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Abstract: Actinidia arguta leaves (AAL) are an excellent source of bioactive components for the food
industry and possess many functional properties. However, the hypoglycemic effect and mechanism
of AAL remain unclear. The aim of this work was to investigate the potential hypoglycemic effect of
AAL and explore its possible mechanism using 16S rRNA sequencing and serum metabolomics in
diabetic mice induced by high-fat feeding in combination with streptozotocin injection. A total of
25 flavonoids from AAL were isolated and characterized, and the contents of the extract from the AAL
ranged from 0.14 mg/g DW to 8.97 mg/g DW. The compound quercetin (2) had the highest content of
8.97± 0.09 mg/g DW, and the compound kaempferol-3-O-(2′-O-D-glucopyl)-β-D-rutinoside (12) had
the lowest content of 0.14 ± 0.01 mg/g DW. In vivo experimental studies showed that AAL reduced
blood glucose and cholesterol levels, improved insulin sensitivity, and ameliorated oxidative stress
and liver and kidney pathological damage. In addition, gut microbiota analysis found that AAL
significantly reduced the F/B ratio, enriched the beneficial bacteria Bacteroides and Bifidobacterium,
and inhibited the harmful bacteria Lactobacillus and Desulfovibrio, thereby playing an active role in
intestinal imbalance. In addition, metabolomics analysis showed that AAL could improve amino
acid metabolism and arachidonic acid metabolism, thereby exerting a hypoglycemic effect. This
study confirmed that AAL can alleviate type 2 diabetes mellitus (T2DM) by regulating intestinal flora
and interfering with related metabolic pathways, providing a scientific basis for its use as a dietary
supplement and for further exploration of the mechanism of AAL against T2DM.

Keywords: Actinidia arguta leaves; type 2 diabetes mellitus; hypoglycemic effect; gut microbiota;
serum metabonomics

1. Introduction

Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia, hyperlipidemia,
and relatively insufficient insulin, which seriously threatens human life and health [1,2].
Intestinal microbiota disorders and insulin resistance (IR) are linked to the pathogenesis of
T2DM [3]. The clinical treatment of diabetes consists mainly of oral hypoglycemic drugs,
including sulfonylureas, biguanides, α-glycosidase inhibitors, glucagon inhibitors, and insulin
sensitizers, but they are usually accompanied by some side effects and are expensive [4,5].
Flavonoids are one of the most important phenolic chemicals in the plant kingdom. They
have a range of biological activities, including hypoglycemic, hypolipidemic, antioxidant, and
anti-inflammatory effects by reducing oxidation and inflammation, regulating glucose and
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lipid metabolism, and improving insulin resistance [6,7]. Therefore, exploring and discovering
natural hypoglycemic and metabolic balance extracts rich in flavonoids with fewer side effects
for preventing and treating diabetes is of great significance.

Increasing evidence supports that intestinal flora are directly correlated with the preva-
lence and development of T2DM [3,8–11]. The changes in the composition and function of
intestinal flora are strongly associated with diabetic symptoms, such as hyperglycemia and
IR [12]. Gut microbiota and its related metabolites are essential to the pathophysiological
processes of T2DM, such as blood glucose metabolism, IR, and chronic inflammation [13].
Therefore, regulating the gut microbiota is essential to preventing and managing T2DM
and related metabolic disorders.

Metabolomics is an emerging omics research technology following genomics, tran-
scriptomics, and proteomics, which has been widely used to monitor the metabolites
that have changed in organisms in real-time [14–16]. Metabolomics is characterized by
high throughput and high sensitivity. Through the systematic study of metabolites in
biological samples, the pathways linked to the illness process are found and the medi-
cation mechanism is elucidated to effectively reflect the metabolism in the body under
specific conditions [17]. Chromatography–mass spectrometry (GC–MS, LC–MS, and CE–
MS) and nuclear magnetic resonance technology are two frequently employed research
methods in metabolomics [5,15–19]. Thus, exploring the hypoglycemic mechanism of
natural extracts based on the combination of gut microbiota and metabolomics would have
an important advantage.

The leaves of Actinidia arguta (AAL), as the by-product during the fruit ripening
process, are discarded as crop waste, resulting in the waste of biological resources [20].
However, in China and Korea, AAL is used as a traditional edible material and as an
exceptional source of value-added chemical substances for the food industry [20–23]. AAL
has antioxidant, anti-inflammatory, anti-allergic, and antidiabetic effects [23–25].

Previously, the hypoglycemic effect of A. arguta leaves was investigated in vitro, but
is still unclear in vivo [21,26]. Therefore, in this work, a T2DM model was created of a
high-fat diet (HFD) and streptozotocin (STZ) injection to explore the antidiabetic effect of
AAL in mice. Additionally, combining gut microbiota and metabolomics to elucidate the
mechanism of the hypoglycemic effect of AAL.

2. Materials and Methods
2.1. Materials

The Actinidia arguta leaves (AAL) were gathered from the Xi’an Botanical Garden
(Xi’an, Shaanxi, China), and authenticated by Prof. Naisheng Bai from the College of Food
Science and Technology, Northwest University, Xi’an, China. Voucher specimens were
deposited in our laboratory.

Forty SPF male C57BL/6 mice weighing 20 ± 2 g each were obtained from the Experi-
mental Animal Center at Xi’an Jiaotong University (the production license number is SCXK
(Shaan) 2018-001). The animal experiments were approved by the Northwest University
Ethics Committee (AWC-20190202) and conducted in compliance with the guidelines on
the Care and Use of Laboratory Animals at Northwest University.

Streptozotocin (STZ) was obtained from Sigma-Aldrich (St. Louis, MO, USA). Acetoni-
trile and formic acid were all UPLC grade, obtained from Fisher Chemical (Gaelic, Belgium)
and Sigma-Aldrich, respectively. The deionized water was purified with the Milli-Q®

water purification system (Millipore, Burlington, MA, USA). The remaining materials were
purchased from market resources and are now available.

2.2. Extraction, Characterization, and Quantification

The dried A. arguta leaves (15 kg) were added to 80% ethanol–water, and diafiltration
was performed at room temperature three times for 24 h each time. Subsequently, the
crude extract (1.15 kg) was dispersed with water and then extracted using petroleum ether
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and ethyl acetate. The water fraction (604 g) was obtained from water-layer raffinate after
vacuum concentration.

The 580 g water fraction was used for column chromatography, and the residual part
was vacuum freeze dried. The freeze-dried powder obtained was the sample used in this
animal experiment, which was sealed at −80 ◦C.

