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Abstract

Background. In response to demand for fast and efficient clinical testing, the use of point-of-care testing (POCT) has
become increasingly common in the United States. However, studies of POCT implementation have found that
adopting POCT may not always be advantageous relative to centralized laboratory testing. Methods. We construct a
simulation model of patient flow in an outpatient care setting to evaluate tradeoffs involved in POCT implementa-
tion across multiple dimensions, comparing measures of patient outcomes in varying clinical scenarios, testing
regimes, and patient conditions. Results. We find that POCT can significantly reduce clinical time for patients, as
compared to traditional testing regimes, in settings where clinic and central testing areas are far apart. However, as
distance from clinic to central testing area decreased, POCT advantage over central laboratory testing also decreased,
in terms of time in the clinical system and estimated subsequent productivity loss. For example, testing for pneumo-
nia resulted in an estimated average of 27.80 (central lab) versus 15.50 (POCT) total lost productive hours in a rural
scenario, and an average of 14.92 (central lab) versus 15.50 (POCT) hours in a hospital-based scenario. Conclusions.
Our results show that POCT can effectively reduce the average time a patient spends in the system for varying condi-
tion profiles and clinical scenarios. However, the number of total lost productive hours, a more holistic measure, is
greatly affected by testing quality, where POCT often is at a disadvantage. Thus, it is important to consider factors
such as clinical setting, target condition, testing costs, and test quality when selecting appropriate testing regime.
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New technologies and processes are constantly being
introduced into the health care delivery system. Point-of-
care testing (POCT) refers to a set of medical diagnostic
technologies that are applied and evaluated close to
where the patient receives care.1 This is in contrast to
‘‘traditional’’ testing strategies, in which test samples are
sent to a central laboratory for analysis. In principle,
POCT allows for on-site evaluation and faster clinical
decision making. In the past decade, POCT has
expanded substantially in the United States and
Europe.2 POCT tools now exist for evaluating conditions
ranging from pregnancy to HIV, and from malaria to
cancer.2 While laboratory testing directly accounts for a
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relatively low percentage of the average hospital budget
(approximately 4%), it is estimated to influence nearly
two thirds of hospital activities and their associated
costs.3 This is through testing’s role in making diagnoses,
influencing patient flow, and affecting patient out-
comes.3 Thus, improving testing procedures may have
significant downstream effects on the health care delivery
system as a whole. However, at present, POCT may not
necessarily be advantageous in all clinical settings. A
recent study involving six hospitals in the United
Kingdom found that the effects of POCT on patient out-
comes and test costs related to myocardial infarction
varied significantly between hospitals, in some increasing
the number of successful discharges and in some the
opposite.4 The costs and benefits of POCT may vary sig-
nificantly depending on the specifics of the clinical set-
ting and target condition. Therefore, there exists a need
for frameworks to quantify and evaluate the tradeoffs
involved in adopting different testing regimes in varying
clinical settings. In any given scenario, the costs and ben-
efits of adopting POCT should be compared to the
major alternative options, both involving processing of
samples at a specialized laboratory facility: central lab
testing and point-of-care sample acquisition (POCA). In
central lab testing, patients physically travel to a central
lab to take tests, where the samples can be directly col-
lected and analyzed. After analysis, the test results are
sent back to the clinic. In POCA, samples are acquired
at the point of care and sent to the central lab for pro-
cessing. This regime does not require the patient to phy-
sically travel to the central lab. Past studies on POCT
have tried to identify and capture one or more dimen-
sions of POCT that affect the health care delivery sys-
tem, including test cost, test efficiency, test accuracy, and
success of treatment. Compared to testing regimes
involving the use of a central lab, the main advantage of
POCT is shortening or eliminating steps in the testing
process.5 Specifically, patients or samples do not need to
be transported to an external laboratory for testing.
Additionally, patients or test results do not need to be
returned from the external laboratory. Thus, total turn-
around time for test results can be significantly reduced.
This may lead to further operational benefits; for exam-
ple, in a hospital-based randomized trial, Renaud et al.
found that POCT was associated with an approximately
45 minute decrease in time to anti-ischemic therapy for
acute coronary syndrome.6

