
Citation: Clin Transl Sci (2020) 13, 137–146;  doi:10.1111/cts.12694

ARTICLE

Metabolomic Profiling to Identify Molecular Biomarkers of 
Cellular Response to Methotrexate In Vitro

Ryan S. Funk1,*, Rakesh K. Singh1 and Mara L. Becker2

Variation in methotrexate (MTX) efficacy represents a significant barrier to early and effective disease control in the treat-
ment of autoimmune arthritis. We hypothesize that the utilization of metabolomic techniques will allow for an improved 
understanding of the biochemical basis for the pharmacological activity of MTX, and can promote the identification and 
evaluation of novel molecular biomarkers of MTX response. In this work, erythroblastoid cells were exposed to MTX at the 
physiologic concentration of 1,000 nM and analyzed using three metabolomic platforms to give a broad spectrum of cellular 
metabolites. MTX pharmacological activity, defined as cellular growth inhibition, was associated with an altered cellular 
metabolomic profile based on the analysis of 724 identified metabolites. By discriminant analysis, MTX treatment was as-
sociated with increases in ketoisovaleric acid, fructose, galactose, and 2-deoxycytidine, and corresponding reductions in 
2-deoxyuridine, phosphatidylinositol 32:0, orotic acid, and inosine monophosphate. Inclusion of data from analysis of folate 
metabolism in combination with chemometric and metabolic network analysis demonstrated that MTX treatment is associ-
ated with dysregulated folate metabolism and nucleotide biosynthesis, which is in line with its known mechanism of ac-
tion. However, MTX treatment was also associated with alterations in a diversity of metabolites, including intermediates of 
amino acid, carbohydrate, and lipid metabolism. Collectively, these findings support a robust metabolic response following 
exposure to physiologic concentrations of MTX. They also identify various metabolic intermediates that are associated with 
the pharmacological activity of MTX, and are, therefore, potential molecular biomarker candidates in future preclinical and 
clinical studies of MTX efficacy in autoimmune arthritis.

In chronic autoimmune arthritis, including juvenile idio-
pathic arthritis and rheumatoid arthritis (RA), rapid control 
of disease activity to prevent irreversible joint damage and 
promote improved long-term outcomes continues to be a 
major therapeutic goal.1–3 However, in current practice, re-
sponse to drug therapy is characterized by a highly variable 
and unpredictable course, which commonly necessitates 
multiple iterations of therapy modification to identify an 
effective treatment.4,5 In the management of autoimmune 

arthritis, methotrexate (MTX) continues to be the corner-
stone of initial and maintenance therapy, however, its onset 
of action is prolonged and approximately one in three pa-
tients fail to adequately respond to initial treatment.6–11 To 
date, efforts to identify biomarkers to guide drug therapy 
have been unsuccessful, therapy remains effectively a tri-
al-and-error process, and the mechanism of action of MTX 
remains incompletely understood.5,12,13 This approach 
to therapy wastes precious time and jeopardizes the 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔   The need remains to identify clinical biomarkers of 
response to methotrexate (MTX) in the treatment of au-
toimmune arthritis. Although pharmacometabolomics 
represents a potentially powerful tool for biomarker iden-
tification, it has not been systematically applied to identify 
molecular markers of MTX efficacy.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔   In this work, a systematic pharmacometabolomic ap-
proach is applied to an established in vitro model of MTX 
response to identify potential molecular markers of MTX re-
sponse and key metabolic pathways impacted by the drug.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔   This study identifies a number of key metabolites asso-
ciated with the pharmacological activity of methotrexate, 
in vitro, including metabolites indicative of dysregulated 
folate and nucleotide metabolism, as well as intermedi-
ates of amino acid, carbohydrate, and lipid metabolism.
HOW MIGHT THIS CHANGE CLINICAL PHARMA- 
COLOGY OR TRANSLATIONAL SCIENCE?
✔   This study establishes the basis for a pharmacome-
tabolomic-based approach to identify molecular markers 
of MTX response in the treatment of autoimmune arthritis 
for translation into animal models and patient populations.
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overarching goal of early disease control. Therefore, a need 
exists to apply state-of-the-art techniques, such as me-
tabolomics, to identify biomarkers to guide clinicians in the 
early selection and optimization of drug therapy and further 
enhance the understanding of this extensively utilized drug.

