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Abstract
Objectives: Internet	addiction	(IA)	has	been	associated	with	widespread	brain	altera‐
tions.	Functional	connectivity	(FC)	and	network	analysis	results	related	to	IA	are	in‐
consistent	between	studies,	and	how	network	hubs	change	is	not	known.	The	aim	of	
this study was to evaluate functional and topological networks using an unbiased 
minimum	spanning	tree	(MST)	analysis	on	electroencephalography	(EEG)	data	in	IA	
and healthy control (HC) college students.
Methods: In	 this	study,	Young's	 internet	addiction	test	was	used	as	an	 IA	severity	
measure.	EEG	recordings	were	obtained	in	IA	(n = 30) and HC participants (n	=	30),	
matched	for	age	and	sex,	during	rest.	The	phase	lag	index	(PLI)	and	MST	were	applied	
to analyze FC and network topology. We expected to obtain evidence of underlying 
alterations	in	functional	and	topological	networks	related	to	IA.
Results: IA	participants	showed	higher	delta	FC	between	left‐side	frontal	and	pari‐
eto‐occipital areas compared to the HC group (p	<	0.001),	global	MST	measures	re‐
vealed	a	more	star‐like	network	in	IA	participants	in	the	upper	alpha	and	beta	bands,	
and	the	occipital	brain	region	was	relatively	less	important	in	the	IA	relative	to	the	HC	
group in the lower band. The correlation results were consistent with the MST re‐
sults:	 higher	 IA	 severity	 correlated	with	higher	Max	degree	and	kappa,	 and	 lower	
eccentricity and diameter.
Conclusions: Functional	networks	of	the	IA	group	were	characterized	by	increased	
FC,	a	more	random	organization,	and	a	decrease	of	relative	functional	importance	of	
the	visual	processing	area.	Taken	together,	these	alterations	can	help	us	understand	
the	influence	of	IA	to	brain	mechanism.
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1  | INTRODUCTION

The consequences of the popularity of the internet are both benefi‐
cial	and	disadvantageous,	while	excessive	use	of	the	internet	may	lead	

to	internet	addiction	(IA).	The	University	of	Pittsburgh's	Psychology	
Professor	Young	defined	the	IA	as	the	excessive	or	uncontrolled	use	
of	 the	 internet	 with	 negative	 consequences	 to	 psychological,	 so‐
cial,	 and/or	work	 functioning	aspects	 (Dong,	Lin,	&	Potenza,	2015;	
Young,	1998).	Studies	have	shown	that	IA	is	widespread	throughout	
the	world	(Block,	2008).	 In	addition,	 IA	can	lead	to	sleeping,	mood,	
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academic	problems,	and	other	physical	and	mental	health	problems	
(Canan	et	al.,	2013;	Zainudin,	Din,	&	Othman,	2013).

In	 recent	 years,	with	 the	 advancement	 of	 neurological	 imag‐
ing	 detection	 techniques,	 structural	 and	 functional	 alterations	
of	multiple	 brain	 regions	 have	been	 found	 in	 IA.	 Structurally,	 IA	
alters	gray	matter	density,	gray	matter	volume,	fractional	anisot‐
ropy,	 and	 cortical	 thickness	 compared	 to	 controls	 (Han,	 Lyoo,	
&	Renshaw,	2012;	Hong,	Kim	et	al.,	2013;	Lin	et	 al.,	2012;	Yuan	 
et	al.,	2011,	2013;	Zhou	et	al.,	2011).	Lee	et	al.	 (2017)	found	ev‐
idence	that	 IA	resulted	 in	structural	abnormalities	which	may	be	
associated	with	functional	impairments.	In	resting‐state	function,	
IA	has	been	associated	with	significant	functional	changes	in	cor‐
ticostriatal	 circuits	 (Hong,	 Zalesky	 et	 al.,	 2013),	 regions	 located	
in	the	frontal,	occipital,	and	parietal	 lobes	(Wee	et	al.,	2014),	the	 
visual	 information‐processing	 circuits,	 and	 the	 prefrontal	 areas	
(Koo	et	al.,	2008;	Wen	&	Hsieh,	2016).	Wang	et	al.	 (2017)	found	
altered	default	mode,	frontoparietal,	and	salience	networks	in	ad‐
olescents	with	 IA.	Collectively,	 the	 altered	 brain	 regions	 related	
to	 IA	 are	 often	widely	 distributed,	 and	 the	 conclusions	 of	 brain	
connectivity have been inconsistent or even contradictory. For 
instance,	 some	studies	 found	 that	adolescents	with	 IA	exhibited	
increased coherence compared to HC participants regardless of 
psychological	 features	 (e.g.,	depression,	anxiety,	and	 impulsivity)	
(Kwan	&	Choi,	 2015;	 Park	 et	 al.,	 2017),	while	 others	 found	 that	
IA	appears	to	result	from	reduced	connectivity	(Hong,	Zalesky	et	
al.,	2013;	Wee	et	al.,	2014).	One	of	the	aims	of	this	study	was	to	
explore	the	characteristics	of	brain	connectivity	in	IA.

The	human	brain	 is	 a	 highly	 organized	 and	 complex	 network,	
a large‐scale structural and functional integration network. The 
brain	has	a	small‐world	architecture,	combining	such	optimal	prop‐
erties as the high clustering of an ordered network and the short 
path	length	of	a	random	network	(Boersma	et	al.,	2011),	to	ensure	
that it can quickly deal with external stimuli to achieve cognitive 
function	 (Bullmore	 &	 Sporns,	 2012).	 The	 development	 of	 graph	
theory provides a perfect tool for neurological analysis (Rubinov 
&	Sporns,	2010).	Graph	theory	can	fully	characterize	the	structure	
and	function	of	brain	networks,	and	provide	the	basic	properties	of	
neural propagation structures and dynamic organization (Bullmore 
&	Sporns,	2012).	More	and	more	research	has	used	graph	theory	to	
study	IA.	Zhai	et	al.	(2017)	used	diffusion	tensor	imaging	(DTI)	trac‐
tography to thoroughly characterize topological property changes 
of the white matter (WM) network at the circuit level in patients 
with	 internet	 gaming	 disorder	 (IGD).	 The	 IGD	 group	 showed	 de‐
creased	global	efficiency,	decreased	local	efficiency,	and	increased	
shortest	path	length	compared	to	controls,	further	demonstrating	
that	 IGD	 involves	 a	 less	 integrated	 network	 organization.	 Hong,	
Zalesky	et	al.	 (2013)	used	functional	magnetic	resonance	 imaging	
(fMRI)	technology	to	explore	the	network	topology	of	internet	ad‐
dicts,	and	no	group	difference	was	observed	in	network	topological	
measures,	 including	 the	clustering	coefficient,	characteristic	path	
length,	or	 the	smallworldness	 ratio.	Lee	et	al.	 (2017)	constructed	
a	structural	brain	network	from	DTI	data	and	found	that	the	sub‐
jects	with	IA	showed	increased	regional	efficiency	in	the	bilateral	

orbitofrontal cortex and a decrease in the right middle cingulate 
and	middle	 temporal	 gyri,	 whereas	 the	 global	 properties	 did	 not	
show	significant	changes.	This	is	consistent	with	Wee	et	al.	(2014),	
who also confirmed that although significant alterations were ob‐
served	for	regional	nodal	metrics,	there	was	no	difference	in	global	
network	topology	between	IA	and	healthy	groups.