On the other hand, some researchers note that the
POCT process might be particularly prone to errors
throughout the testing process.7 Nichols et al. argued
that systematic changes in patient management may be

required for implementation of POCT to be beneficial in
a cardiology/radiology setting.8 Errors in POCT may be
due to limited resources or lack of domain knowledge of
POCT among clinical practitioners, who may be less
experienced in quality control and quality assurance
practices than laboratory personnel.1 O’Kane et al. sug-
gested that quality error rates associated with POCT are
also considerably higher than those associated with cen-
tral lab testing.9 For example, in blood gas analysis, the
most common error in POCT occurs as a consequence of
onsite operators being unwilling to perform minor main-
tenance. This is usually not an issue in central lab settings
with robust quality control systems.9 Even with adequate
training, the short turnaround time in POCT can increase
the risk of misdiagnosis if the results of testing contain
errors. In contrast, the relatively longer time interval
between result generation and report release in central
lab or POCA testing may allow more opportunities for
error detection. In addition, as central lab/POCA testing
is often able to take advantage of economies of scale, cost
per test is often higher in POCT.3,10 For example, Lee-
Lewandrowski et al. estimated an average POCT unit test
cost for creatinine testing to be $10.06 in their clinic,
compared to $5.32 for the estimated unit cost of a central
laboratory test.11

Computer simulation is one method of modeling stra-
tegic health care delivery decisions12 and predicting their
outcomes. Previous studies on health care simulation
have focused on patient scheduling,13,14 staff schedul-
ing,15 and resource allocation.16,17 Computer simulation
focused on evaluating testing practices is more limited in
the literature. Storrow et al. simulated an emergency
department and quantified improvements in patient
throughput and outcomes as lab turnaround time
decreased from 120 to 10 minutes (modeling, e.g., the
introduction of point of care testing).18 Powell et al. also
simulated emergency department patient flow and found
that employing POCT in some proportion of the patients
significantly decreased average length of stay in the
emergency department.19 However, neither of these stud-
ies attempted to quantify the tradeoffs between POCT
turnaround time, test cost, and test quality characteris-
tics; nor did they explore such tradeoffs in varying clini-
cal settings. In this article, we attempt to address this
gap using a simulation framework, building on these
prior simulation studies and the empirical literature on
POCT.

POCT has great potential to reduce the total amount
of testing time required in a clinical setting. However, the
potential test quality and cost characteristics of POCT
mean that its introduction must be evaluated based on
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the particulars of the health care setting in which it will
be used. As Nichols et al8 argue, POCT alone cannot
guarantee improved patient outcomes. Because of this, it
is important to explore and understand the impact of dif-
ferent testing regimes on patient throughput and out-
comes in different clinical scenarios. To our knowledge,
this is the first study to use a simulation-based frame-
work to evaluate the clinical tradeoffs between POCT,
POCA, and central lab testing in terms of both turn-
around time and test quality, in settings that range from
rural clinics to urban hospitals.

Methods

We developed a simulation model of a primary care
clinic, adapted from Stahl et al.,20 that models the activi-
ties of patients from their first arrival at the clinic to dis-
charge from the clinical system, and monitors subsequent
health outcomes of each patient resulting from the diag-
nosis and treatment received within the clinic. The por-
tion of the model that mimics the testing process
simulates five subprocesses: patient transportation, sam-
ple collection, sample transportation, sample processing,
and result delivery. The model aims to identify and assess
the costs and benefits of different testing regimes as per-
ceived by providers, by patients, and by society. The
health care delivery system costs include the time patients
spend in the clinic and the resources they use. Costs to
patients and society additionally must take into account
the effectiveness of any diagnoses and treatment received
at the clinic as a result of the testing. We measure this as
the number of productive hours lost by patients subse-
quent to their discharge from the clinic, modeled as a
(generally) stochastic function of their condition and
treatment received, which in turn is a function of test
accuracy. The more accurate the test, the more likely an
effective match of treatment to condition is. We also
examine the monetary considerations associated with
both the tests themselves, treatments, and with the distri-
bution of patient outcomes. Overall societal costs are
then evaluated by a combined monetary measure of total
productive hours lost per patient, including both time
spent in the clinical system and any subsequent produc-
tive hours lost to the condition being tested for in the
clinic, as well as treatment and testing costs.