An integrated chromatographic separation approach using silica gel (100–200 mesh,
200–300 mesh, Qingdao Marine Chemical Inc., Qingdao, China), Sephadex LH-20 (Sigma
Chemical Co., St Louis, MO, USA), MCI gel CHP20P (Mitsubishi Kasei Co., Tokyo, Japan),
polyamide (60–100 mesh, Beijing Solarbio Science and Technology Co., Ltd., Beijing, China),
and semi-preparative HPLC (Essentia Prep LC-16P, Shimadzu, Japan) was performed. The
silica gel column was eluted with the MeOH-CH2Cl2 solvent system. The CHP-20P, LH-20,
polyamide, and semi-preparative HPLC column chromatography were eluted with the
MeOH-H2O solvent system. A total of 25 compounds were obtained: compounds 1 (17 mg),
2 (25 mg), 3 (20 mg), 4 (11.2 mg), 5 (13.2 mg), 6 (13.1 mg), 7 (11 mg), 8 (10.5 mg), 9 (15.9 mg),
10 (7.8 mg), 11 (10.9 mg), 12 (11.2 mg), 13 (10.4 mg), 14 (9.6 mg), 15 (6.9 mg), 16 (9.1 mg), 17
(7.7 mg), 18 (10.3 mg), 19 (18.3 mg), 20 (12.0 mg), 21 (13.1 mg), 22 (8.3 mg), 23 (9.5 mg), and
24 (11.2 mg). The detailed separation process is shown in Figure S1.

The compounds were evaluated using the Agilent 1260 Infinity HPLC system (Agilent
Technologies Inc., Santa Clara, CA, USA). Chromatographic separations were performed
at 30 ◦C on an Agilent HC-C18 column (250 mm × 4.6 mm, 5 µm). The mobile phase was
composed of a gradient elution with 0.2% (v/v) phosphoric acid–water solution (A) and
acetonitrile (B): 0 min, 5% B; 0–10 min, 5–25% B; 10–20 min, 25–50% B; 20–30 min, 50–75% B;
30–35 min, 75–95% B; 35–40 min, 95% B; 40–45 min, 95–5% B; and 45–50 min, 5% B. The flow
rate was 1 mL/min, and the injection volume was 15 µL for all samples. The wavelength of
the UV detector was set at 210 nm. The concentration of each component in the AAL was
determined by HPLC analysis.

2.3. Animals and Administration

The HFD–STZ-induced T2DM mouse model was established, according to the pre-
vious method, in our lab [27]. Mice were raised in standardized conditions, where the
temperature was 23 ± 2 ◦C, the relative humidity was 50 ± 10%, the lighting condition
was 12 h light/12 h dark cycles, and there was free access to drinking and eating. After
a week of adapted feeding, the mice were randomly grouped into four groups, with ten
mice per group. One group continued to feed with an ordinary low-fat diet (LFD, 8% fat,
22% protein, and 70% carbohydrates), which was labeled as the control group, and the
rest of the three groups were fed with a high-fat diet (HFD, 45% fat, 37% carbohydrates,
and 18% protein; ReadyDietech, Shenzhen, China). After four weeks of feeding, the three
HFD-fed groups received three consecutive days of intraperitoneal injections of 50 mg/kg
body weight (BW) STZ, while the control group was given the same dosage of buffered
citric acid–sodium citrate (Kemiou Chemical Reagent Co., Ltd., Tianjin, China). The diet
was resumed two hours after the end of the injection and then stabilized for seven days.

The HFD–STZ-induced mice with fasting blood glucose (FBG) levels ≥ 11.1 mmol/L
were classified as T2DM mice [28]. And then, the T2DM mice were randomly grouped
into the model group (Model), the AAL-treated group (AAL), and the metformin-treated
group (Met). The mice in the control and model groups were gavaged with pure water,
while the AAL-treated group mice were gavaged with 400 mg/kg BW of AAL, and the Met
group mice were fed with 50 mg/kg BW of metformin. BW and FBG were recorded weekly
throughout the treatment duration.
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2.4. Sample Collection and Preparation

After the fifth week of feeding, the level of insulin (INS) and FBG were assayed, and
the homeostasis model assessment: insulin resistance (HOMA-IR) was determined utilizing
the following formula:

HOMA-IR = FBG (mmol/L) × INS (mIU/L)/22.5.

In addition, the oral glucose tolerance test (OGTT) was performed following 12 h of
fasting. Following the intragastric administration of the glucose solution (1 g/kg BW), tail
vein blood samples were taken at 0, 10, 20, 30, 60, 90, and 120 min.

The following day, 0.2 mL/20 g of 4% chloral hydrate was prepared for anesthetizing
the mice, and then the mice were sacrificed to collect blood, liver, kidney, and feces samples.

Whole blood was obtained from the orbital, which was subsequently centrifuged for
15 min at 3000 rpm to gather the serum. At the same time, after the collection of liver
and kidney tissues, each of them was divided into 2 pieces and washed 2–3 times with
phosphate buffered saline (PBS); one was quick frozen in liquid nitrogen, and the other was
kept in formalin for a histological assay. All of the obtained samples were kept at −80 ◦C
following analysis.

The preparation of the serum samples strictly followed the sample preparation stan-
dards proposed by the International Association of Metabolomics and were prepared
according to the method described by Want et al. [29]. Specifically, pipet 100 µL of each
serum sample, add 400 µL of acetonitrile–methanol (1:1, v/v) solution to the precipitate
proteins, vortex for 30 s, sonicate in an ice bath for 10 min, place in a −20 ◦C refrigerator for
1 h, and then centrifuge at 12,000 rpm for 15 min at 4 ◦C. The supernatant was freeze dried,
reconstituted with 100 µL of 2-chlorobenzalanine (4 ppm, purchased from Sigma-Aldrich,
USA), an 80% methanol solution, 30 s of vortexing, 5 min of sonication on ice, and 15 min
of 12,000 rpm centrifugation at 4 ◦C. The obtained upper solution layer was subsequently
injected into a vial for UPLC-QTOF-MSE analysis. To evaluate the system stability, a quality
control (QC) sample was prepared by precisely pipetting 5 µL from each of the 24 serum
samples. And the QC sample was randomly injected 5 times in the sample sequence.

2.5. Biochemical and Histological Assays

At the end of the experiment, the serum levels of triacylglycerols (TG), total cholesterol
(TC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (Cre),
blood urea nitrogen (BUN), and blood uric acid (BUA) were measured using commercial
diagnostic kits, in accordance with the manufacturer’s standard procedures. The serum
insulin level was determined by the double-antibody sandwich ELISA method. Part of the
liver tissue was homogenized in normal saline, then centrifuged at 3000 rpm for 10 min at
4 ◦C, and the collection of supernatants was used to detect glutathione peroxidase (GSH-
Px), malondialdehyde (MDA), and superoxide dismutase (SOD) using diagnostic kits.
All the diagnostic kits were purchased from Nanjing Jiancheng Bioengineering Institute,
Nanjing, China.