According	 to	 the	above	 results,	different	 scholars	have	 reached	
different,	even	conflicting,	conclusions.	This	may	be	due	to	the	differ‐
ent choices of threshold T in the process of constructing traditional 
brain networks; smaller T may result in false or noisy connections 
in	 the	network,	while	 larger	T	may	discard	 some	 links	 that	 contain	
important information. The network properties in traditional net‐
works	are	sensitive	to	network	sparseness	(van	Diessen	et	al.,	2015).	
To improve the accuracy of network construction and the feasibility 
of	 comparative	 analysis	 between	 different	 networks,	 the	minimum	
spanning tree (MST) method was introduced into brain network anal‐
ysis	(Tewarie,	van	Dellen,	Hillebrand,	&	Stam,	2015;	van	Diessen	et	al.,	
2015).	MST	is	the	only	acyclic	subgraph	containing	the	strongest	con‐
nection in the original undirected weighted network. Considering that 
the exchange of information in the original network is always based 
on	the	most	efficient	path,	the	MST	can	be	considered	the	backbone	
of	the	functional	brain	network	(van	Diessen	et	al.,	2015).	The	num‐
ber of edges in the MST is equal to N – 1 (N represents the number 
of	 nodes	 in	 the	MST),	which	 guarantees	 that	when	 the	 number	 of	
nodes	in	two	compared	network	is	the	same,	they	will	also	have	the	
same	number	of	edges.	In	this	case,	what	compares	is	the	difference	in	
purely topological attributes. MST avoids methodological biases and 
is particularly suitable for comparison of brain networks (Tewarie et 
al.,	2014).	MST	is	effective	to	explore	the	brain	mechanisms	of	various	
populations,	such	as	epileptic	(Lee,	Kim,	&	Jung,	2006;	van	Dellen	et	
al.,	2014;	van	Diessen,	Otte,	Stam,	Braun,	&	Jansen,	2016),	depressive	
(Fraga	et	al.,	2016),	dyslexic	(Fraga	et	al.,	2016),	and	healthy	subjects	
(Boersma	et	al.,	2013;	Demuru,	Fara,	&	Fraschini,	2013).	As	far	as	we	
know,	there	is	still	no	research	on	IA	based	on	MST.

Although	 structural	 and	 functional	 studies	 have	 discovered	
some	 altered	 brain	 regions	 related	 to	 IA,	 there	 is	 still	 limited	 evi‐
dence	based	on	resting‐state	EEG	data	about	whether	IA	can	cause	
changes in the overall brain properties and whether the hubs that 
play	important	roles	in	functional	networks	change.	Therefore,	the	
goal of the current study was to examine global functional network 
connectivity	and	organization	and	detect	the	hubs	between	IA	and	
controls in resting‐state EEG data. Studying the dynamics of spon‐
taneous (independent‐task) activities in the brain provides us with 
meaningful information on how the different brain regions commu‐
nicate	and	the	functional	brain	network	infrastructure	(Fraga	et	al.,	
2016;	Li	et	al.,	2017).	EEG	is	inexpensive	and	has	a	millisecond	time	
resolution,	which	is	finer	than	the	other	neuroimaging	technologies,	
such	 as	 fMRI	 (Khanna,	Pascual‐Leone,	Michel,	&	Farzan,	2015).	 In	
addition,	although	traditional	graph	theory	analysis	is	helpful	for	un‐
derstanding	brain	mechanisms,	it	still	has	the	limitation	of	a	lack	of	
standard	methods	(van	Diessen	et	al.,	2016).	Thus,	we	attempted	to	
introduce a recent development in graph theory as applies to MST 
analysis	to	explore	the	changes	in	brain	mechanisms	related	to	IA.
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2  | MATERIALS AND METHODS

2.1 | Participants

Participants	in	this	study	were	all	college	students	of	Liaoning	Normal	
University	evaluated	by	internet	addiction	test	(IAT),	including	30	IA	
(7	males,	IAT	range	was	50–75)	and	30	matched	healthy	control	(HC)	
participants	 (6	males,	 IAT	range	was	20–49).	The	exclusion	criteria	
included	(a)	symptoms	of	mental	illness,	such	as	depression,	anxiety	
or	attention‐deficit/hyperactivity	disorder	 (ADHD);	 (b)	a	history	of	
alcohol,	nicotine	or	drug	use;	 (c)	pregnant	or	menstruating	women;	
and	(d)	a	history	of	brain	injury.	All	participants	were	native	Chinese	
speakers,	 and	 they	 had	 normal	 or	 corrected‐to‐normal	 vision.	
Specific participant information is shown in Table 1. The study was 
conducted	in	accordance	with	the	recommendations	of	the	Liaoning	
Normal	University	Ethics	Committee,	and	all	participants	had	signed	
the informed consent. Participants were required to ensure suf‐
ficient sleep during the night before they did the experiment and 
avoided contact with the internet the night before the experiment.

2.2 | Equipment and Procedure

2.2.1 | Internet Addiction Test

The	IAT	was	compiled	by	Young	(1998)	at	the	University	of	Pittsburgh.	
The scale is self‐reported and contains 20 items. The title options for 
rarely,	 occasionally,	 sometimes,	 often	 and	 always	 are	 scored	 as	 1,	
2,	3,	4,	and	5	points,	 respectively.	The	 total	 score	 is	20–100,	with	
higher	 scores	 representing	 higher	 levels	 of	 IA:	 20–49	 for	 normal	
users,	50–79	for	excessive	internet	addicts,	and	80–100	for	severe	
internet addicts. This measure has demonstrated good reliability and 
validity	in	Chinese	(Zhou,	Li,	Xian,	Wang,	&	Zhao,	2017).