Testing Strategies

We consider three different testing regimes: 1) central lab
testing, where patients physically travel to a central lab
for sample collection and processing; 2) POCA, where

samples are acquired at the site of patient care and sent
to the central lab; and 3) POCT, where diagnostic testing
is performed and evaluated at the site of patient care so
that neither patient travel time nor sample transporta-
tion time is involved.

Clinical Scenarios

We use community-acquired pneumonia as our primary
exemplar condition where POCT might be deployed. In
Appendix A, in order to examine the variations in system
output in response to conditions of varying urgency, we
subsequently run our model on three other conditions
with differing characteristics: opiate addiction, chlamy-
dia (a sexually transmitted disease), and cholesterol (a
marker for cardiovascular risk). Conditions were chosen
because of their relatively high volume in the outpatient
setting.

Community-acquired pneumonia is a life-threatening
disease21 with a 30-day mortality rate between 4% and
11%. In central lab testing, the time required to identify
the causative pathogen is often relatively long (compared
to POCT), due to the longer transportation times
between the clinic and the laboratory, and the rigorous
nucleic acid amplification and culture techniques used in
central labs. Typically, this process may take several
days.22 In order to examine the potential of different
testing regimes to improve this performance, we model
the use of POCT in a patient population exhibiting vary-
ing indicators that may be related to the target condition.
We examine tradeoffs between testing regimes in three
different primary care clinical scenarios: Rural,
Community, and Hospital-based. The Community and
Rural scenarios refer to freestanding health care clinics
at some distance from the hospital where the central lab
is assumed to be located. Compared to the Community
scenario, Rural clinics are often far away from the cen-
tral lab. At the other extreme, the Hospital-based sce-
nario models the case where the place patients receive
treatment is very close to the location of central labora-
tory sample analysis, as in the case where the primary
care clinic is located within a hospital. Community
clinics thus represent an intermediate in terms of distance
from the central laboratory.

Overview of the Model

Due to the complexity of a clinic’s operations, we
adopted the discrete event simulation approach and
developed a primary care patient flow model using
Arena (version 15.0)23 simulation software (developed by
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Rockwell Automation). The primary care processes from
patient arrival at the clinic to discharge from the clinical
system, as well as any lingering effects of the target con-
dition, are simulated for a stream of generated patients.
Limits on available providers and testing resources mean
that delays can be generated or propagated by the
buildup of queues at various points in the system. A
visual overview of this simulation model is shown in
Figure 1. Our simulation model separates patient time in
the clinic into the following six modules:

� Patient Arrival Module: Patients arrive at the clinic
and check in.

� Waiting Room Module: Based on their indicator
severity levels, patients are allocated to different
rooms and wait for a nurse.

� Triage Module: Patients are checked to determine
whether they need to be transferred to emergency
department.

� Physical Exam Module: Patients take a physical exam
and prepare to be tested if it is determined that test-
ing is necessary. This determination is made based on
the severity of indicators: more severe indicators cor-
respond to a higher rate of testing.

� Lab Work Module: This module models the details of
each testing regime being employed: POCA, POCT,
or central lab testing. Depending on the sensitivity

and specificity of the test and the target condition in
question, each patient tests either positively or nega-
tively for the target condition.

� Patient Departure Module: Patients receive treatment
if they have tested positive for the target condition.
They are then discharged from the system.

Within the Lab Work Module, patients may follow dif-
ferent pathways depending on the testing regime. Figure
2 shows the details of the workflows of these three testing
regimes.