The liver and kidney tissues were embedded in paraffin following 24 h paraformalde-
hyde fixation. The serial slices (10 µm) were stained with hematoxylin and eosin (H&E).
Finally, the histopathological changes in mice liver, kidney, hepatocyte degeneration, and
cell necrosis were observed by using an optical microscope (7XB-PC, Shanghai Optical
Instrument Factory, Shanghai, China).

2.6. UPLC-QTOF-MSE Analysis Conditions

The UPLC-QTOF-MSE analysis method refers to our previous research, with minor
modifications [30]. The UPLC analysis was carried out using the Waters ACQUITY UPLC
System (Milford, MA, USA). The ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm,
1.7 µm) was applied for chromatography separation at 35 ◦C. The mobile phase was eluent
A (0.1% formic acid in water, v/v) and eluent B (acetonitrile) at a 0.15 mL/min flow rate. The
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stepwise elution was optimized as follows: 0–2 min, 10% B; 2–3 min, 10–40% B; 3–16 min,
40–95% B; 16–18 min, 95% B; 18–20 min, 95–5% B; and 20–22 min, 5% B. The injection
volume was set to 5 µL.

The Waters I-Class VION IMS QTOF mass spectrometry parameters were set as
follows: the full scan range was m/z 50–2000, the capillary voltage floating was 2.00 kV
(ESI+) or 2.50 kV (ESI−), the cone voltage was 40 V, the source temperature was 120 ◦C, the
desolvation temperature was 600 ◦C, the cone gas flow was 50 L/h, and the desolvation
gas flow was 800 L/h. In addition, the collision energy of the low energy function and
the ramp collision energy of the high energy function were, respectively, set at 6.00 eV
and 20–30 eV. The mass spectrometer was calibrated and locked by sodium formate and
leucine enkephalin (m/z 556.2771 in positive ion mode; m/z 554.2615 in negative ion mode),
respectively, to ensure mass accuracy and reproducibility.

2.7. Gut Microbiota Analysis of AAL Antidiabetic Effect

Firstly, the DNA was extracted from the colon contents of mice, and the DNA was
quantified using the NanoDrop system, and the quality of the DNA extraction was as-
sessed using 1.2% agarose gel electrophoresis. Then, the target fragment was amplified by
PCR. Thirdly, magnetic beads were used to purify and recover the amplification products.
Subsequently, fluorescence quantification of the PCR amplification-recovered products
was performed. Finally, the Illumina MiSeq sequencing platform was utilized for high-
throughput sequencing.

Sequence OTU clustering was performed using QIIME2 Dada2 analysis. According to
the Greengenes database, species annotation was performed for each ASV characteristic
sequence to obtain the taxonomic composition of the sample species. The alpha diversity
level of the samples was estimated based on the distribution of ASV/OTU in different
samples, and the suitable sequencing depth was represented by sparse curves. Principal
coordinates analysis (PCoA) and non-metric multidimensional scaling analysis (NMDS)
were applied to characterize the community differences between the samples, based on
the Bray–Curtis distance. LEfSe (linear discriminant analysis effect size) analysis was
performed to analyze species differences and to find robust marker species among the
groups. According to the 16S rRNA gene sequencing results, we predict the bacterial
community metabolic function of the samples and find out the differential pathways.

2.8. Metabolomics Analysis of AAL Antidiabetic Effect

The metabolomics method based on UPLC-Q/TOF-MSE and multivariate statistical
analysis were used to search for related small-molecule endogenous metabolites and related
metabolic pathways in mice.

Firstly, the UNIFI scientific information system platform was used to collect the data,
and the parameter settings refer to our previous research [30].

Secondly, the Progenesis QI software ver. 2.0 (Waters Corp., Milford, CT, USA) was
used to preprocess the raw data collected from the UNIFI platform and identify the detected
small-molecule metabolites. Data preprocessing mainly includes automatic alignment,
peak extraction, and automatic deconvolution. For metabolite identification, there are
now four levels of annotation: (1) identified substance with confidence (two orthogonal
features supported by real chemical standard analysis performed in the same environment),
(2) potentially identified compounds (based on one or two orthogonal qualities in a public
database), (3) the potentially identified compound class, and (4) potentially unknown
substance [31,32]. Therefore, the Progenesis QI search engine was used to query both
publicly available databases (HMDB) and in-house databases. With the built-in Metascope
for metabolite identification, compound IDs can be obtained according to up to five different
criteria, including mass accuracy, retention time, fragment ion spectra, collision cross section
(CCS), etc., which increase the confidence of metabolite identification, while minimizing
false negative and false positive results [33]. For these orthogonal measures and allowing
for a more balanced set of tolerance criteria, the parameters reported in our study are:
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a mass within 5 ppm, a retention time within 0.1 min, a CCS within 5%, and a relative
mass error of performing theoretical fragmentation within 5 ppm. The MetaboAnalyst
analysis platform [34] was used to perform multivariate statistical analysis, which involves
principal component analysis (PCA) and orthogonal partial least-squares discriminant
analysis (OPLS-DA), for screening the functional metabolites. Data normalization was
carried out by median and Pareto scaling. Features with missing values that exceeded
50% were eliminated, and the remaining missing values were substituted with 1/5 of
each variable’s minimum positive value. The interquartile range (IQR) filter was used to
keep the variables close to a constant value throughout the experimental conditions. Two
parameters, R2Y and Q2 of the permutation test, were used to assess the model’s validity
and the reliability of the results [30]. In addition, we used VIP > 1, FC > 2 or FC < 0.5,
and p < 0.05, as the criteria to screen potential differential markers.

Finally, the identified potential biomarkers were imported into MetaboAnalyst 5.0
(http://www.Metabo-analyst.ca/ (accessed on 28 October 2022)), using HMDB (http://
www.hmdb.ca/ (accessed on 28 October 2022)), KEGG (http://www. kegg.com/ (accessed
on 28 October 2022)), and METLIN (http://metlin.scripps.edu/ (accessed on 28 October
2022)) databases for metabolic pathway analysis. The pathways with an impact > 0.10 in
the MetaboAnalyst database are regarded as key potential biomarkers.