2.2.2 | Experimental Procedure

The	 experiment	was	 run	 in	 a	well‐shielded,	 soundproofed	 room	
where participants comfortably sat in an armchair. We explicitly 
clarified the experimental requirements to the participants prior 
to the start of the experiment. The task‐independent resting‐
state	EEG	signals	of	each	participant	were	collected.	During	 the	
six‐minute	EEG	signal	acquisition	process,	participants	were	asked	
to	 close	 their	 eyes,	 relax,	 avoid	 large	 head	movements,	 and	 not	
think about anything but had to stay awake and not sleep. EEG 
recordings of all participants were monitored throughout to en‐
sure that they followed the instructions and did not show signs of 
drowsiness.

2.3 | EEG recording and signal processing

A	digital	EEG	recording	system	produced	by	the	Brain‐Product	com‐
pany (German) was adopted. The 64‐channel electrode cap was 
complied	with	the	10–20	International	System.	The	electrode	points	
and	their	corresponding	numbers	were	as	follows:	1–10:	FP1,	FP2,	
F3,	 F4,	C3,	C4,	 P3,	 P4,	O1,	O2;	 11–20:	 F7,	 F8,	 T7,	 T8,	 P7,	 P8,	 Fz,	
Cz,	Pz,	 IO;	21–30:	FC1,	FC2,	CP1,	CP2,	FC5,	FC6,	CP5,	CP6,	FT9,	
FT10;	31–40:	TP9,	TP10,	F1,	F2,	C1,	C2,	P1,	P2,	AF3,	AF4;	41–50:	
FC3,	FC4,	CP3,	CP4,	PO3,	PO4,	F5,	F6,	C5,	C6;	51–60:	P5,	P6,	AF7,	
AF8,	FT7,	FT8,	TP7,	TP8,	PO7,	PO8;	and	61–64:	FPz,	CPz,	POz,	Oz.	
Both	the	vertical	and	horizontal	channels	of	the	EOG	were	recorded	
simultaneously to monitor the eye movements and blinks. The uni‐
polar	reference	region	was	linked	at	the	right	and	left	earlobes,	and	
the	ground	electrode	was	located	at	the	AFz	(A‐Ear	lobe,	F‐Frontal	
lobe,	 z‐zero,	 referring	 to	 an	 electrode	 placed	 on	 the	midline).	 The	
sampling	frequency	was	500	Hz,	and	the	electrode	impedance	was	
less	than	10	KΩ.

Offline	data	of	30	IAs	and	30	HCs	were	analyzed	by	Brain	Vision	
Analyzer	2	software.	First,	data	were	re‐referenced	to	the	mastoid	
channels,	 then	were	 low‐pass‐filtered	using	a	cut‐off	 frequency	of	
256	Hz	 and	 bandpass‐filtered	 between	 0.5	 and	 50	Hz	 to	 exclude	
very	low‐frequency	artifacts	and	line	noise.	Data	portions	contami‐
nated	by	eye	movements,	electromyography,	or	any	other	nonphys‐
iological artifacts were corrected using the independent component 
analysis	algorithm	(Jung	et	al.,	2001;	Makeig,	Jung,	Bell,	Ghahremani,	
&	Sejnowski,	1997).	Then,	the	preprocessed	6‐min	continuous	EEG	
data	were	segmented	into	dozens	of	epochs,	with	an	epoch	length	
of 2000 ms. EEG epochs contaminated by strong muscle artifacts 
or	with	amplitude	values	exceeding	±150	μV	at	any	electrode	were	
manually	 rejected.	 Finally,	 a	 minimum	 of	 80	 epochs	were	 consid‐
ered sufficient for further analysis. The artifact‐free epochs were 
exported	to	ASCII	files	and	imported	in	Brainwave	v0.9.151.7.2.	(de‐
veloped by Cornelis Jan Stam; freely available at http://home.kpn.nl/
stam7883/brainwave.html).

2.4 | Phase lag index (PLI)

When	 the	 EEG	 functional	 brain	 network	 was	 constructed,	 elec‐
trode channels were generally defined as nodes. The definition of 
edges was mainly to measure the correlation between time series of 
different	channels.	The	PLI	method	was	selected	in	current	study.	
Its	biggest	advantage	 is	 that	 it	only	depends	on	 the	phase	differ‐
ence between the two signals and is not affected by the volume 
conductor	effect	 (Stam,	Nolte,	&	Daffertshofer,	2007).	The	PLI	 is	

Group
Age 
x±s

Sex 
(Male/Female)

Profitable hand 
(Right/Left)

IAT 
x±s

IA 21.0 ± 2.13 7/23 (30) 30/0 59.0	±	7.88

HC 20.5	±	1.59 6/24 (30) 30/0 34.4	±	8.53

p 0.241a 0.719b — <0.0001a

Note. “a” and “b” denote two‐sample t	test	and	Pearson	chi‐square	test,	respectively.

TA B L E  1   Statistics of basic information 
of the participants

http://home.kpn.nl/stam7883/brainwave.html
http://home.kpn.nl/stam7883/brainwave.html


4 of 12  |     WANG et Al.

obtained from the time series of phase differences Δφ(tk),	k = 1…N 
by means of:

Here,	sign	is	the	signum	function.	The	PLI	quantifies	the	asym‐
metry	of	the	relative	phase	distribution;	that	is,	the	likelihood	that	
the phase difference Δφ will be in the interval –π < Δφ < 0 is dif‐
ferent from the likelihood that it will be in the interval 0 < Δφ < π. 
This means that there is a consistent non‐zero phase difference 
('lag')	 between	 the	 two	 time	 series.	 If	 there	 is	 no	 coupling	 or	 if	
the median phase difference is equal to or centered on the value 
of 0 mod π,	 then	 the	 expected	 distribution	 is	 symmetrical	 (Fraga	 
et	al.,	2016).	The	PLI	ranges	between	0	and	1;	the	higher	the	PLI	of	
the	two	nodes,	the	stronger	the	correlation	between	the	two	brain	
regions.	The	PLI	is	effective	at	detecting	real	changes	in	functional	
networks	 (Fraga	et	al.,	2016;	van	Dellen	et	al.,	2014;	van	Diessen	 
et	 al.,	 2016).	We	 constructed	 the	 undirected	 and	weighted	 brain	
networks	for	each	participant	by	calculating	the	PLI	values	between	
64	electrodes	for	each	band	(delta:	0.5–4	Hz;	theta:	4–8	Hz;	alpha1:	
8–10	Hz;	alpha2:	10–13	Hz;	beta:	13–25	Hz;	gamma:	25–49	Hz).