Previous efforts to identify biomarkers of MTX response in 
autoimmune arthritis have primarily focused on the targeted 
analyses of MTX and its metabolites, or specific analytes 
hypothesized to be foundational to its impact on inflam-
mation and immunity.14 A major limitation to these studies 
has been the biased investigative approach that largely fo-
cuses on a handful of metabolites or metabolic pathways, 
primarily revolving around the folate pathway and adenosine 
formation.15–18 In fact, despite over 70 years of research on 
MTX, the biochemical basis through which MTX mediates 
its effects in autoimmune arthritis remains controversial and, 
therefore, has been a potential obstacle in the search for 
biochemical markers of efficacy.19 As an -omics approach, 
metabolomics offers a unique opportunity to apply a largely 
unbiased and untargeted approach to investigate potential 
biochemical markers of MTX response and to unravel the 
underlying biochemical basis of MTX efficacy.20,21

Metabolomics references the study of the metabolome, 
which is the complete set of low-molecular weight chemicals 
that can be found within a biological system.22 As a result, 
a patient’s metabolome is the product of both endogenous 
and exogenous metabolism, thus various internal and ex-
ternal factors can impact a patient’s metabolomic profile. In 
the case of RA, a number of metabolomic studies have been 
undertaken and have identified various metabolic pathways 
associated with disease activity, including nucleotide bio-
synthesis, glycolysis, amino acid metabolism, and the urea 
cycle.23,24 Similar studies have evaluated differences in the 
metabolome between patients with RA based on their re-
sponse to disease-modifying therapy, and have similarly 
shown that changes in the metabolome are associated with 
drug efficacy.25–29 Despite these efforts to understand the 
metabolome in autoimmune arthritis, no concerted effort 
has been undertaken to define the relationship between the 
effect of drug therapy on the metabolome and pharmaco-
logical response to MTX as an approach to biomarker iden-
tification, which is the focus of the current work.

In this study, an untargeted global metabolomics approach 
is undertaken to evaluate the effect of exposure to physio-
logic concentrations of MTX on the metabolomic profile in 
an erythroblastoid cell line that has been previously utilized 
as a model for MTX disposition and pharmacological re-
sponse.18,30 The resulting metabolomic data  are evaluated 
using multivariate statistical approaches along with chemom-
etric and network enrichment analyses to interpret the impact 
of MTX on the cellular metabolome and to identify putative 
metabolomic markers of MTX response for interrogation in 
future studies of MTX response in autoimmune arthritis.

METHODS
Cell culture
The K562 human erythroblastoid cell line (catalog no. 
GM05372) was acquired from Coriell Cell Repositories 
(Camden, NJ) and maintained in Roswell Park Memorial 
Institute 1640 medium (catalog no. 61870-127; ThermoFisher 

Scientific, Waltham, MA) supplemented with 10% fetal 
bovine serum (catalog no. S11150; Atlanta Biologicals, 
Lawrenceville, GA) along with 100  units/mL penicillin 
and 1,000  units/mL streptomycin (catalog no. 15140122; 
ThermoFisher Scientific). Cells were maintained under nor-
mal growth conditions in a humidified, temperature and 
CO2-controlled incubator at 37°C and 5% CO2. Cells were 
kept at density between 2.0 × 105 and 1.0 × 106 cells/mL to 
maintain logarithmic growth conditions to promote maxi-
mum proliferative activity over the experimental period. All 
experiments were conducted within six passages following 
removal from cryopreservation.

MTX treatment
Cell counts were conducted daily prior to, and on, the day 
of experimentation to ensure cells remained in a logarithmic 
growth phase. On the day of experimentation, K562 cells 
were seeded at a density of 4.0 × 105 cells/mL and exposed 
to 1,000 nM MTX or D-phosphate-buffered saline (i.e., ve-
hicle) for 24 hours under normal growth conditions. At the 
end of the experiment, the cell density was measured and 
the volume of cells in media determined to contain 15 × 106 
cells was removed and centrifuged at 1,000 g for 5  min-
utes. The cells were re-suspended in 10  mL of ice-cold 
D- phosphate-buffered saline, centrifuged at 1,000 g for 
5 minutes, and following the removal of the supernatant, the 
resulting cellular pellet was flash frozen in liquid nitrogen and 
stored in the vapor phase of a liquid nitrogen cryopreserva-
tion chamber prior to submission for metabolomics analysis. 
For both MTX treatment and control conditions, experiments 
were conducted using three replicate experiments using in-
dependently maintained cell culture lines on different days 
with  three to four replicates per group resulting in a total 
sample size of 10 per group for the final analysis.