2.9. Statistical Analysis

GraphPad Prism 8.0.2 software (GraphPad Software Inc., San Diego, CA, USA) was
used to process the data. The Wilcoxon rank sum test, the Kruskal–Wallis H test, and the
one-way ANOVA were employed to evaluate the differences. An LEfSe program was used
to analyze the LEfSe. The correlations between the gut microbiota and metabolomic data
were investigated using Spearman correlation analysis.

3. Results
3.1. Identification and Quantification

Twenty-five flavonoid compounds were isolated from AAL. These isolated compounds
were identified by comparison with the NMR results reported in the literature (see the
Supplementary Materials), and their chemical structures are displayed in Figure S2. They are
isoquercitrin (1) [35], quercetin (2) [36], kaempferol (3) [36], catechin (4) [37], hyperoside (5) [38],
kaempferol-3-rutinoside (6) [39], rutin (7) [40], quercitrin (8) [41], astragalin (9) [42], quercetin-3-
O-rutinoside-7-O-glucoside (10) [43], quercetin-3-O-rutinoside-(1→2)-O-rhamnoside (11) [44],
kaempferol-3-O-(2′′-O-β-D-glucopyl)-β-D-rutinoside (12) [45], kaempferol-3-O-(2′′,6′′-α-L-
dirhamnose)-β-D-glucoside (13) [44], kaempferol-3-sambubioside (14) [46], isorhamnetin-
3-O-nehesperidine (15) [47], isorhamnetin-3-O-rutinoside (16) [47], isorhamnetin-3-O-β-
D-glucoside (17) [47], 2′′-O-galloylhyperin (18) [48], quercetin-4′-O-galactoside (19) [49],
epigallocatechin (20) [50], taxifolin-7-O-rhamnoside (21) [51], quercetin-3-O-β-D-glucose-7-
O-β-D-gentiobioside (22) [52], ampelopsin (23) [53], isorhamnetin (24) [54], and taxifolin
(25) [55].

The quantification of the 25 compounds was established by HPLC (Figure S3), and
the results are displayed in Table S1. The standard calibration curves of the analytes were
established by plotting the relationship between the analyte concentration and the target
peak area. The calibration curves of the 25 flavonoid compounds exhibited satisfactory
linearity and correlation between the concentration and peak area over the linear range,
with correlation coefficients of R2 ≥ 0.9991. The limit of detection (LOD) and limit of
quantitation (LOQ) for all the analytes ranged from 0.02 to 2.34 µg/mL and from 0.60 to
7.12 µg/mL, respectively. The contents of the flavonoids in the extract from the A. arguta
leaves ranged from 0.14 mg/g DW to 8.97 mg/g DW. The highest content in the compound
was quercetin (2) with a content of 8.97 ± 0.09 mg/g DW, and the lowest content in the
compound was kaempferol-3-O-(2′-O-D-glucosyl)-β-D-rutinoside (12) with a content of
0.14 ± 0.01 mg/g DW. The total flavonoid content in the extract was 41.03 mg/g DW.

http://www.Metabo-analyst.ca/
http://www.hmdb.ca/
http://www.hmdb.ca/
http://www
http://metlin.scripps.edu/
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3.2. Effects of AAL on Physiological and Biochemical Indices

The BW of each group of mice was monitored weekly throughout the study (Figure 1A).
In comparison to the control group, the BW of the diabetic model group was markedly
reduced (p < 0.01), and after AAL and Met treatment for five weeks, the weight loss was
markedly attenuated (p < 0.05).
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and TG (F), ALT and AST (G), MDA (H), SOD (I), GSH-Px (J), Cre (K), BUN (L), and BUA (M). The
data are presented as mean ± SD (n = 6). In comparison with the control group (* p < 0.05, ** p < 0.01).
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As illustrated in Figure 1B, the FBG levels in the mice in the model constantly grew
after the development of the diabetes model (p < 0.01), while after five weeks of AAL and
Met treatment, the FBG levels in the mice exhibited an obviously declining trend (p < 0.01).

In the OGTT study, as shown in Figure 1C, the blood glucose levels in the mice in
each group increased rapidly at 0–10 min, and after 10 min, the blood glucose levels in
each group of mice first decreased sharply and then gradually tended to smooth out.
Furthermore, the OGTT values were remarkably higher (p < 0.01) in the model group than
the other groups. The INS study showed that the level of INS in the model group was
considerably lower than that of the control group with p < 0.01, and after AAL and Met
intervention, the level of INS was obviously higher with p < 0.01 (Figure 1D). As shown in
Figure 1E, the HOMA-IR index for the model group was notably greater than that of the
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control group (p < 0.01), whereas the HOMA-IR indices in the AAL and Met groups were
noticeably lower than those of the model group (p < 0.01).

The TC and TG levels were measured to evaluate the effects of AAL on the serum
lipid profile (Figure 1F). In comparison with the control group, the levels of TG and TC
in the model group were remarkably increased (p < 0.01), suggesting the presence of
hyperlipidemia. After 5 weeks of treatment with AAL and Met, the levels of TG and TC in
mice significantly declined compared to those in the model group (p < 0.01), indicating that
AAL could alleviate dyslipidemia in diabetic mice.

The effects of AAL on liver function and oxidative stress in diabetic mice were investi-
gated by detecting the levels of ALT and AST in serum and MDA, SOD, and GSH-Px in the
liver. In comparison with the control group, the serum ALT, AST activity, and liver tissue
MDA levels in the model group were significantly increasing (p < 0.01), while significantly
decreasing in the AAL group (p < 0.01) and Met group (p < 0.05) (Figure 1G,H). In addition,
as shown in Figure 1I,J, the SOD and GSH-Px levels in the model group were obviously
lower than those of the control group, while those in the AAL and Met groups were greatly
reversed. The results suggest that AAL could lessen liver injury and oxidative stress injury
in diabetic mice.

The renal function of diabetic mice was assessed using the serum levels of Cre, BUN,
and BUA, and the results are displayed in Figure 1K–M. In comparison with the control
group, the serum Cre, BUN, and BUA levels in the model group were markedly higher
(p < 0.01). When compared with the model group, the contents of the serum Cre, BUN, and
BUA in the AAL group were markedly lower (p < 0.01), demonstrating that AAL could
improve renal function and alleviate renal injury in diabetic mice.

3.3. Histopathological Analysis

To evaluate the effects of AAL on the liver and kidney histopathology in T2DM mice,
the samples were stained with H&E to determine histopathological changes. The results
(Figure 2A,B) show that the structure of the liver and kidney pathological sections from
mice in the control group were clear, without obvious pathological damage. However,
in the model group, the renal tissue of diabetic mice exhibited glomerular atrophy and
basement membrane thickening, renal tubule edge blurring, swelling, congestion, and other
histological injuries, and the liver of diabetic mice showed obvious fat vacuoles, disordered
hepatocyte arrangement, inflammatory cell infiltration, and a liver cord disorder. After
the intervention with AAL and Met, liver and kidney histological damage in diabetic mice
was ameliorated.