Patient Types

In each scenario, patients arrive showing one of three lev-
els of condition indicator severity. Patients in each level
of indicator severity are divided into two groups: patients
carrying the target condition and patients not carrying
the target condition. Patients with higher indicator sever-
ity are more likely to be carrying the target condition
than patients with lower indicator severity. In addition,
patients with higher indicator severity are more likely to
be tested for that target condition by clinicians. In other
words, indicator severity is meant to be an abstract rep-
resentation of characteristics of a patient associated with
having a certain condition, some of which are detectable
by clinical examination and judgement. These might

Figure 1 Framework of the simulation model.
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include physical indicators available prior to testing,
patient history, or family background, depending on the
condition.

According to standard classification for pneumonia
patients’ severity, we identify three distinct indicator
severity classes of patients based on the potential mortal-
ity risk should those indicators be associated with a true
case of the target condition. Thus, in the case of pneu-
monia, severity levels 1, 2, and 3 correspond to increas-
ing severity of indicators (irrespective of whether the
patient has the underlying target condition). As noted
above, patients of different severity levels have differing
probabilities of having the underlying target condition
and of being tested for that condition. New patients are
assigned slightly longer expected exam times than estab-
lished patients, reflecting increased efficiency associated
with familiarity.

Outcome Measures

We chose several patient outcome measures to evaluate
testing regimes: average time in the clinical system, aver-
age number of subsequent sick days, average total lost
productive hours, and average test cost per patient.
Averages are computed on a per patient basis from 120
replications of an entire year of a clinic’s operations (see
Appendix B.2 for details).

� Average time in the clinical system: This metric cap-
tures the average time (in hours) a patient spends
within the clinical system, from arrival at the clinic to
discharge from the clinical system. It does not include

transportation to the clinic before arrival but does
include any transportation time from the clinic to
laboratory locations and back. Thus, it is meant to
capture average patient time expended seeking care.

� Average number of subsequent sick days: This metric
measures the number of days (subsequent to dis-
charge from the clinical system) that a patient is not
able to be productive as a result of condition associ-
ated with their clinic visit(s). Each patient is assigned
sick days according to the distributions in Table 6.
This metric is thus meant to capture productivity
costs as a result of patient health outcomes.

� Average total lost productive hours: This metric mea-
sures the estimated total number of productive hours
a patient loses as a result of their visit(s) to the clinic
and any sick days subsequent to discharge from the
clinical system as a result of the condition associated
with their clinic visit(s). It is calculated as the average
number of hours the patient spends in the clinical sys-
tem plus 8 hours for every subsequent day lost due to
their condition.

� Average test cost per patient: This metric measures
the average cost per patient of all tests that the
patient receives. Depending on indicator severity and
condition, a patient can receive a combination of dif-
ferent tests, so average test cost can vary from patient
to patient, even within the same testing regime.

Simulation Model Default Inputs

In the context of our model, we refer to Rural,
Community, and Hospital-based settings as clinical

Figure 2 The workflow of the three testing regimes under consideration.
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scenarios, and POCA, POCT, and central lab testing as
testing regimes. Time costs and monetary costs are eval-
uated for each of these clinical scenarios and for each of
these testing regimes by simulating clinic operations over
the course of a year. The 120-year-long (1 work year =
240 eight-hour work-days) replications of the simulation
model, each simulating clinic operations over the course
of the year, were run for each combination of clinical
scenario and testing regime. Then, averages of the out-
comes across the 120 replications are calculated and
reported. Our simulation runs require a number of input
parameters, including the time spent on each subprocess,
patient arrival rates, probabilities of events in the clinic
(e.g., referral of a patient to the emergency department),
and the time costs of various operations (e.g., the time

costs of filling out the paperwork), and so on. Many of
these parameters (shown in Tables 1 to 8) are specified
by the distributions for these clinic characteristics and
based, wherever possible, on direct observation, expert
knowledge, or the health care delivery literature.