2.5 | Minimum spanning tree (MST)

We	constructed	the	MST,	which	is	the	core	part	of	the	network	with	
the	largest	total	weight.	It	connects	all	the	nodes	in	the	network	and	
does	not	constitute	a	loop.	Extreme	topologies	of	MST	are,	on	one	
hand,	a	star‐like	or	centralized	organization	and,	on	the	other	hand,	
a decentralized line‐like tree. The star‐like and line‐like organization 
may	be	translations	of,	respectively,	random	and	ordered	networks	
(Boersma	 et	 al.,	 2013).	 Examples	 of	 traditional	 networks	 and	 tree	
topologies	are	presented	in	Figure	S1.	This	study	used	the	Kruskal	al‐
gorithm	(Kruskal,	1956)	to	build	the	MST,	which	contained	64	nodes.	
The	construction	process	was	as	follows:	First,	all	linked	weights	in	
the	PLI	matrix	were	sorted	in	descending	order,	and	then	the	links	
were	added	in	order	of	weight,	starting	with	the	largest.	During	this	
process,	we	discarded	the	link	if	the	added	link	constituted	a	loop.	
The	Kruskal	algorithm	terminated	until	all	nodes	were	included.

To	investigate	the	global	topological	organization	of	IA,	some	
MST	network	characteristics	were	quantified.	Degree	centrality	
(Deg)	is	the	number	of	edges	connected	to	a	node.	Betweenness	
centrality	 (BC)	 is	 a	measure	 of	 the	 node's	 “hub”	within	 the	 net‐
work.	It	is	defined	as	the	normalized	fraction	of	all	shortest	paths	
connecting two nodes that pass through the particular node. The 
Deg	and	BC	measures	were	calculated	for	each	node	separately,	
and the maximum values within each MST were included in the 
statistical analyses as global characteristics of the MST (named 
MaxDeg	and	MaxBC,	 respectively).	Eccentricity	 (Ecc)	 is	 the	 lon‐
gest shortest path from a particular node to any other node in 
the	network.	Based	on	 the	definition	of	Ecc,	 diameter	 (Diam)	 is	
the largest distance between any two nodes within the MST; 
smaller	 diameter	 values	 denote	 better	 network	 cohesion.	 Leaf	
fraction	 (Leaf)	 is	 the	number	of	nodes	with	only	one	connected	

edge divided by the total number of nodes in the MST. Tree hier‐
archy (Th) assesses how hierarchical a given network is. Th ranges 
from	0	(indicating	a	line‐like	topology)	to	1;	for	star‐like	topology,	
Th	approaches	0.5.	The	higher	the	Th	is,	the	better	the	tradeoff	
between	 integration	 and	 segregation	 is	 in	 an	MST.	Kappa	 (K)	 is	
mainly	related	to	the	synchronization	level	of	tree	nodes.	Finally,	
degree correlation (R) is computed through the Pearson correla‐
tion coefficient of the degrees of pair of vertices connected by 
an	edge.	For	a	detailed	description	of	the	various	metrics,	please	
refer to Fraga et al. (2016).

In	addition,	Deg	and	BC	can	be	used	as	hub	 indicators.	Nodes	
with	 the	 highest	 BC	 or	 Deg	 values	 were	 characterized	 as	 critical	
nodes (hubs) and were used to determine the information flow 
within the network.

2.6 | Statistical Analysis

One‐way	ANCOVA	was	used	for	group	comparisons	of	PLI	aver‐
ages	and	global	MST	measures,	including	the	age,	sex,	and	power	
of	 each	 frequency	 band	 as	 covariates.	 The	 global	 PLI	 and	MST	
network	characteristics	were	averaged	across	epochs,	separately	
for each participant and frequency band. Bonferroni correction 
for multiple comparisons was applied to p values for each fre‐
quency	band.	Additionally,	the	two‐sample	t test was applied to 
explore the regions with significant differences between groups 
based	 on	 Deg	 and	 BC.	We	 also	 detected	 the	 hub	 locations	 of	
the	IA	and	HC	groups	based	on	the	highest	BC	and	Deg	values.	
Finally,	to	examine	the	relationship	between	the	FC,	topological	
measures,	 and	 IA	 severity,	 we	 computed	 Pearson's	 correlation	
coefficient between global or local significance measures and 
participants’	IAT	values.

3  | RESULTS

3.1 | FC and global MST

The	results	of	 the	ANCOVAs	performed	on	the	PLI,	MaxDeg,	Ecc,	
MaxBC,	K,	R,	Diam,	Leaf,	and	Th	 in	each	 frequency	band	are	pre‐
sented	 in	 Table	 2	 (Figure	 S2).	 All	 PLI	 values	 from	 the	 connectiv‐
ity	matrix	were	 averaged	 separately	 for	 each	 participant,	 and	 the	
ANCOVAs	 yielded	 a	 significant	 delta	 difference	 in	 FC	 between	
groups (F	=	4.580,	p	=	0.033,	η2	=	0.013).	The	delta	square	PLI	matrix	
is	presented	 in	Figure	1	 for	 illustration	purposes,	and	 the	connec‐
tivity	between	the	left	frontal	(AF7)	and	left	parietooccipital	(PO7)	
was	significantly	increased	in	the	IA	group	(0.368	±	0.301)	over	the	
HC group (0.132 ± 0.190) (p	<	0.001)	(Figure	2).	No	significant	differ‐
ence was detected in other bands.

MST analysis yielded significant effects between groups in the 
upper	alpha	and	beta	bands	(see	Table	2).	Deg	and	BC	are	related	to	
the	importance	of	a	node	within	the	network.	The	MaxDeg	was	signifi‐
cantly	higher	in	the	IA	group	relative	to	the	HC	group	in	both	the	upper	
alpha	and	beta	bands,	F	=	3.859,	p	=	0.050,	η2	=	0.011,	and	F	=	6.773,	
p	=	0.010,	η2	=	0.019,	respectively.	MaxBC	was	only	significantly	higher	

PLI= |< sign[ sin (Δ𝜑(tk))]> |.
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in	the	IA	group	in	the	beta	band,	F	=	4.152,	p = 0.042,	η2 = 0.012. Ecc,	
another measure of relative nodal importance that is low if this node is 
central	in	the	tree,	was	significant	in	the	upper	alpha	band,	F	=	6.608,	
p	=	0.011,	η2	=	0.019.	Diam,	reflecting	the	efficiency	of	communication	
between	the	nodes,	was	significantly	lower	in	the	IA	group	in	the	upper	
alpha	and	beta	bands,	F	=	5.941,	p	=	0.015,	η2	=	0.017,	and	F	=	3.938,	
p	=	0.048,	η2	=	0.011,	 respectively.	K	and	R are mainly related to the 
synchronization	level	of	tree	nodes.	The	K	of	the	IA	group	was	signifi‐
cantly	higher	than	the	HC	group	in	both	the	upper	alpha	and	beta	bands,	
F	=	6.243,	p	=	0.013,	η2	=	0.018,	 and	F = 7.868,	p = 0.005,	η2 = 0.022. 
The	R	of	the	IA	group	was	significantly	lower	than	the	HC	group	in	both	
the	upper	alpha	and	beta	bands,	F	=	6.767,	p = 0.010,	η2 = 0.019, and 

F = 4.988,	p = 0.026,	η2	=	0.014,	respectively.	Leaf,	reflecting	the	inte‐
gration	of	information	within	the	network,	fell	short	of	significance	in	
both	the	upper	alpha	and	beta	bands,	F = 3.563,	p = 0.060,	η2	=	0.011,	
and F = 2.922,	p = 0.088,	η2	=	0.008,	 respectively,	 suggesting	a	 trend	
for	 higher	 leaf	 fraction	 in	 the	 IA	 group	 compared	 to	 the	HC	 group.	
Group effects in all other measures and frequency bands were not sig‐
nificant (Table S1 and Figure S2).