Nutrients 2023, 15, x FOR PEER REVIEW 8 of 23 
 

 

that of the control group with p < 0.01, and after AAL and Met intervention, the level of INS 
was obviously higher with p < 0.01 (Figure 1D). As shown in Figure 1E, the HOMA-IR index 
for the model group was notably greater than that of the control group (p < 0.01), whereas 
the HOMA-IR indices in the AAL and Met groups were noticeably lower than those of the 
model group (p < 0.01). 

The TC and TG levels were measured to evaluate the effects of AAL on the serum lipid 
profile (Figure 1F). In comparison with the control group, the levels of TG and TC in the 
model group were remarkably increased (p < 0.01), suggesting the presence of hyper-
lipidemia. After 5 weeks of treatment with AAL and Met, the levels of TG and TC in mice 
significantly declined compared to those in the model group (p < 0.01), indicating that AAL 
could alleviate dyslipidemia in diabetic mice. 

The effects of AAL on liver function and oxidative stress in diabetic mice were inves-
tigated by detecting the levels of ALT and AST in serum and MDA, SOD, and GSH-Px in 
the liver. In comparison with the control group, the serum ALT, AST activity, and liver 
tissue MDA levels in the model group were significantly increasing (p < 0.01), while sig-
nificantly decreasing in the AAL group (p < 0.01) and Met group (p < 0.05) (Figure 1G,H). 
In addition, as shown in Figure 1I,J, the SOD and GSH-Px levels in the model group were 
obviously lower than those of the control group, while those in the AAL and Met groups 
were greatly reversed. The results suggest that AAL could lessen liver injury and oxidative 
stress injury in diabetic mice.  

The renal function of diabetic mice was assessed using the serum levels of Cre, BUN, 
and BUA, and the results are displayed in Figure 1K–M. In comparison with the control 
group, the serum Cre, BUN, and BUA levels in the model group were markedly higher (p 
< 0.01). When compared with the model group, the contents of the serum Cre, BUN, and 
BUA in the AAL group were markedly lower (p < 0.01), demonstrating that AAL could 
improve renal function and alleviate renal injury in diabetic mice. 

3.3. Histopathological Analysis 
To evaluate the effects of AAL on the liver and kidney histopathology in T2DM mice, 

the samples were stained with H&E to determine histopathological changes. The results 
(Figure 2A,B) show that the structure of the liver and kidney pathological sections from 
mice in the control group were clear, without obvious pathological damage. However, in 
the model group, the renal tissue of diabetic mice exhibited glomerular atrophy and base-
ment membrane thickening, renal tubule edge blurring, swelling, congestion, and other 
histological injuries, and the liver of diabetic mice showed obvious fat vacuoles, disor-
dered hepatocyte arrangement, inflammatory cell infiltration, and a liver cord disorder. 
After the intervention with AAL and Met, liver and kidney histological damage in diabetic 
mice was ameliorated. 

 
Figure 2. Effects of AAL treatment on tissue damage in the liver (A) and kidney (B) in diabetic mice. 

  

Figure 2. Effects of AAL treatment on tissue damage in the liver (A) and kidney (B) in diabetic mice.

3.4. Effects of AAL on Taxonomic Composition and Intestinal Microbial Diversity of Gut Microbiota

At the phylum level, Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria
were the dominant bacteria detected in all groups. As illustrated in Figure 3A, in compari-
son to the model group, the Firmicutes in the AAL intervention group remarkably dropped,
while the Bacteroidetes increased obviously, and the Firmicutes to Bacteroidetes (F/B) ratio
was significantly reduced (Figure S4). At the genus level, the Bacteroides, Bifidobacterium,
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Oscillospira, Allobaculum, (Prevotella), Odoribacter, and Clostridiaceae_Clostridium levels
in the model group declined, while the Lactobacillus, Helicobacter, and Desulfovibrio levels
increased (Figure 3B). After AAL administration, all of the above bacterial abundances
were reversed, which suggests that AAL could regulate the community and structure of
gut microbiota in T2DM mice.
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Figure 3. Effects of AAL treatment on regulation of gut microbiota community structure and diversity.
Composition of intestinal microbial at the phylum level (A) and genus level (B) in the model, control,
and AAL groups. Alpha-diversity index (C), including the Chao1 index, observed species index,
Shannon index, and Simpson index (the Kruskal–Wallis test p value appears under the diversity index
label, and the significant mark for Dunn’s post-hoc test is drawn by default; * p < 0.05, ** p < 0.01,
*** p < 0.001). Alpha diversity analysis rarefaction curve (D) and rank abundance curve (E). The
Bray–Curtis based PCoA (F) and NMDS analysis (G).

For a comprehensive assessment of the alpha diversity of the microbial communities,
the Chao1 and observed species indexes were determined to reflect the species richness,
while the Shannon and Simpson indices were used to analyze the microbial biodiversity in
the samples. The Chao1 index, observed species index, and Shannon and Simpson indices
analysis indicated that the microbial community richness and diversity of the model group
were obviously lower than those in the control group (Figure 3C). After AAL intervention, a
rising trend in microbial community richness was observed, but with no marked difference
between the AAL and the model group. As shown in Figure 3D, the rarefaction curve based
on Chao1 was utilized to explore the changing trend in the alpha diversity with the leveling
depth of the samples. The results showed a significant rise in the number of species detected
in each group of samples with the deepening of the sequencing depth. However, with the
increase in sequencing volume, the growth of the number of samples displayed by the two
sparse curves slowed down significantly, while the Chao1 sparse curve entered a plateau
when the sequencing volume increased to about 2000. In contrast, the rank abundance
curve was able to visually reflect the amount of rare and high abundance ASV/OTU in the
community. After AAL intervention, the more uniform distribution of the species and the
higher species richness than that of the model group are shown in Figure 3E.
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Additionally, beta diversity analysis was applied to compare the differences in the
overall structure of the microbial communities in each sample. As illustrated in Figure 3F,
the PCoA plot exhibited an obvious separation and spatial clustering, and the contributions
from PCo1 and PCo2 were 21% and 15.1%, respectively. Interestingly, the intestinal flora of
the mice in the AAL group was closer to the normal group along the PCo1 in comparison
with the model group. Similarly, observations were obtained from the NMDS analysis, in
which the intestinal flora of the normal and model groups were obviously separated, and
the AAL treatment dramatically altered the intestinal microflora structure of the model
group (Figure 3G).