The times spent on each combination of testing
regime (POCA, POCT, or central lab) and clinical sce-
nario (Rural, Community, or Hospital-based) are docu-
mented in Tables 1, 2, and 3. In these tables, 1 work-day
is assumed to be 8 hours long. In Tables 1, 2, 3, 4, and 6,
N(m,s) refers to values drawn from a normal distribution
with mean m and standard deviation s. Tri(a,b,g)
refers to values drawn from a triangular distribution
with minimum at a, mode at b, and maximum at g.
DISC(a1,b1,a2,b2, . . .) refers to values drawn from a

Table 1 Distribution of Time Spent, by Testing Regime and Subprocess, in the Rural Scenario

Test Regime

Subprocess

Patient
Transportation (hr)

Sample
Collection (min)

Sample
Transportation (hr)

Sample
Processing (min)

Result
Delivery (hr)

POCT 0 Tri(20,30,40) 0 Tri(10,30,50) 0
POCA 0 Tri(20,30,40) Tri(8,16,24) Tri(5,15,25) Tri(4,8,12)
Central lab Tri(8,16,24) Tri(20,30,40) 0 Tri(5,15,25) Tri(2,4,6)

POCA, point-of-care sample acquisition; POCT, point-of-care testing.

Table 2 Distribution of Time Spent, by Testing Regime and Subprocess, in the Community Scenario

Test Regime

Subprocess

Patient
Transportation (hr)

Sample
Collection (min)

Sample
Transportation (hr)

Sample
Processing (min)

Result
Delivery (hr)

POCT 0 Tri(20,30,40) 0 Tri(10,30,50) 0
POCA 0 Tri(20,30,40) Tri(2,4,6) Tri(5,15,25) Tri(4,8,12)
Central lab Tri(2,4,6) Tri(20,30,40) 0 Tri(5,15,25) Tri(2,4,6)

POCA, point-of-care sample acquisition; POCT, point-of-care testing.

Table 3 Distribution of Time Spent, by Testing Regime and Subprocess, in the Hospital-Based Scenario

Test Regime

Subprocess

Patient
Transportation (hr)

Sample
Collection (min)

Sample
Transportation (hr)

Sample
Processing (min)

Result
Delivery (hr)

POCT 0 Tri(20,30,40) 0 Tri(10,30,50) 0
POCA 0 Tri(20,30,40) Tri(0.5,1,1.5) Tri(5,15,25) Tri(0.2,1,1.8)
Central lab Tri(0.2,1,1.8) Tri(20,30,40) 0 Tri(5,15,25) Tri(0.2,1,1.8)

POCA, point-of-care sample acquisition; POCT, point-of-care testing.
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discrete distribution where outcome b1 occurs with prob-
ability a1, outcome b2 occurs with probability a2, and so
on.

Table 4 enumerates the most important default input
parameter values that are identical across the four target
conditions that we test in this article. Table 4 shows the

Table 4 Default Input Parameter Values That Are Identical Across the Four Different Target Conditions

Variable Name Severity Value

Established Patient Inter-arrival Time 1 N(129,60) (min)
Established Patient Inter-arrival Time 2 N(61,60) (min)
Established Patient Inter-arrival Time 3 N(144,60) (min)
New Patient Inter-arrival Time 1 N(596,60) (min)
New Patient Inter-arrival Time 2 N(303,60) (min)
New Patient Inter-arrival Time 3 N(722,60) (min)
New Patient Exam Time 1 N(15,9) (min)
New Patient Exam Time 2 N(17,8) (min)
New Patient Exam Time 3 N(42,16) (min)
Established Patient Exam Time 1 N(13,6) (min)
Established Patient Exam Time 2 N(15,5) (min)
Established Patient Exam Time 3 N(42,16) (min)
Time to Fill Out Paper Work All Tri(10,15,20) (min)
Probability of a Patient Having Target Condition 1 0.2
Probability of a Patient Having Target Condition 2 0.4
Probability of a Patient Having Target Condition 3 0.75
Probability of Testing a Patient 1 0.5
Probability of Testing a Patient 2 0.7
Probability of Treating a Patient 3 0.9