Anti-proliferative activity
Cellular proliferation over the experimental period was 
determined based on the initial seeding density of 
4.0 × 105 cells/mL for each sample and the measured cell 
density following the experimentation period. Cell den-
sities were determined using a Sceptor 2.0 Cell Counter 
(MilliporeSigma, Burlington, MA). Fold-change in cell den-
sity was calculated as the ratio of the density at the comple-
tion of the experiment relative to the seeding density, and 
the antiproliferative activity of MTX was determined based 
on comparison of fold-change in cellular densities between 
the MTX-treated and control groups.

Metabolomics analysis
Cryopreserved cellular pellets from MTX and control cells 
were submitted to the National Institutes of Health (NIH) 
West Coast Metabolomics Center at the University of 
California, Davis (Davis, CA) for untargeted analysis utiliz-
ing three independent standardized analytical methods for 
analysis to measure intermediates of primary metabolism, 
biogenic amines, and lipids.31,32 Sample preparation was 
conducted at the West Coast Metabolomics Center using 
a biphasic liquid-liquid extraction standard operating pro-
cedure developed for untargeted metabolomic analysis 
in plasma or serum samples across the three analytical 
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platforms (File  S1). Intermediates of primary metabolism 
were measured by automated liner exchange-cold in-
jection system gas chromatography time-of-flight mass 
spectrometry (File S2). Lipids were measured by charged 
surface hybrid chromatography electrospray ionization 
quadropole time-of-flight mass spectrometry (File  S3). 
Biogenic amines were measured by hydrophilic interaction 
liquid chromatography electrospray ionization quadropole 
time-of-flight mass spectrometry (File  S4). Detected 
peaks were identified based on retention times and mass 
spectra from MassBank of North America and reported 
as relative peak height intensities.33 Peak height intensity 
tables received following curation by the NIH West Coast 
Metabolomics Center were submitted to Metabolomics 
Workbench (https​://www.metab​olomi​cswor​kbench.org/) 
under Project ID 1756 and are provided as supplemental 
files (Files S5–S7). Raw peak intensity data from each an-
alytical platform underwent a normalization procedure.32 
The normalization ratio was calculated as the ratio of the 
sum of peak heights for all identified metabolites for each 
sample to the total average metabolite total ion chromato-
gram for all samples. Peak heights for each metabolite were 
divided by the normalization ratio to arrive at the normalized 
peak height intensity. Metabolites measured in more than 
one analytical platform were combined by mean normaliza-
tion to give equal weighting to each platform and averaged. 
The resulting normalized peak height intensities for known 
compounds (File  S8) were uploaded into MetaboAnalyst 
3.0 and further normalized by logarithmic transformation 
and Pareto scaling.34 The resulting data were analyzed for 
fold-change and nonparametric unpaired analysis and vi-
sualized using volcano plots to identify initial metabolites of 
interest. The data were assessed by principle component 
analysis (PCA) and partial least squares discriminant anal-
ysis. A variable importance in projection was generated to 
identify and rank metabolites based on their ability to dis-
criminate between the two treatment groups.

Enrichment analysis
The metabolites along with corresponding fold-change and 
false discovery rate (FDR) adjusted P values were extracted 
and subjected to chemical and metabolic network enrich-
ment analysis. Enrichment analysis based on chemical sim-
ilarity was conducted using the open source software for 
Chemical Similarity Enrichment Analysis for Metabolomics 
(ChemRICH) that is independent of biochemical pathway 
assignments, but rather utilizes Tanimoto substructure sim-
ilarity coefficients and medical subject headings ontology 
to generate nonoverlapping clusters of metabolites into 
distinct chemical classes.35 Metabolite predicted octa-
nol:water partition coefficient (xlogP) values were collected 
using the PubChem chemical information database (https​
://pubch​em.ncbi.nlm.nih.gov/). Additional chemometric and 
biochemical network characterization and visualization was 
conducted using MetaMapp to generate a network map 
based on chemical similarity utilizing the Kyoto Encyclopedia 
of Genes and Genomes metabolic network database and 
Tanimoto substructure similarity coefficients.36 The result-
ing mapping data  were uploaded into Cytoscape 3.7.1 for 
visualization.