3.5. Analyses of LEfSe Differential Marker Species and the PICRUSt2 Prediction Function

In Figure 4A, the overlapped ASV/OTU data in the Venn diagram displays 760 com-
mon OTUs for the three groups, as well as 5916, 4098, and 4133 unique microbes for the
control, model, and AAL groups, respectively.

According to the above analysis, the gut flora in each group of mice varied in compo-
sition and structural aspects. Therefore, for finding robust biomarkers, the LEfSe analysis
approach was applied to assess the variations between the three groups. The analysis
results are illustrated by the taxonomic cladogram and LDA histogram (LDA score > 4),
which show the taxonomic hierarchical distribution of the intestinal community species
for each sample group and species significantly enriched within each group and their
degree of importance, respectively. The LEfSe results (Figure 4B,C) show 13 robust dif-
ferential biomarkers among the three groups at the taxonomic level above the genus. In
the normal group, the biomarkers with an LDA score > 4 were Rikenellaceae, Rikenella,
Odoribacteraceae, and Odoribacter. Likewise, Actinobacteria, Allobaculum, Clostridium,
and unclassified Rikenbacteriaceae were remarkably enriched in the AAL group, and
p_Deferribacteres, c_Deferribacteres, o_Deferribacterales, f_Deferribacteraceae, and Mu-
cispirillum were screened in the model group.
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Figure 4. ASV/OTU expression in each group (A). The differential species LDA value distribution
histogram (B) and the species taxonomy cladogram (C). Statistical diagrams of KEGG metabolic
pathways (D). There was a significant differential in the KEGG metabolic pathways between the
AAL-intervention group and T2DM mice at levels 2 (E) and 3 (F).

The PICRUSt2 analysis was performed for functional prediction of the intestinal flora
based on the KEGG database. As displayed in Figure 4D, we found that at the first clas-
sification level of KEGG, the gut microbiota was mainly involved in metabolism-related
pathways, and 30 functional metabolic pathways were implicated in level 2 of the KEGG
pathway. Among them, seven significantly different metabolic pathways were obtained be-
tween the model group and the AAL administration group at level 2 of the KEGG pathway,
involving lipid metabolism, metabolism of cofactors and vitamins, transport and catabolism,
carbohydrate metabolism, glycan biosynthesis and metabolism, and energy metabolism
(Figure 4E). Further analysis revealed six significantly different pathways at level 3 of
the KEGG pathway, including photosynthesis, valine, leucine and isoleucine degrada-
tion, lysine degradation, tryptophan metabolism, amoebiasis, and retinol metabolism
(Figure 4F). The PICRUSt2 functional prediction analysis results suggested that AAL im-
proved metabolic disorders in diabetic mice by ameliorating the intestinal flora imbalance.

3.6. Serum Metabolomics Analysis

In this work, non-targeted metabolomics was applied to explore the serum metabolic
profiles of T2DM mice after AAL treatment. As shown in the PCA score plot in positive
and negative ion modes (Figure S5), each dot corresponds to a sample, and the QC samples
were clustering tightly in the middle, which indicates that the stability and repeatability of
the system were good. Meanwhile, the serum samples from the control, model and AAL
groups were obviously divided into three different regions, and the AAL group was closer
to the control group, indicating that the AAL intervention had a significant regulatory
effect on the abnormal metabolic profile of T2DM mice.

Further, an OPLS-DA model was established to distinguish the differences between
the AAL and the model groups and obtain the differential metabolites of the AAL in the
treatment of T2DM. As displayed in Figure 5A, a similar separation between the two
groups was also observed. Simultaneously, a 100 permutation test for the OPLS-DA model
was applied to assess the model’s reliability (Figure S6). In the positive ion mode, the
interpretation rate of the OPLS-DA model of the serum samples was 0.997 (R2Y), and the
prediction ability parameter Q2 was 0.954 (p < 0.01). In the negative ion mode, R2Y and
Q2 were 0.987 and 0.955 (p < 0.01), respectively. The above results manifested that the
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established OPLS-DA model had a high interpretation rate and prediction rate, and that
this OPLS-DA model was effective and reliable.
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A total of 48 differential metabolites that satisfied the conditions VIP > 1, FC > 2 or
FC < 0.5, and p < 0.05 were screened and identified, the details of which are presented
in Table S2. As shown in Figure 6, the volcano plot displays the relative changes in
differential metabolites in two different groups. In comparison with the model group,
12 significant up-regulation metabolites and 19 significant down-regulation metabolites
were shown in the AAL group in the positive ion mode, while 4 and 13 metabolites
in the negative ion mode were notably up-regulated and down-regulated, respectively.
Furthermore, the metabolic pathway analysis revealed that 48 different metabolites were
primarily involved in six metabolic pathways with an impact value greater than 0.1, which
were phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism;
arachidonic acid metabolism; alpha-linolenic acid metabolism; retinol metabolism; and
citrate cycle (TCA cycle) (Figure 5C). Detailed information on the metabolic pathways of
the differential metabolites is shown in Table S3.
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3.7. Spearman Correlation Analysis

The Spearman correlation analysis of the intestinal microbiota with factors related
to T2DM and differential metabolites was performed using a free online gene cloud tool
(https://www.genescloud.cn (accessed on 2 November 2022)), and the associated heatmap
intuitively analyzed the correlation between them. According to the associated heatmap
(Figure 7A), we found that the levels of T2DM-related parameters in the serum and liver
had a positive or negative correlation with the abundance of gut bacteria. For instance,
the factors BW, FBG, HOMA-IR, TC, TG, ALT, AST, Cre, BUN, and BUA in the serum
were positively correlated with Firmicutes, Proteobacteria, and Desulfovibrio, and nega-
tively correlated with Bacteroidetes, Bifidobacterium, Verrucomicrobia, Tenericutes, and
Clostridiaceae_Clostridium. Similarly, the factors INS, SOD, and GSH-Px had significant
positive correlations with Bifidobacterium, Verrucomicrobia, Tenericutes, and Clostridi-
aceae_Clostridium, while negatively correlated with Firmicutes, Proteobacteria, and Desul-
fovibrio. In addition, the BW factor had a strongly positive correlation with Actinobacteria,
and BUN was negatively correlated with (Prevotella).