Table 6 Distributions of Subsequent Sick Days for Varying Indicator Severities, Target Condition Presence/Absence, and
Treatment/No Treatment

Target Condition Treated? Severity Pneumonia Test Opiate Test Chlamydia Test Cholesterol Test

Yes Yes 1 DISC(0.5,0,0.5,1) DISC(0.9,0,0.1,1) 0 0
Yes Yes 2 Tri(0,2,5) Tri(0,0.5,3) Tri(0,0.2,1) Tri(0,0.2,0.5)
Yes Yes 3 Tri(0,5,10) Tri(0,1,5) Tri(0,0.5,1) Tri(0,0.2,1)
Yes No 1 Tri(0,3,6) Tri(0,2,10) Tri(0,1,2) Tri(0,0.2,0.5)
Yes No 2 Tri(5,10,15) Tri(0,3,20) Tri(0,1.5,2.5) Tri(0,0.5,1.5)
Yes No 3 Tri(10,14,18) Tri(0,5,30) Tri(0,2,3) Tri(0,1,5)
No Yes or No 1 DISC(0.5,0,0.5,1) DISC(0.95,0,0.05,1) 0 0
No Yes or No 2 Tri(0,1,2) Tri(0,0.5,2) Tri(0,0.2,0.5) 0
No Yes or No 3 Tri(0,3,6) Tri(0,2,5) Tri(0,0.5,0.75) 0

Table 5 Default Values of Test Sensitivities/Specificities and Treatment Costs

Variable Name Pneumonia Test Opiate Test Chlamydia Test Cholesterol Test

POCT Sensitivity (%) 80 75 80 90
POCT Specificity (%) 80 70 80 90
POCA Sensitivity (%) 95 95 95 97
POCA Specificity (%) 95 95 95 97
Central Lab Test Sensitivity (%) 95 95 95 97
Central Lab Test Specificity (%) 95 95 95 97
Per-patient Treatment Cost ($) 61 5,980 66 68

POCA, point-of-care sample acquisition; POCT, point-of-care testing.
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arrival rates and characteristics of various population
groups of simulated incoming patients. Parametrically
fitted arrival and exam time Normal distributions are
drawn from a national survey of the Society of General
Internal Medicine,20 the National Ambulatory Medical
Care Survey,24 and a series of studies on real-time loca-
tion systems (RTLS) in health care delivery.25–27 Further
discussion of arrival rate modeling considerations is pro-
vided in Appendix B.1. In general, triangular distribu-
tions are used for stochastic model inputs for which data
for parametric fitting of distributions was not available,
an approach commonly used in simulation studies,28

allowing for both ease of elicitation from experts and
intuitive presentation. In Appendix B.3, we replace trian-
gular distributions with (arguably more realistic) PERT
distributions, which do not substantially alter our conclu-
sions. As shown in Table 4, indicator severity positively
correlates with both the probability of having the target
condition and the probability of being tested. Patients of
Severity 3 are automatically treated (following testing)
with a probability given in Table 4, because it is assumed
that a combination of clinical judgement and the urgency
of their indicators necessitates treatment.

Tables 5 and 6 enumerate test characteristics and tar-
get condition characteristics, respectively, both for pneu-
monia and for the additional target conditions used in
the sensitivity analysis in Appendix A. Test sensitivities
and specificities shown in Table 5 characterize the differ-
ences in test quality between testing regimes. We analyze
the robustness of our simulation results to these input

parameters in our simulation of pneumonia testing.
Quantitative estimates of sensitivity and specificity in
various scenarios were derived from expert knowledge
and assessment. In general, POCT tests are assigned
worse values of default sensitivity and specificity than
those assigned to central lab and POCA testing regimes.
Patients who test positive for the target condition receive
treatment for that condition and those who test negative
do not receive treatment for that condition (or any treat-
ment that affects the number of days they are unable to
be productive after discharge from the clinical system).
The number of subsequent sick days varies based on
both presence of the target condition and treatment, as
shown in Table 6. Therefore, test characteristics (sensitiv-
ity and specificity) affect average patient outcomes (in
particular, subsequent sick days and thus total lost pro-
ductive hours). Note that treatment is assumed to have
no effect on the number of subsequent sick days if the
patient does not have the target condition. We also did
not include any potential harm resulting from treating a
patient in the well state. Discrete distributions are used
for situations where there is a significant probability of
no subsequent work days being lost.