3.2 | Hubs and regional MST properties

The	Deg	and	BC	values	of	the	nodes	in	the	MST	were	used	as	an	indi‐
cation	of	the	node	importance.	A	node	with	MaxDeg	or	MaxBC	can	be	

IA (N = 30) HC (N = 30)

F P η2M SD M SD

Delta

PLI 0.231 0.082 0.202 0.071 4.580 0.033↑ 0.013

Max degree 0.497 0.227 0.490 0.201 0.015 n.s. 0.000

Eccentricity 0.105 0.041 0.098 0.033 0.519 n.s. 0.002

Max BC 0.833 0.107 0.822 0.098 0.168 n.s. 0.000

Kappa 12.478 6.730 12.043 6.179 0.040 n.s. 0.000

R −0.608 0.128 −0.620 0.133 0.044 n.s. 0.000

Diameter 0.131 0.054 0.119 0.043 0.875 n.s. 0.003

Leaf 0.849 0.100 0.859 0.098 0.342 n.s. 0.001

Th 0.513 0.058 0.527 0.071 1.387 n.s. 0.004

Alpha2

PLI 0.028 0.028 0.029 0.033 0.007 n.s. 0.000

Max degree 0.873 0.213 0.768 0.213 3.859 0.050↑ 0.011

Eccentricity 0.056 0.039 0.085 0.039 6.608 0.011↓ 0.019

Max BC 0.961 0.084 0.925 0.094 2.120 n.s. 0.006

Kappa 26.467 8.301 21.402 8.743 6.243 0.013↑ 0.018

R −0.775 0.292 −0.615 0.272 6.767 0.010↓ 0.019

Diameter 0.064 0.009 0.094 0.009 5.941 0.015↓ 0.017

Leaf 0.957 0.086 0.919 0.078 3.563 0.060 0.010

Th 0.498 0.025 0.498 0.026 0.001 n.s. 0.000

Beta

PLI 0.048 0.037 0.060 0.059 1.057 n.s. 0.003

Max degree 0.845 0.185 0.710 0.219 6.773 0.010↑ 0.019

Eccentricity 0.059 0.026 0.075 0.037 3.168 n.s. 0.009

Max BC 0.950 0.086 0.902 0.107 4.152 0.042↑ 0.012

Kappa 25.014 7.271 19.480 8.141 7.868 0.005a↑ 0.022

R −0.832 0.147 −0.698 0.184 4.988 0.026↓ 0.014

Diameter 0.066 0.034 0.090 0.053 3.938 0.048↓ 0.011

Leaf 0.961 0.041 0.928 0.073 2.922 0.088 0.008

Th 0.509 0.044 0.520 0.063 0.967 n.s. 0.003

Note. Bold text represents significant results (p < 0.05),	italic	text	represents	results	at	trend	level.	
MST:	minimum	spanning	tree;	PLI:	phase	lag	index;	BC:	betweenness	centrality;	R:	degree	correla‐
tion; Th: tree hierarchy.
↑	=	IAs	>	HCs,	↓	=	IAs<HCs,	n.s.	=	nonsignificant.
ap < 0.006	(0.05/9),	significant	after	Bonferroni	correction.	

TA B L E  2  Results	of	global	PLI	and	MST	
measures	in	delta,	alpha2,	and	beta	
frequency bands
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seen	as	the	“hub”	in	the	network	(Pezoulas,	Zervakis,	Michelogiannis,	
&	Klados,	2017).	Thus,	we	performed	a	regional	analysis	based	on	
Deg	and	BC	in	delta,	alpha2,	and	beta	bands	because	of	the	global	
differences appeared in these bands. We found significant group 
differences only in the delta band. Hub analysis revealed that the 
highest	BC	and	Deg	values	appeared	in	the	left	occipital	region	(O1)	
in	the	HC	group	and	in	the	right	central	region	(C4)	in	the	IA	group,	
(Figure	3).	Locally,	the	IA	group	showed	a	significantly	higher	degree	
in the left central region (C3) than the HC group. BC was higher in 
the	central	(C3,	C5)	and	parietooccipital	regions	(PO7)	and	lower	in	
the	parietal	region	(P7)	in	the	IA	group	than	the	HC	group	(Figure	3).	
Thus,	the	position	of	the	hub	of	the	IA	group	presented	a	back‐to‐
center	shifting	from	the	occipital	to	central	regions.	In	addition,	the	
regional difference between groups was mainly located in the left 
central and parietooccipital regions.

3.3 | Correlation between global MST measures and 
IA severity

Pearson correlation was conducted between all significant global 
and	local	measures	and	subjects’	 IAT	scores.	The	results	showed	
a	significant	positive	correlation	between	MaxDeg,	K,	and	IA	se‐
verity in both the upper alpha (r = 0.284,	p = 0.028 and r = 0.318,	
p = 0.013,	 respectively)	 and	beta	bands	 (r = 0.275, p = 0.034 and 
r = 0.302,	 p = 0.019,	 respectively).	 There	was	 a	 significant	 nega‐
tive	 correlation	 between	 Ecc,	 Diam,	 and	 IA	 severity	 just	 in	 the	
upper alpha band (r =	−0.310,	p = 0.016 and r =	−0.299,	p	=	0.020,	
respectively) (Table 3). There were no significant correlations 
between	 functional	 connectivity,	 regional	MST	measures,	 other	
global	MST	measures,	and	IA	severity.

