitted region will
depend on 7. If the actual 7 is smaller (larger) than 0.5
we will gain accuracy for positive (negative) values of &
but underestimate negative (positive) selection pressures.
Thus, our approach is conservative. Outside the region
used for fitting (Texpectea[—2.5,2.5] for 7 =0.5) the
proposed approach will underestimate the actual selection
pressure, which means BASELINe is also conservative in
the limits of large and small selection strengths.

Simulation-based validation

We validated BASELINe using a stochastic simulation
approach. The advantage of using simulated data is that
the underlying biological parameters controlling mutation
and selection are all known precisely, and can be set to
explore a wide range of biological conditions. We first
sought to validate BASELINe using mutation data
simulated by a generic binomial process. In this case, mu-
tations are generated directly by applying the Binomial
distribution to determine the number of replacement mu-
tations (x) for a fixed number of total mutations (V). In
each simulation x is drawn from a Binomial probability
with parameters NV and Texpected> Where Mexpectea 1S defined
by Equation (4) and X = Yepected- FoOr each Xeypecteds
10000 simulations were run and the resulting mutation
pattern was used as input to BASELINe in order to
estimate the selection strength PDF. By taking the mean
of each PDF, we calculated the average selection strength
for each Zexpected (Supplementary Figure S4a). The actual
biological processes of somatic hypermutation and selec-
tion do not precisely conform to a binomial process. To
account for these features, we further tested BASELINe
using data from a sequence-based simulation (R source
code is available through the BASELINe website). In
this case, mutations are introduced into actual Ig se-
quences in a way that allows different selection strengths
in CDR (Xcpr) and FWR (Zgwr). The simulation is
initiated with a single IMGT formatted Ig V germline
sequence. Mutations are introduced one-by-one along
the entire length of the sequence (excluding gaps) in two
steps. First, the position is chosen stochastically based on
the microsequence specificity of each nucleotide to
account for hot/cold-spots (16). Second, the particular
substitution is probabilistically determined accounting
for transition bias (17). Selection is implemented by
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specifying selection strengths independently for CDR
(Zcpr) and FWR (Zpwr). These selection strengths are
translated into R frequencies (m) for each region (CDR
and FWR) according to Equation (4). For each region,
we then uniformly alter the probability of all possible R
mutations in order to achieve the specified R frequency.
For example, Zcpr values of — 1, 0 and 1 yield synthetic
data with negative, neutral and positive selection in the
CDR, respectively. To validate BASELINe, we simulated
sequences with strong negative selection in the FWR
(Zpwr = —1) and varied the extent of positive selection
in the CDR (Z¢cpr). BASELINe was used to quantify the
selection strength in the CDR. By comparing expected and
observed selection strengths, one can see that the
approach yields tight estimates and, as designed, is con-
servative at the strongest selection strengths for both
positive and negative selection (Figure 4a).

Example applications

To illustrate the types of insights that can be gained, we
analyzed two sets of experimental data. The first data set
comes from a study comparing B-cell affinity maturation
in IgH transgenic mice where the heavy chain receptor is
fixed to encode moderate (Bl —8) or very low (123)
affinity antibodies when paired with an endogenous A1
light chain. These data are described in (19). Briefly, se-
quences from each of 166 B-cell clones were collected
through microdissection of splenic Germinal Centers at
days 10 and 16 post-immunization with nitrophenyl.
Clonality of the sequences was determined as described
in (8). Since mutation is restricted to the A light chain,
this provides an ideal system to study antigen-driven se-
lection where all the selection pressure rests solely on the
variable domain of the A light chain. The sequences were
grouped by mouse genotype and day post-immunization.
The results of applying BASELINe to the entire Ig
sequence, spanning the V and J regions, clearly show
positive selection in the CDR for both genotypes. Most
importantly, we can now compare the selection strengths
in these two mice. Looking at Figure 5a, we do not
observe significantly different selection strengths between
these mice, suggesting that the selection process can
operate independently of the germline receptor affinity.
The second data set comes from a next-generation
sequencing study of the Ig heavy chain repertoire from
the blood of three healthy individuals. These data are
described in (2). Briefly, five B cell types (transitional,
naive, IgM memory, IgA memory and IgG memory)
were sorted from peripheral blood mononuclear cell
(PBMCs) of three healthy adults. High-throughput
sequencing of these cells was carried out to generate
3577 1Ig heavy chain sequences after filtering for quality
and picking one sequence to represent each clone (2). We
additionally removed sequences that were identified as
non-functional, or had more than 50 point mutations ac-
cording to IMGT High V-Quest (14), resulting in a dataset
containing 880 sequences from memory cells. These se-
quences were grouped by individual, cell type and IGHV
germline segment family for analysis of the V and J
regions [the D segment and surrounding N and P
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Figure 5. Applications of BASELINe to estimate selection strength from real data. (a) Posterior probability distributions for Ig sequences from two
mice strains with moderate (B1-8) or low (V23) initial affinity for the immunizing antigen at different days post-immunization (10 and 16) (19).
(b and ¢) Posterior probability distributions for different memory cell subsets (b) or the three most frequent IGHV families (c¢) for data in (2).
The top half of each plot shows the estimated selection strength in the CDR, whereas the bottom part provides an estimate for FWR.