According to the correlation analysis heat map of the bacterial taxa and differential
serum metabolites involved in AAL (Figure 7B), the relative abundance of Firmicutes was
found to have a significantly positive correlation with the level of palmitic acid (r = 0.938,
p < 0.01). Moreover, Bifidobacterium, a crucial gut probiotic, showed high positive correla-
tions with lipoxin A4 (r = 0.814, p < 0.01) and dehydroepiandrosterone (r = 0.819, p < 0.01),
which might be conducive to ameliorating the metabolic abnormalities in T2DM.

https://www.genescloud.cn
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4. Discussion

Our study found that AAL is rich in flavonoids, mainly flavonols, which is consistent
with previous reports [20]. The content of quercetin was the highest (8.97 ± 0.09 mg/g
DW), followed by kaempferol (6.89 ± 0.04 mg/g DW), and the content of quercetin and
kaempferol were close. Wojdyło et al. found that the contents of quercetin derivatives
(22.64 mg/100 g dw) and kaempferol derivatives were (18.40 mg/100 g dw) in Actinidia
arguta fruits, which were lower than the content of the flavonols found in our study. Mean-
while, the two substances are often used as promising ingredients for food supplements
and functional foods [56]. In addition, it has been reported that flavonols are a valuable
phytochemical with antioxidant and anti-inflammatory activities that play an important
role in the prevention and treatment of type 2 diabetes [57]. Therefore, based on the results
in Table S1, it is speculated that the rich content of flavonols in AAL might be responsible
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for the hypoglycemic effect, which further clarifies that AAL could be used as an important
source of active ingredients.

Typical symptoms of T2DM are BW loss, increased FBG, insulin resistance, and dyslipi-
demia [58]. In our study, these changes were significantly reversed after AAL intervention,
which indicates that AAL could improve hyperglycemia and insulin resistance, enhance
insulin sensitivity, and accelerate glucose metabolism. Moreover, AAL intervention could
alleviate lipid metabolism abnormalities, lower TG and TC levels, and regulate blood
lipids in T2DM mice. Persistent hyperglycemia caused by T2DM can lead to excessive
intracellular reactive oxygen species (ROS) production through various mechanisms and
insufficient clearance, thereby leading to oxidative stress, tissue damage, and oxidation [59].
In addition, GSH-Px and SOD protect cells from damage, while MDA is the most com-
monly used lipid marker of lipid peroxidation damage [5,60]. After AAL intervention,
the MDA content decreased, and the SOD and GSH-Px levels increased, indicating that
AAL could promote ROS scavenging and reduce tissue damage by enhancing antioxidant
capacity. Diabetes may lead to abnormal liver and kidney function [61]. In this work, we
discovered that AAL could mitigate liver and kidney damage in mice with T2DM. ALT
and AST levels in serum are the most obvious biochemical indicators of the extent of liver
cell injury, which were high in T2DM mice [62]. And after AAL treatment, serum ALT
and AST were significantly reduced. Renal function injury can cause an increase in Cre,
BUN, and BUA levels [63]. Remarkably, the treatment with AAL effectively decreased the
levels of Cre, BUN, and BUA. Moreover, histopathological studies of the H&E-stained liver
and kidney sections showed that AAL protects hepatocytes and kidneys against damage
caused by T2DM.

Alpha diversity is an indicator of species richness, diversity, and evenness in locally
homogeneous habitats [64]. Previous studies have reported that diabetes affects the uni-
formity and diversity of gut microbiota [5,65], which is similar to our findings. At the
same time, it is well known that the greater the Chao1 index and observed species index,
the higher the community richness and the higher the Shannon index and Simpson index,
the higher the community diversity [66–68]. Consistent with the above description, the
alpha diversity indexes for the AAL group were greater than those for the model group,
demonstrating a rising trend in the variety of microbial communities. The rarefaction curve
is used to explain whether the sequencing data on the samples is reasonable, and the curve
tends to be flat, exhibiting that the sequencing depth is reasonable [69,70]. Moreover, in
the rank abundance curve, the length of the curve in the horizontal direction reflects the
abundance of the species; the range of the curve on the horizontal axis increases with
species richness. The uniformity of the species in the sample is reflected by the gentle-
ness of the curve, which means the gentler the curve, the more uniformly the species are
distributed [71]. Our findings coincide with the above descriptions. Beta diversity is the
rate of species replacement or the variability in species composition along environmental
gradients between various communities [72]. In this work, unconstrained sorting PCOA
and NMDS were applied to visually display the differences in the microbial communities
between the different groups. Among them, the NMDS plot usually gives the stress value
of the model to determine whether the plot accurately reflects the true distribution of
data orders [73]. The stress value in our NMDS analysis was 0.107, less than 0.2, and this
suggests that the results from the NMDS analysis are reliable.

Many studies have reported that the abundance of the two dominant bacterial species
(Firmicutes and Bacteroidetes) was related to the obesity phenotype, and dietary supple-
ments could have decreased the F/B ratio in HFD-fed T2DM mice [5,11]. In this study,
Firmicutes presented a positive correlation with blood glucose, lipid levels, and oxidative
stress levels, while Bacteroidetes were negatively correlated with them. Moreover, we
observed a large rise in Firmicutes and an obvious drop in Bacteroidetes in T2DM mice, and
the F/B ratio exhibited a striking reduction with the treatment with AAL, which agreed
with the findings from several investigations [74,75].
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Proteobacteria belong to gram-negative bacteria and contain a variety of pathogenic
species, and intestinal flora imbalance and metabolic disorders are linked with increased
Proteobacteria [76]. AAL supplementation down-regulated the level of Proteobacteria, but
there was no significant change. According to the LEfSe analysis, Actinobacteria was identi-
fied as a significantly different species with a greater influence on the microbial community
in the AAL group, which agreed with the previous study [5]. Verrucomicrobia is considered
an effective intestinal bacteria for improving insulin sensitivity and glucose metabolism,
and the decline of which might promote the development of T2DM [74]. According to the
current study, Verrucomicrobia abundance was observed to be obviously declining in the
T2DM group and rising markedly after AAL intervention, and was positively correlated
with insulin and antioxidant levels. In addition, no obvious differences were found in the
less frequent phyla of Tenericutes, TM7, and Deferribacteres with an abundance of <1%.
Deferribacteres and its Mucispirillum genus are the representative species influencing the
bacterial community in the model group.