4  | DISCUSSION

In	 this	 study,	 we	 aimed	 to	 further	 elucidate	 functional	 network	 
alterations	 in	 college	 students	with	 IA	 as	measured	with	 resting‐
state EEG combined with a new methodological development in 
network analysis. We found that a significant increase in the FC  
between	the	left	frontal	(AF7)	and	left	parietooccipital	(PO7)	lobes	in	
the	IA	group	relative	to	HCs	restricted	to	the	delta	band.	In	addition,	

college	students	with	IA	demonstrated	higher	MaxDeg	and	K	and	
lower	Ecc,	R,	and	Diam	 in	 the	upper	alpha	band,	which	 indicated	
a shift toward a more centralized star‐like and random network  
topology compared to the HC group. Comparable results were  
obtained	in	the	beta	band,	showing	higher	MaxDeg,	MaxBC,	and	K	
and	lower	R	and	Diam.	Locally,	the	location	of	the	hub	quantified	
with	the	BC	and	Deg	of	each	electrode	point	in	the	functional	net‐
work	of	IA	participants	toward	the	central	brain	regions	was	com‐
parable to the hub of the HC group located in the occipital region. 
The regional difference between groups was mainly located in the 
left	central	and	parietooccipital	regions.	In	general,	our	correlation	
results	were	 consistent	with	 our	MST	 results:	 higher	 IA	 severity	
was	correlated	with	higher	MaxDeg	and	K	and	lower	Ecc	and	Diam.

4.1 | Increased FC between left frontal and 
parietooccipital regions

Higher	FC	 in	 IA	has	previously	been	 reported	 in	 studies	using	dif‐
ferent	modalities,	but	the	pattern	of	this	FC	and	the	methods	vary	

F I G U R E  1  The	PLI	of	the	IA	and	HC	
groups in the delta band. The size of the 
PLI	matrix	was	64*64.	In	the	matrix	map,	
each chromatic point represents the 
synchronization of two corresponding 
channels. The horizontal and vertical 
axes denote 64 channels. The right color 
bar	represents	the	connection	strength,	
from blue to red indicates increasing 
connection strength

F I G U R E  2   EEG network shows significantly increased 
synchronization	in	the	IA	group	compared	to	the	HC	group	in	delta	
band (p	<	0.001).	No	significant	changes	were	observed	in	other	
regions and bands
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considerably	 between	 studies.	 In	 many	 studies	 that	 used	 lower	
temporal	 resolution	but	high	 spatial	 resolution	 fMRI,	 an	 increased	
FC	pattern	was	found	(Du	et	al.,	2017;	Han,	Kim,	Bae,	Renshaw,	&	
Anderson,	2017;	Hong,	Sun,	Bae,	&	Han,	2018).	Such	a	correlation	
between	increased	FC	and	IA	may	be	interpreted	as	a	constructive,	
adaptive effect of prolonged internet use forming a training effect 

(Han	et	al.,	2017).	Another	interpretation,	by	Wang	et	al.	(2017),	was	
that	it	was	possible	that	IA	was	associated	with	shared	disturbances	
of lower interhemispheric and higher intrahemispheric functional 
connection.	Our	result	of	a	significant	 increase	 in	the	FC	between	
the	 left	frontal	and	 left	parietooccipital	 lobes	 in	the	IA	group	rela‐
tive to HCs also supports this higher intrahemispheric connection. 

F I G U R E  3  Hub	locations	and	group	differences	in	regional	properties	based	on	Deg	and	BC	in	delta	band.	In	(a),	the	x‐axis represents 64 
channels,	y‐axis	represents	degree,	the	red	dotted	line	and	the	green	solid	line	represent	the	IA	and	HC	groups,	respectively.	The	channel	
pointed by the arrow was the one where the maximum degree lied and marked the name of the channel and the corresponding number. 
‘▽’ refers to p	<	0.05;	group	difference	occurred	at	electrode	point	C4	numbered	5.	The	legend	of	(b)	was	consistent	with	(a)	and	the	y‐axis	
represents	BC	and	‘○’	refers	to	p	<	0.01;	group	differences	occurred	at	electrode	points	C3,	P7,	C5,	PO7	numbered	5,	15,	49,	59	respectively.	
(c)	and	(d)	show	the	brain	topological	position	of	the	hub	regions	and	significant	brain	regions	based	on	Deg	and	BC,	respectively.	The	node	
with	green	color	refers	to:	MaxDeg/MaxBC	node	of	HC	group;	red	to	MaxDeg/MaxBC	node	of	IA	group;	orange	to	IAs	>	HCs;	and	blue	to	
IAs	<	HCs
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This frontoparietal network connection is implicated in a wide range 
of	cognitively	demanding	tasks	(Wang	et	al.,	2017),	the	frontal	and	
parietal	 lobes	are	both	involved	in	attention	networks	(Corbetta	&	
Shulman,	2002),	and	a	larger	and	more	bilateral	frontoparietal	net‐
work	is	activated	in	a	short‐term	memory	task	(Deprez	et	al.,	2013).

Decreased	FC	correlated	with	IA	is	also	reported	(Dong	et	al.,	
2015;	Hong,	Zalesky	et	al.,	2013).	These	results	indicate	that	the	
deceased	coherence	of	brain	activity	in	IA	participants	may	under‐
lie impaired executive function and weakened inhibition control 
of	 internet‐using	 behaviors.	 In	 some	 studies,	 both	 a	 regional	 in‐
crease	and	a	decrease	were	found	(Ding	et	al.,	2013;	Wang	et	al.,	
2017). Several factors may explain the difference in connectivity 
patterns	related	to	IA.	First,	differences	between	IA	participants	
in	 various	 studies	 have	 been	 observed.	 For	 example,	 different	
criteria	 for	 IA	 (Chen	 Internet	 Addiction	 Scale	 or	 Young	 Internet	
Addiction	Test)	and	different	cut‐offs	for	the	severity	of	 IA	have	
been	 used.	 Second,	whether	 IA	was	 accompanied	 by	 other	 psy‐
chological	syndromes	(e.g.,	depression,	ADHD),	which	has	a	great	
influence	on	the	results	(Han	et	al.,	2017).	Third,	the	applied	tech‐
nologies	 and	 connectivity	methods.	 EEG	 and	 fMRI	 are	 sensitive	
to,	 respectively,	 fast	and	slow	time	scales,	and	fMRI	provides	an	
indirect	measure	of	neuronal	activity,	unlike	EEG	 (Janssen	et	al.,	
2017).	 Functional	 networks	 reconstructed	 on	 the	 basis	 of	 fMRI	
may therefore more closely reflect gross underlying structural 
networks	 (Honey,	Kötter,	Breakspear,	&	Sporns,	2007),	 and	EEG	
studies measure the consistency of synchronization activities be‐
tween time‐series signals.