Statistical analysis
Fold-change in cellular densities of K562 cells was deter-
mined by Wilcoxon rank-sum analysis using JMP software 
version 11 (SAS Institute, Cary, NC). Analysis of differences 
in individual metabolites between groups was conducted 
using MetaboAnalyst 3.0 and included nonparametric uni-
variate analysis and evaluated both statistical significance 
and fold-change. An FDR of 0.05 was used to control for 
multiple testing. All metabolites achieving an FDR adjusted 
P value < 0.05 were considered significant and used in the 
chemometric and metabolic network enrichment analyses. 
Statistical testing within the chemometric analysis using 
the ChemRICH platform was determined by Kolmogorv–
Smirnov testing and an FDR adjusted P value of < 0.05 was 
considered significant.

RESULTS
Antiproliferative activity of MTX is associated with an 
altered metabolic phenotype
Despite uncertainty about the mechanism of action of 
MTX in the treatment of autoimmune arthritis, MTX dis-
plays a quantifiable pharmacological response in the 
form of antiproliferative activity. In this study, K562 cells 
under normal growth conditions were either left untreated 
(i.e., controls) or treated with MTX at a concentration of 
1,000  nM for 24  hours. The concentration of 1,000  nM 
was chosen based on MTX peak concentrations in the 
treatment of RA, and to allow analysis utilizing a com-
plimentary data set including targeted metabolic profil-
ing of folates in K562 cells treated with MTX.18,37 Under 
these conditions, K562 cells are efficient at the uptake 
and polyglutamation of MTX, which is believed to be 
important in its pharmacological activity.30 Under nor-
mal growth conditions, control cells were found to more 
than double over the 24-hour incubation period, whereas 

Figure 1  Pharmacological activity of methotrexate (MTX) in 
K562 cells. Pharmacological response was measured based on 
the antiproliferative effect of MTX following a 24-hour exposure 
of K562 cells to MTX. Cell density data  were collected from 
10 samples per group over  three independent experimental 
evaluations. Data points and representative box and whisker 
plots are shown based on the seeding density (i.e., seed) and 
density measurements after 24  hours of exposure to either 
vehicle control or 1,000 nM MTX. Cell densities were compared 
between groups using Wilcoxon rank-sum testing and the 
resulting P values are provided.

https://www.metabolomicsworkbench.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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MTX-treated cells failed to show any appreciable repli-
cation as represented by a median (interquartile range 
(IQR)) fold-change in cell densities of 2.4 (IQR 2.0−2.5) 
and 1.1 (IQR 1.0−1.1), respectively (P = 0.0002; Figure 1).

A total of 15  million cells were collected from each 
sample with corresponding quantified antiproliferative 
response data and submitted for untargeted metabolo-
mics analysis using  three separate analytical platforms 
targeting the detection of markers of primary metabolism, 
complex lipids, and biogenic amines. Peak intensity data 
for known metabolites from each analytical platform un-
derwent a normalization protocol and the data were com-
bined and imported into MetaboAnalyst 3.0 for analysis. 
The analysis included 724 different known metabolites 
across the three analytical platforms. PCA was chosen 
for the initial visualization of the metabolomics data  set 
(Figure 2a). As an unsupervised and unbiased multivari-
ate analytical technique, PCA allows for dimensional re-
duction of the data while preserving the variation of the 
high dimensional data  set and allowing for visualization 
of the data distribution across the sample set. The control 
cells and MTX treated cells seem to be well separated by 
PCA. However, control cells formed a tighter cluster than 
MTX-treated cells and were indicative of greater meta-
bolic variation following MTX treatment. Therefore, based 
on the observed variance in the metabolomics data set, 
treatment with MTX results in significant alterations in the 
metabolomic profile of K562 cells.

Identification of metabolomic markers associated 
with the antiproliferative activity of MTX
Comparison of relative metabolite abundance between control 
and MTX-treated cells was determined by unpaired univariate 
analysis. Calculated P values were adjusted based on an FDR 
of 0.05 and filtered by fold-change analysis with metabolites 
displaying a greater than twofold change deemed significant. 
A total of 144 metabolites were found to be significantly dif-
ferent in the MTX-treated group by this analysis; represented 
by an increase in 76 metabolites and a decrease in 68 me-
tabolites. An additional step to identify the most significantly 
impacted metabolites included the selection of molecules 
displaying at least a 10-fold change resulting in eight highly 
impacted metabolites (Figure  2b). For illustrative purposes 
the metabolites reaching the 10-fold change threshold are an-
notated on the resulting volcano plot, and include decreases 
in 2-deoxycytidine, orotic acid, phosphatidylinositol (PI) 32:0, 
and inosine monophosphate (IMP), and increases in ketoiso-
valeric acid, galactose, fructose, and 2-deoxyuridine.