additions were excluded due to uncertainty in the germline
assignment (15)]. Figure 5b shows that all memory
isotypes are subject to significant negative selection in
the FWR, but the selection strength is stronger in IgM
compared with IgG and IgA memory cells (although the
difference is only significant for IgA, P = 0.02). Weaker
negative selection for IgG and IgA could reflect a higher
starting affinity for these cells (allowing them to be more
tolerant of affinity-decreasing mutations), or positive se-
lection for some mutations in the FWR region. While the
latter hypothesis is supported by the observation that
these isotypes show a trend towards increased selection
strengths in the CDR, we did not detect statistically sig-
nificant differences in the CDR selection strength PDFs
for any of the memory cell isotypes. Taken together, this
pattern suggests that IgM memory cells are formed earlier
in the germinal center reaction. Wu et al. (2) were able to
identify  significant differences in the repertoire

composition of IgM and class-switched memory cells.
The ability to combine data from different germline
segments allows us to extend these observations by
showing that the differences in selection strength that we
observe for the isotypes are driven by variation in selection
strengths of each germline family, with IGHV3
contributing much of the CDR positive selection
observed in IgM and IgA memory cells (Figure 5c¢ and
Supplementary Figure S6).

DISCUSSION

We have developed BASELINe, a Bayesian framework
for quantifying immune selection that can be applied to
large-scale B-cell Ig sequence data sets. When combined
with the dramatic improvements being made in
high-throughput sequencing, BASELINe opens exciting
possibilities for the future analysis of B-cell repertoires.
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Since new data sets are likely to include orders of magni-
tude increases in the number of sequences, we have de-
veloped an optimized code implementing BASELINe.
Benchmarking results indicate that 10 000 sequences can
be analyzed in 4 min on a single 1.73 GHz processor
(Supplementary Figure S8), which means a complete
human repertoire analysis is feasible.

The framework developed here is quite general, and can
casily be extended. First, selection strength can be defined
based on patterns other than the replacement frequency.
For example, it has been suggested that selection impacts
the frequency of non-conservative mutations (i.e. those
that change the amino acid property) even beyond the
number of replacement mutations (22). This could be im-
plemented simply by changing the definition of which nu-
cleotide exchanges constitute replacement mutations.

Second, BASELINe can be adapted to other biological
questions. At its core, our method quantifies the deviation
from the expectation of repeated independent binomial
variables, each of which has a different probability of
success. This allows a wide range of problems to be ad-
dressed by re-defining replacement and silent mutations as
arbitrary sets of positions/substitutions. As one such
example, the framework can be used to quantify
strand-bias for AID, which targets cytosines (C) for
mutation. This is done by re-defining all mutations at C
to be replacements and all mutations at guanine to be
silent. In this formulation, positive selection indicates a
coding-strand bias, whereas negative selection would
indicate a non-coding-strand bias. Existing methods for
testing strand-bias are limited since they do not account
for the full range of hot/cold-spots and variation across
germline segments (18,23,24).

In summary, we have developed a framework for
analyzing arbitrary DNA mutation patterns in the
context of a mutator that displays intrinsic biases (i.e.
hot/cold-spots and substitution preference). This
approach was implemented for Bayesian estimation of
Antigen-driven SELectloN (BASELINe) in large-scale
immunoglobulin sequence datasets, which are becoming
increasingly common with the advent of next-generation
sequencing. In the future, the approach may also be
extended to take advantage of the information that
exists in sequence abundance distributions within each
clone to assess selection strength from all available se-
quences (25). Looking beyond the analysis of immune se-
lection, the basic framework underlying BASELINe might
be adapted to quantify selection acting on viral sequences.
BASELINe is available at: http://clip.med.yale.edu/
baseline.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1-8.
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