4.2 | Centralized and star‐like network topology 
from global MST attributes

The MST method is an unbiased estimation method for network to‐
pology	analysis,	avoiding	the	arbitrariness	of	threshold	selection	in	
traditional	network	analysis.	Globally,	participants	with	IA	presented	
higher	MaxDeg	and	K,	and	lower	Ecc,	R,	and	Diam	in	the	upper	alpha	
band,	and	higher	MaxDeg,	MaxBC,	and	K,	and	lower	R	and	Diam	in	
the	beta	band.	A	previous	study	suggested	that	more	random	net‐
works	showed	low	clustering	and	a	short	path	length,	correspond‐
ing	 to	MST's	 shorter	 diameters	 and	 higher	 leaf	 numbers	 (star‐like	

topology),	while	regular	networks	corresponded	to	the	line‐like	to‐
pology	 (Boersma	et	 al.,	 2013).	Our	 results	 indicate	 the	MST	brain	
network	of	HC	participants	 tended	 to	be	 line‐like,	while	 the	brain	
network	 of	 IA	 participants	 tended	 to	 be	 star‐like.	 These	 results	
imply	that	the	brain	of	IA	participants	developed	for	randomization.	
MaxDeg,	MaxBC,	 and	 K	 are	 all	 indexes	 showing	 the	 existence	 of	
high‐degree	nodes	or	hubs	(Anjomshoa	et	al.,	2016).	These	indexes’	
values	were	higher	 in	the	 IA	group,	suggesting	some	brain	regions	
have	 a	 greater	 cognitive	 burden	 than	 comparable	 regions,	 which	
may ultimately be a risk factor for crucial node overloaded. This phe‐
nomenon	can	also	be	inferred	from	the	difference	in	Th	properties,	
though	no	 statistical	 significance	was	 detected.	 From	Table	 2,	we	
observed	the	Th	value	of	the	IA	group	was	higher	than	the	HC	group.	
The	Th	of	a	line‐like	and	a	star‐like	topology	approaches	0	and	0.5,	
respectively.	For	leaf	numbers	between	these	2	extreme	situations,	
Th	can	have	higher	values,	such	topology	may	reflect	more	optimal	
network organization that provide a tradeoff between node‐over‐
load	and	efficient	communication	(Boersma	et	al.,	2013;	Fraga	et	al.,	
2016).	In	addition,	Diameter	and	Ecc,	metrics	of	network	efficiency,	
correspond	to	path	length	in	traditional	network	analysis.	In	a	net‐
work	with	 lower	distance,	 information	 is	 efficiently	processed	be‐
tween	remote	brain	regions	(Janssen	et	al.,	2017).

In	 essence,	 the	 changes	 in	 the	 network	 measures	 mentioned	
above all point to the same phenomenon: the topological organi‐
zation	of	college	students	with	IA	shift	toward	a	more	centralized,	
star‐like	and	random	network	compared	to	HC	participants.	IA	as	a	
behavioral addiction that was considered to share similar neurobi‐
ological	abnormalities	with	substance	addiction	(Ding	et	al.,	2013).	
Using	graph	theoretical	analysis,	studies	revealed	the	brain	network	
in heroin‐dependent individuals and young smokers may shift to‐
wards	a	random	network	(Zhang	et	al.,	2016,	2017).	However,	we	are	
aware that the results seem to deviate from other network studies 
in	IA	that	have	indicated	a	more	regular	network	organization	(Zhai	
et	al.,	2017)	or	unchanged	topology	(Hong,	Zalesky	et	al.,	2013;	Lee	
et	al.,	2017;	Wee	et	al.,	2014).	The	reasons	leading	to	this	difference	
may	be	 the	ones	mentioned	 in	Section	4.1.	Furthermore,	previous	
studies	 have	 explored	 topological	 networks	 of	 IA	 from	 structural	
(Lee	 et	 al.,	 2017;	 Zhai	 et	 al.,	 2017)	 and	 functional	 aspects	 (Hong,	
Zalesky	et	al.,	2013;	Wee	et	al.,	2014),	and	the	applied	graph	theory	
methods	were	different.	MST,	used	in	our	study,	is	more	robust	for	
estimation	of	network	 topology,	while	group	differences	obtained	
with	conventional	network	analyses	can	go	in	any	direction,	depend‐
ing	on	the	choices	made	during	the	analysis	 (Tijms	et	al.,	2013).	 In	
our	study,	participants	with	 IA	with	 lower	diameter	and	a	trend	of	
increased leaf may indicate an alteration in the normal balance of 
network function.

In	 addition,	 the	 results	 of	 PLI	 connectivity	 and	 MST	 analy‐
sis of global network organization were inconsistent in differ‐
ent	 frequencies.	 The	 difference	 in	 PLI	 connectivity	 was	 mainly	
found	 in	 lower	 frequencies,	 while	 global	 MST	 differences	 were	
seen	 in	 higher	 frequencies.	 Since	 no	other	 EEG	 study	 on	 IA	 has	
explored	 topological	 network‐revealed	 frequency	 effects,	 we	
can	only	 speculate	about	 this	 frequency	significance.	One	might	

TA B L E  3  Significant	correlations	between	IAT	and	global	MST	
measures in upper alpha and beta bands

Bands Measures

IAT (n = 60)

r p

Alpha2 Max degree 0.284 0.028*

Ecc −0.310 0.016*

K 0.318 0.013*

Diameter −0.299 0.020*

Beta Max degree 0.275 0.034*

K 0.302 0.019*

Note.	“*”	indicates	statistical	significant	results	(p	<	0.05).
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hypothesize that changes in different frequency bands reflected 
different	aspects	of	a	compensatory	mechanism	 (van	Diessen	et	
al.,	2016).	Another	 reason	may	be	that	connectivity	analysis	and	
network analysis are two measures to explore the alteration of 
brain	mechanism	from	different	aspects	(Fraga	et	al.,	2016;	Stam	
&	van	Straaten,	2012).

4.3 | Alterations of hub location and regional 
MST measures

The occipital lobe is the visual processing center of the mammalian 
brain,	containing	most	of	the	anatomical	region	of	the	visual	cortex.	
It	is	thought	to	be	responsible	for	visual	function	(Kojima	&	Suzuki,	
2010). The occipital brain area plays a key role in visual processes 
and	 is	 involved	 in	 IA	 (Dong,	Jie,	&	Du,	2012;	Ling,	Yue,	Wenjie,	&	
Fan,	2015).	Internet	game	tasks	can	activate	the	vision	center	which	
is	composed	of	the	occipital	gyrus	(Du	et	al.,	2011;	Liu	et	al.,	2016).	
IA	participants	showed	decreased	regional	homogeneity	in	tempo‐
ral,	occipital,	and	parietal	brain	regions.	These	regions	are	thought	
responsible	 for	 visual	 and	 auditory	 functions	 (Dong	 et	 al.,	 2012).	
Our	results	show	that	in	the	lower	frequency	band,	the	most	impor‐
tant node (as indicated by the highest degree and BC values) was 
located	in	the	occipital	brain	region	in	HCs	and,	with	increasing	IA	
severity,	became	relatively	less	important.	We	speculate	the	reason	
for	the	reduced	importance	of	the	occipital	lobe	in	IA	participants	
was that internet users have long indulged in the internet need to 
pay	full	attention	to	each	tiny	change	in	the	screen.	Long‐term	hy‐
pertension of visual attention can impair subjects’ visual functions 
(Dong	et	al.,	2012).	Therefore,	the	occipital	lobe,	which	is	very	im‐
portant	 in	the	HC	group,	 is	 less	 important	 in	the	IA	group,	maybe	
because long‐term internet use has weakened their visual ability.