The data set was interrogated by partial least squares dis-
criminant analysis as a supervised multivariate approach to 
identify major discriminatory metabolites (Figure  2c). The 
resulting scores plot demonstrated a good separation of 
metabolomic profiles for control and MTX treated cells and 
demonstrated good reliability by leave-one-out cross validation 
analysis (R2 = 0.996, Q2 = 0.991). Similar to PCA, control cells 
formed a tighter cluster than MTX treated cells. Generation of a 
variable importance in projection score plot demonstrated that 

Figure 2  Identification of key metabolites associated with cellular response to methotrexate (MTX) by univariate and multivariate 
analysis of 724 identified metabolites. Metabolomics data were  analyzed using MetaboAnalyst 3.0 and the resulting (a) principle 
component analysis scores plot, (b) volcano plot, (c) partial least squares discriminant analysis scores plot, and (d) variable 
importance in projection (VIP) score plot are presented. In the volcano plot, red-colored metabolites represent those metabolites 
found to be increased in the MTX treated group, whereas the blue-colored metabolites represent those metabolites that were found to 
be decreased and statistically significant metabolites (false discovery rate adjusted P value < 0.05) with a > 10-fold change are labeled 
on the volcano plot. The top discriminating metabolites are presented in the VIP score plot and are the same metabolites identified in 
the volcano plot. FC, fold change; IMP, inosine monophosphate; PI, phosphatidylinositol.
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the same eight metabolites identified in the univariate analysis 
were identified as the major discriminatory metabolites be-
tween the control and MTX-treated cells (Figure 2d).

Normalized log transformed peak intensity data for the eight 
metabolites identified by univariate and multivariate analy-
sis are provided (Figure  3). Treatment with MTX resulted in 
increases in ketoisovaleric acid, fructose, galactose, and 2- 
deoxyuridine that are represented by 496-fold, 73-fold, 324-
fold, and 76-fold increases, respectively. In contrast, MTX 
treatment resulted in dramatic decreases in 2-deoxycytidine, 
PI 32:0, orotic acid, and IMP that are represented by 248-fold, 
13-fold, 13-fold, and 10-fold reductions, respectively.

Enrichment analysis supports folate and nucleotide 
metabolism as key pathways associated with the 
pharmacological activity of MTX
Following statistical analysis for individual analytes measured 
by the untargeted metabolomic analysis, chemometric and 
metabolic pathway analysis techniques were utilized to de-
tect specific chemical classes and metabolic pathways as-
sociated with the observed pharmacological response to 
MTX. In addition to the metabolomic data collected in this 
study, targeted analysis of folates and select markers of pu-
rine and pyrimidine biosynthesis that were previously col-
lected were included in the analysis.18,30 Initial chemometric 
analysis was conducted using lipophilicity (i.e., xlogP) as a 
defining chemical descriptor to stratify the individual me-
tabolites and plotted as a function of fold-change with node 
size representing the negative logarithmic transformation of 
the FDR adjusted P value for each metabolite (Figure 4a). 
Only metabolites with a greater than twofold change and an 
FDR adjusted P value of <  0.05 were included in the plot. 

The eight metabolites identified by univariate and multivariate 
analysis and an additional five metabolites of greater than 10-
fold change from the previous targeted analysis are labeled 
on the plot. Specifically, the previous study found reductions 
in 5-methyl-tetrahydrofolate (5m-THF), formyl-THF, and meth-
ylene-THF of 67-fold, 16-fold, and 14-fold; as well as 75-fold 
increase in folic acid. Interestingly, except for PI 32:0, all of 
the significantly altered metabolites with a > 10-fold change 
are relatively hydrophilic molecules with xlogP values < 1.0, 
and suggests MTX has a greater impact on intermediates of 
primary metabolism and biogenic amines than on lipids.

Integration of biochemical pathway and chemical sim-
ilarity mapping for the metabolomics data  set was con-
ducted using MetaMapp and visualized using Cytoscape 
3.7.1 (Figure 4b). Node size is directly proportional to the 
observed median fold-change and nodes are color-coded 
based on whether the analyte was increased (i.e., red) or de-
creased (i.e., blue) when K562 cells were treated with MTX. 
Only analytes with an FDR adjusted P value < 0.05 and a 
> 2-fold change were colored-coded and the 13 significantly 
altered metabolites with a >  10-fold change are labeled. 
The resulting network map structure is based on the Kyoto 
Encyclopedia of Genes and Genomes reactant pair data-
base as well as Tanimoto chemical and National Institute of 
Standards and Technology mass spectral similarity scores. 
The resulting node clusters were further manually classified 
based on the chemical composition and associated meta-
bolic pathways for the metabolites within the clusters.