The current research further described the variations in the genus-level abundance
of bacterial taxa. Overall, the model group had a bacterial profile poor in Bacteroides,
Bifidobacterium, Oscillospira, Allobaculum, (Prevotella), Odoribacter, and Clostridium,
and rich in Lactobacillus, Helicobacter, and Desulfovibrio. Among them, Lactobacillus,
Bacteroides, and Bifidobacterium were the most prevalent bacteria at the genus level. Var-
ious studies have reported that Lactobacillus was positively associated with metabolic
disorders and the abundance of Lactobacillus was enriched in patients with T2DM and
obesity [5,77,78]. In this work, the level of Lactobacillus in the T2DM group was greatly
increased compared to that of the control group, relating to increased glucose levels in the
intestine. Bacteroides play a beneficial or pathogenic role according to their position in the
host, usually playing a beneficial role in the intestine [79]. Several previous studies have
reported that the level of Bacteroides declined in T2DM compared to the control group,
which is in line with our study [3,80,81]. Bifidobacteria is an important beneficial bacterium
that can improve metabolic disorders in T2DM [5,80,82]. This study showed a significant
increase in the relative abundance of Bifidobacteria in the AAL group and a positive cor-
relation with insulin, SOD, and GSH-Px levels. Genera Oscillospira, Allobaculum, and
Clostridium belong to the phylum Firmicutes, among which beneficial bacteria Oscillospira
and Allobaculum are considered to have a close relationship with human health. The
abundance of the two genera in the intestine of patients with obesity and obesity-related
metabolic diseases is significantly reduced and negatively correlated with FBG, TG, and
BUA [83–85]. Some studies have reported that a high abundance of Clostridium is related
to obesity and metabolic disorders [86,87], while others have shown the opposite [88,89].
This study found that the levels of Oscillospira, Allobaculum, and Clostridium obviously
declined in T2DM mice, and AAL intervention could significantly reverse the reduction of
the three genera. In the correlation analysis, which intuitively showed that Allobaculum
and Clostridium were negatively correlated with serum lipid levels, a significantly positive
correlation with GSH-Px was also shown [85,90]. Further, LEfSe analysis verified that
Allobaculum and Clostridium are key phenotypes of the intestinal flora in the AAL group.
Odoribacter as part of a healthy, balanced gut microbiota belongs to the Bacteroidetes
species. Based on previous studies, the reduced abundance of Odoribacter is associated
with metabolic-related diseases, while a higher abundance of it in the intestine could im-
prove insulin sensitivity [77,91]. In accordance with previous research, this study found
that Odoribacter abundance was less prevalent in the model group than in the normal
group, and AAL intervention slightly but not significantly increased its abundance. Ac-
cording to LEfSe analyses, Odoribacter and Odoribacteraceae were abundant in the normal
group. Therefore, this might be the potential mechanism for AAL to alleviate diabetes by
modulating the structure and diversity of the intestinal microflora, increasing the level of
helpful bacteria, and reducing the level of harmful ones.

Furthermore, serum metabolomics was used to characterize serum metabolic profiles
and screen differential metabolites between T2DM mice and AAL-treated groups. Ac-
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cording to the screening criteria, 48 metabolites differed significantly between the AAL
and model groups. Metabolomic analysis showed that the increase in L-Phenylalanine in
T2DM mice was in line with the previous report that the branched-chain amino acid-related
factor was significantly positively associated with insulin resistance [92]. L-phenylalanine
is an aromatic amino acid whose elevated level increases the risk of T2DM and has a
positive association with insulin resistance, hyperglycemia, and hyperlipidemia [93,94].
According to our results, AAL markedly reduced the level of the intermediate metabolite
L-phenylalanine, relating to pathways involving phenylalanine, tyrosine and tryptophan
biosynthesis, and phenylalanine metabolism, indicating that AAL improved T2DM through
modulating amino acid metabolism disorders. Meanwhile, there is a significant positive
correlation between L-phenylalanine and Firmicutes, and a negative correlation with
Bacteroidetes and Bifidobacterium, indicating that the altered gut microbiota in T2DM,
especially the increase in Firmicutes and depletion of Bacteroidetes, might be linked to
the higher serum level of L-phenylalanine. Lipid metabolism is tightly associated with
the mechanisms of the T2DM metabolic pathway [95]. Arachidonic acid metabolism
and α-linoleic acid metabolism are two of the lipid metabolism pathways that have been
identified in this study. Arachidonic acid (AA) is a polyunsaturated fatty acid, and nu-
merous investigations have found that AA levels in the blood of T2DM mice were notably
higher to promote the development of T2DM [96,97]. In the current research, the lev-
els of serum AA and its pro-inflammatory metabolites, leukotriene B4, thromboxane B2,
and 12-keto-leukotriene B4, were increased in T2DM mice, whereas the serum level of its
anti-inflammatory metabolite, lipoxin A4, was decreased, which was in accordance with
the previous research [95]. The serum levels of metabolites related to arachidonic acid
metabolism were reversed following AAL intervention, thereby improving its metabolic
disorders. In addition, AAL intervention increased the alpha-linolenic acid level, which is
associated with lipid metabolism. Alpha-linolenic acid is an omega-3 fatty acid, and studies
have discovered that omega-3 fatty acids reduce the risk of type 2 diabetes in the Chinese
population [97]. Lysophosphatidylcholine is a class of bioactive lipids, and decreased levels
of it are found in diabetes [98]. This was also confirmed in our research, which discovered
that serum levels of several lysoPCs (LysoPC (P-18:1), LysoPC (22:6), LysoPC (20:4), and
LysoPC (18:2)) were lower in the T2DM group and increased after AAL intervention.

5. Conclusions

In conclusion, this study outlined the hypoglycemic effect of AAL using UPLC-MSE-
based metabolomics combined with gut microbiota 16S rRNA sequencing. AAL could
alleviate T2DM-related symptoms and had a beneficial regulatory effect on intestinal flora
structure and metabolite-related metabolic pathways. These results indicate that AAL
might have certain potential in preventing and protecting against T2DM, providing a
theoretical foundation for the resource utilization of AAL and a new way to achieve high
value-added utilization. However, the gut microbial community composition at the species
level and the metabolic pathway of the species composition needs to be further analyzed.
Additionally, we speculated that the hypoglycemic effect of AAL might be responsible for
its rich polyphenols. Therefore, further investigation is required to evaluate the relationship
between transitional components and hypoglycemic effects, and elucidate the material
basis of AAL against diabetes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu15194115/s1, Figure S1. The separation workflow of AAL. Figure S2. Structure of
compounds 1–25 from AAL. Figure S3. The HPLC chromatogram of AAL sample. Figure S4. The
ratio of Firmicutes to Bacteroidetes (F/B). Figure S5. The PCA score plots in positive and negative
modes. Figure S6. The permutation test plots of the OPLS-DA model in positive and negative modes.
Table S1 The quantification of 25 compounds from the extract of AAL. Table S2. Identification results
of potential metabolic markers in serum. Table S3. Metabolic pathways of differential metabolites.
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