However,	the	importance	of	central	and	parietooccipital	regions	
increased	 in	 IA	 compared	 with	 HC	 in	 our	 study,	 as	 shown	 by	 in‐
creased regional degree and BC values. We could consider this phe‐
nomenon	a	compensatory	mechanism	(Scheller,	Minkova,	Leitner,	&	
Klöppel,	2014).	In	the	case	of	HC	subjects,	this	mechanism	would	not	
be needed. The occipital area was weakened in the brain network in 
IA	participants,	while	the	central	and	parietooccipital	regions	com‐
pensated	 for	 this	malfunction.	 It	 also	may	 reflect	 that	 some	brain	
areas lose control within the network while others function in a more 
aberrant	way	(López	et	al.,	2017),	which	would	be	in	accordance	with	
the	activity‐dependent	degeneration	theory	(Engels	et	al.,	2015).

In	 addition,	 we	 took	 into	 consideration	 the	 social	 and	 emo‐
tional	component	of	IA	to	explain	the	changed	brain	functions.	IA	
may	affect	an	individual's	self‐control	and	understanding	of	their	
own	and	others'	 emotions,	 so	 internet	addicts	usually	have	neg‐
ative	emotions,	 such	as	 impulsivity,	 low	self‐esteem,	depression,	
anxiety,	loneliness,	and	even	suicidal	ideation	(Sami,	Danielle,	Lihi,	
&	Elena,	2018;	Yücens	&	Üzer,	2018).	These	negative	psychosocial	
factors	may	 also	 affect	 the	 IA	 process.	 For	 example,	Ding	 et	 al.	
(2014) suggested that impaired function of the prefrontal cortex 
may	relate	to	high	 impulsivity	 in	adolescents	with	 IA,	which	may	
contribute	directly	to	the	IA	process.	Dieter	et	al.	(2017)	revealed	

decreased left middle and superior temporal gyrus activation 
while experiencing socially anxious words in internet gaming ad‐
dicts.	Additionally,	 risk	 taking	 is	 related	 importantly	 to	addictive	
behaviors	 (Panwar	et	 al.,	 2014).	 IA	 is	 regarded	as	behavioral	 ad‐
diction,	and	the	lesser	activation	in	the	parietal	neural	processes	
underlying	decision‐making	has	been	systematically	explored	(Liu	
et	al.,	2017).	Our	data	further	suggest	the	parietal	(P7)	is	a	region	
of	the	brain	that	plays	an	 important	role	 in	 IA	from	resting‐state	
perspective.	In	general,	the	social	and	emotional	components	of	IA	
which may affect the functions of the brain regions.

4.4 | Correlation between global MST and 
IA severity

Measures	 of	 global	MST	were	 correlated	with	 IA	 severity:	more	
severe	 IA	 was	 correlated	 with	 higher	 MaxDeg	 and	 K,	 and	 with	
lower	 Ecc	 and	Diam.	 Correlation	 results	 can	 be	 used	 as	 an	 aux‐
iliary description of the relationship between behavior and brain 
topology	change.	Subjects	with	more	severe	IA	tended	to	have	a	
more	 random	brain	network.	However,	 the	 results	of	correlation	
analysis are not as accurate as causal analysis. Future studies could 
increase the reliability of this trend by dividing several subgroups 
based	on	the	degree	of	IA	or	conducting	longitudinal	research.

4.5 | Strengths and Limitations

This	study	applied	MST	to	IA	analysis	to	explore	the	brain	mechanism	
alterations	related	to	IA	for	the	first	time.	MST,	containing	the	strong‐
est	connection	in	the	original	network,	offers	a	nonarbitrary	method	
for	comparing	networks.	Thus,	it	allows	us	to	better	detect	subtle	net‐
work	alterations.	One	strength	is	the	use	of	PLI	to	measure	FC,	since	
it reduces the bias due to volume conduction and activity from com‐
mon	sources	(Stam	et	al.,	2007).	Another	strong	point	is	that	when	we	
compared	the	differences	of	global	PLI	and	MST	measures	between	
groups,	age,	sex	and	the	power	of	each	frequency	band	were	taken	
into	consideration	as	covariates	(Vecchio	et	al.,	2017).

Despite	 these	 strengths,	 there	were	 several	 limitations	 to	 our	
study.	First,	although	PLI	 is	not	affected	by	the	volume	conductor	
effect and is widely used in detecting real changes in functional net‐
works	 (Fraga	 et	 al.,	 2016;	 van	Dellen	 et	 al.,	 2014;	 van	Diessen	 et	
al.,	 2016),	 the	 PLI	may	 underestimate	 the	 FC	 because	 all	 zero‐lag	
(mostly	short	distance)	networks	are	discarded	in	this	measure,	and	
it	might	be	biased	toward	long‐distance	connectivity	(Engels	et	al.,	
2015).	Second,	conclusions	about	regional	effects	should	be	taken	
with caution due to the lower spatial resolution of EEG. Future stud‐
ies should be combined with source location techniques to obtain 
comparable	 results	 to	 fMRI.	 Finally,	 some	 significant	 differences	
described in this study were not corrected for multiple testing. 
After	Bonferroni	or	 false	discovery	 rate	correction,	 there	were	no	
significant	differences	between	groups.	Therefore,	these	results	are	
presented as an exploratory study that can be used as a guide for re‐
gions and measures that show a trend toward significance between 
IA	and	controls.
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5  | CONCLUSIONS

Our	 results	 revealed	 FC	 and	 topological	 differences	 between	 the	
IA	and	HC	groups.	We	found	evidence	for	increased	FC	and	a	more	
random	organization	in	IA	participants	compared	to	HCs,	and	a	de‐
crease of relative functional importance of the visual processing 
area	in	IA	participants.	Together,	these	alterations	can	help	us	un‐
derstand	 the	 influence	of	 IA	 to	brain	mechanism.	 In	addition,	 this	
study contributes to the literature by using MST to detect the neural 
differences between the groups and provides evidence that MST 
analysis is more sensitive in brain network analysis than traditional 
graph theory.
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