The cluster of metabolites representing folate metabo-
lism demonstrates that MTX has a profound impact on fo-
late metabolism (Figure 5a). Most notably, MTX treatment 
results in the accumulation of folic acid and a corresponding 

Figure 3  Relative abundance of metabolomic markers of methotrexate (MTX) response. The normalized peak ion intensity plots 
for the eight metabolites identified by univariate and multivariate analyses are presented. (a) Metabolites found to be increased in 
MTX-treated cells includes ketoisovaleric acid, fructose, galactose, and 2-deoxyuridine. (b) Metabolites found to be decreased in 
MTX-treated cells includes 2-deoxycytidine, phosphatidylinositol (PI) 32:0, orotic acid, and inosine monophosphate (IMP). Normalized 
peak ion intensity data were collected from 10 samples per group over three independent experimental evaluations. Data points and 
representative box and whisker plots are shown based on metabolomics analysis after 24 hours of exposure to either vehicle control or 
1,000 nM MTX. Normalized peak ion intensities were compared between groups using unpaired nonparametric analysis with unequal 
variances. The resulting false discovery rate adjusted P values are provided.
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Figure 4  Chemometric and metabolic network mapping of metabolomic and targeted metabolic profiling data. (a) Metabolomic 
data combined with data from targeted analysis of folates and select intermediates of nucleotide biosynthesis was assessed based 
on lipophilicity, fold-change (FC), and false discovery rate adjusted P value; with node size directly proportional to the inverse log 
of the P value for each metabolite. (b) A chemometric and metabolic network map was built using MetaMapp and visualized using 
Cytoscape. Red denotes metabolites found to significantly increase with methotrexate (MTX) treatment and blue denotes metabolites 
found to significantly decrease in cells treated with MTX. Node size is directly proportional to measured FC. Blue lines between 
nodes represent Kyoto Encyclopedia of Genes and Genomes reaction pairs, whereas gray lines represent pairing based on chemical 
similarity. Metabolites found to be significantly altered with a greater than 10-fold change are labeled by number with the corresponding 
metabolite name provided in the key.

Figure 5  Key metabolic pathways associated with pharmacological activity of methotrexate (MTX) in K562 cells. The metabolic 
network built in Cytoscape was divided into clusters using the community cluster tool within Cytoscape. The resulting clusters 
represent (a) folate-related metabolites, (b) nucleotides, (c) amino acids, and (d) carbohydrates. Red denotes metabolites found 
to significantly increase with MTX treatment and blue denotes metabolites found to significantly decrease with MTX treatment. 
Node size is directly proportional to measured fold-change. Blue lines between nodes represent Kyoto Encyclopedia of Genes and 
Genomes reaction pairs, whereas gray lines represent pairing based on chemical similarity. 5m-THF, 5-methyl-tetrahydrofolate; dUMP, 
deoxyuridine monophosphate; IMP, inosine monophosphate; SAH, S-adenosyl-homocysteine; THF, tetrahydrofolate; TMP, thymidine 
monophosphate.
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depletion of 5m-THF, methylene-THF, and formyl-THF that 
is consistent with inhibition of dihydrofolate reductase 
(Figure 5a).38 Evaluation of nucleotide biosynthesis depicts 
changes in pyrimidine biosynthesis that is of greater magni-
tude than the observed antifolate effects of MTX (Figure 5b). 
In particular, MTX caused a dramatic accumulation of intra-
cellular deoxyuridine monophosphate and 2-deoxyuridine 
with a corresponding depletion of 2-deoxycytidine and 
orotic acid. Additionally, a significant depletion of pyrimi-
dines, including uridine diphosphate N-acetylglucosamine, 
uridine, and 5-methyluridine was observed despite an unan-
ticipated increase in cellular thymidine monophosphate lev-
els. Purines were also found to be markedly depleted with 
significant reductions in IMP, adenosine monophosphate, 
S-adenosyl-homocysteine, inosine, hypoxanthine, guano-
sine, and guanine. However, an increase in 8-oxo-2′-deoxy-
adenosine was observed and may represent an increase in 
oxidative damage of DNA in MTX-treated cells.39

Evaluation of the cluster of metabolites surrounding ke-
toisovaleric acid mainly represented intermediates of amino 
acid metabolism, and despite the high level of ketoisova-
leric acid accumulation following MTX treatment, only mini-
mal corresponding changes in amino acid metabolism were 
observed (Figure 5c). However, in general, MTX treatment 
was associated with increased amino acid levels. Similarly, 
evaluation of metabolites related to fructose and galactose 
demonstrated a similar general increase in intermediates of 
carbohydrate metabolism with MTX treatment (Figure 5d). 
Lipids and intermediates of the tricarboxylic acids (TCA) 
cycle, although less dramatic, also demonstrated sensitivity 
to MTX exposure suggesting inhibition of the TCA cycle and a 
shift from saturated to unsaturated fatty acid (FA) containing 

lipids (Figure S1). Enrichment analysis using ChemRICH to 
categorize the metabolites into chemical classes based on 
Tanimoto substructure similarity coefficients and medical 
subject headings was used to further describe the effect of 
MTX on various classes of metabolites (Figure 6). In the re-
sulting plot, the fraction directional change for each class of 
metabolites is compared based on the median xlogP for the 
classes of metabolites that are found to be significantly dif-
ferent in the MTX-treated group based on an FDR adjusted 
P value < 0.05. In this analysis, fraction directional change 
for each group of metabolites was calculated based on the 
net directional change in metabolite levels divided by the 
total number of metabolites measured in each group, for ex-
ample, 88 metabolites classified as unsaturated phosphati-
dylcholines were measured with 50 found to be significantly 
increased and 15 found to be significantly reduced (i.e., net 
directional change = 50–15 = 35), therefore, fraction direc-
tional change was calculated as 0.43 (i.e., 35/88 = 0.43) and 
indicated a net increase in unsaturated phosphatidylcho-
lines following MTX treatment. Node size is directly propor-
tional to the negative log transformed FDR adjusted P value 
for each class of metabolites. From these data, it is evident 
that metabolites representing a diversity of chemical classes 
are significantly different in MTX-treated cells, but based on 
fraction directional change the response to MTX is associ-
ated with generalized depletion of some sets of metabo-
lites and accumulation of others. Most notably, in addition 
to the effect of MTX on folates, nucleotides, amino acids, 
and tricarboxylic acids, treatment with MTX was found to be 
associated with altered lipid homeostasis represented by re-
duced levels of cholesterol esters, diglycerides, phosphati-
dylinositols, lysophospholipids, and saturated triglycerides, 

Figure 6  Association of methotrexate (MTX) pharmacological activity with changes by chemical group classification using chemical 
similarity enrichment analysis. Metabolomics data were analyzed using ChemRICH open source software to produce nonoverlapping 
chemical group classifications that was able to map 671 of the identified metabolites to 62 nonoverlapping chemical classes, of which 
50 were found to be statistically significantly different between the MTX treated and control group (false discovery rate adjusted P 
value < 0.05). For each group of chemicals the fraction directional change is plotted as a function of the median xlogP and node size 
is directly proportional to the negative logarithm of the P value.
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phosphatidylcholines, and lysophosphatidylcholines, and 
corresponding increases in sphingomyelins, ceramides, 
galactosylceramides, plasmalogens, phosphatidylethanol-
amines, and unsaturated FAs, triglycerides, lysophosphati-
dylcholines, and phosphatidylcholines.

DISCUSSION

The findings from this analysis can be partially mapped 
onto the known biochemical pathways targeted by MTX 
(Figure  7).30,40 In this illustration, the red “X” indicates 
known enzymatic targets of MTX, font color denotes the 
effect of MTX on the metabolite under the treatment con-
ditions used in this study, and the enlarged font size rep-
resents the metabolites with a >  10-fold change under 
the experimental conditions. Red denotes metabolites 
that were observed to increase, blue denotes metabo-
lites that were observed to decrease, and black denotes 
metabolites that were not significantly altered (i.e., FDR 
adjusted P value  >  0.05). Based on the known inhibitory 
activity of MTX against dihydrofolate reductase, as well 
as several folate-dependent enzymes, it is clear that MTX 
exposure results in dysregulation of the intracellular folate 
pool. However, based on our experimental data, it seems 
that various downstream intermediates of nucleotide bio-
synthesis may represent more sensitive markers of MTX 
pharmacological response. In particular, several markers 
of pyrimidine and purine biosynthesis, including deoxyu-
ridine monophosphate, 2-deoxycytidine, 2-deoxyuridine, 
and IMP may represent highly sensitive markers of MTX 

activity. These findings are consistent with previous studies 
that have found MTX treatment is associated with systemic 
depletion of circulating folates and corresponding dysreg-
ulation of intermediates of nucleotide metabolism.18,28,29,41

Additional metabolites outside of folate and nucleotide 
metabolism displayed a high sensitivity to MTX. These me-
tabolites included a metabolic intermediate of valine metab-
olism (i.e., ketoisovaleric acid) and several sugars, including 
galactose and fructose. However, these intermediates are 
not directly linked to the known pharmacologic targets of 
MTX and may represent downstream metabolic changes 
related to the static growth state of cells treated with MTX. 
This interpretation would be supported by the observation 
that MTX treatment was also associated with the cellular 
accumulation of amino acids and TCA cycle intermediates, 
which would be suggestive of a generalized decrease in cel-
lular metabolic activity. These findings are in agreement with 
previous studies that have demonstrated that, in addition to 
dysregulation in folates and nucleotide metabolism, MTX re-
sponse in RA is also associated with downregulation of gly-
colysis and the TCA cycle, in combination with reductions in 
amino acid and lipid metabolism.28,29

Analysis of the metabolomic data  set using chemical 
similarity enrichment analysis revealed changes in several 
classes of biochemicals, most notably changes in the cel-
lular lipid composition following treatment with MTX that 
suggest an effect of MTX on cellular lipid homeostasis in 
favor of less cholesterol esters, less saturated FA-containing 
lipids, and an increase in unsaturated FA-containing lipids. 
Together, such changes in lipid composition, if observed 

Figure 7  Mapping of biochemical data onto known pharmacologic targets of methotrexate (MTX). An illustration of the major metabolic 
pathways targeted by MTX is depicted and the findings of this study are shown based on the color and size of the labeled metabolites. 
Specifically, metabolites with large font represent metabolites with a > 10-fold change following treatment with MTX, red font color 
indicates a decrease in the metabolite, blue font color represents an increase in the metabolite, and black font color represents a 
nonstatistically significant change in the measured metabolite. Known enzymatic targets of MTX and its metabolites are marked 
by a red “X.” 5m-THF, 5-methyl-tetrahydrofolate; ATP, adenosine triphosphate; dUMP, deoxyuridine monophosphate; IMP, inosine 
monophosphate; PI, phosphatidylinositol; SAH, S-adenosyl-homocysteine; THF, tetrahydrofolate; TMP, thymidine monophosphate; 
UDP-GlcNAc, uridine diphosphate N-acetylglucosamine.
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in vivo, may be expected to yield beneficial cardiovas-
cular effects.42 Although MTX therapy in the treatment of 
autoimmune arthritis is associated with a decrease in car-
diovascular risk, the recently completed cardiovascular 
inflammation reduction trial (CIRT) failed to demonstrate a 
cardiovascular benefit of MTX in a non-RA population at risk 
of cardiovascular events.43,44 Therefore, although these cel-
lular data support some potentially beneficial effects on lipid 
metabolism, these effects need to be evaluated in ongoing 
animal and human studies to determine whether this effect 
on lipids is also observed in vivo and translated into cardio-
vascular benefit.

A major limitation of this study is the investigation of a 
single cell line without the analysis of the time-dependence 
and dose-dependence of the observed metabolic changes. 
Additionally, the K562 cell line is a transformed cancerous 
cell line and may not be representative of the metabolic ef-
fects of MTX at the site of action in untransformed human 
tissues in patients with autoimmune arthritis. As a descrip-
tive metabolomics study, an additional weakness of this 
study is the lack of mechanistic studies to define how MTX 
impacts the various metabolic pathways identified and how 
these pathways are related.

Together, these data support a robust and diverse cel-
lular metabolic response to MTX that encompasses vari-
ous metabolites across a variety of biochemical classes. 
However, the fact that four of the eight metabolites identi-
fied in this metabolomic study represent intermediates of 
de novo purine and pyrimidine biosynthesis further high-
lights the importance of these pathways, both in the phar-
macological activity of MTX and as potentially important 
pathways for the identification of metabolic biomarkers of 
MTX response. Further, exposure to MTX is observed to 
be associated with alteration in the TCA cycle, amino acid, 
and carbohydrate metabolism, and a shift in the cellular 
lipid profile in favor of reduced cellular cholesterol and 
saturated FA content in favor of unsaturated FA. The rele-
vance of these findings depends on establishing whether 
the same effect occurs in vivo.

Supporting Information. Supplementary information accompa-
nies this paper on the Clinical and Translational Science website (www.
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