Default test costs follow a specific structure as out-
lined in Tables 7 and 8. Default costs for urine tests,
blood tests,29 and X-rays are given in Table 7, for each
testing regime. Consistent with observations in the litera-
ture,3,10,11 individual POCT tests are given higher costs
than other testing regimes. In addition, Table 8 displays
the probabilities of receiving blood tests, X-ray tests, or
a combination of these three tests, with respect to indica-
tor severity, in the case of pneumonia, because different
testing mechanisms, or combinations thereof, can be
used in the detection of this condition.30 In this case, sen-
sitivity and specificity represent aggregate measures of
diagnostic quality. Per-patient treatment costs for pneu-
monia and alternative conditions used in sensitivity anal-
ysis in Appendix A,31–34 estimated as annual costs for
prescribed medications, are given in Table 5.

The funding sources for this study provided support
for research personnel and simulation software.

Results

Pneumonia Simulation Outcomes
With Default Parameters

In this section, we present default simulation results when
testing for pneumonia, summarized in Table 9.

As shown in Table 9, section A, average time in the
system per patient is similar under the POCT regime

Table 7 Test Costs ($) by Test Procedure and Testing Regime

Regime

Procedure

Blood Test X-Ray Test Urine Test

POCT 323 138 108
POCA 308 123 25
Central lab 303 118 88

POCA, point-of-care sample acquisition; POCT, point-of-care testing.

Table 8 Probability of Receiving a Particular Procedure or
Procedure Combination as Part of a Pneumonia Test, by
Indicator Severity (Severity Level 3 Automatically Treated)

Indicator

Severity

P(Blood
Test Only)

P(X-ray
Test Only)

P(All Three
Tests)

1 0.30 0.60 0.10
2 0.60 0.10 0.30
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across clinical scenarios, as is expected, because neither
patients nor samples leave the clinic. For POCA and cen-
tral lab testing, time spent in the system in the Hospital-
based scenario is much smaller than that in the
Community scenario, and time spent in the system in the
Community scenario is in turn much smaller than that in
the Rural scenario. This is because of the corresponding
variation in transportation time to the central lab neces-
sary in each of these respective scenarios. On the dimen-
sion of time spent in the system alone, patients do much
better with POCT in Rural and Community scenarios.
For Hospital-based scenarios, times are comparable
across regimes. As default sick day settings were identical
between Rural, Community, and Hospital-based scenar-
ios, average number of subsequent sick days per patient
displayed in Table 9, section B, are the same across all
three clinical scenarios. When we compare testing
regimes, we can see that due to higher test quality,
POCA and central lab have fewer subsequent sick days
than POCT.

Table 9, section C, displays the total lost productive
hours per patient, which is a (weighted) combination of
the values in sections A and B, that is, Time in Clinical
System+8*(Subsequent Sick Days). For Rural and
Community clinical scenarios, POCT is the best testing
regime on this dimension. In the Hospital-based sce-
nario, the results of the three testing regimes are similar

to each other on this dimension. In summary, we can see
that POCT has a large advantage in total lost productive
hours in the Rural and Community scenarios because of
the large transportation time to a central lab. In these
two clinical scenarios, gains from reduced transportation
time outweigh losses as a result of lower test quality.
However, these advantages are not clear in the Hospital-
based scenario, where advantages in test quality compen-
sate for the deficiencies in result turnaround times for
the POCA and central lab testing regimes.

Table 9, section D, displays the average cost per tested
patient, in terms of the usage of the direct testing
resources. As expected, per-patient costs for POCT are
higher than the per-patient costs for other testing regimes
across the board. As noted by Lee-Lewandrowski and
Lewandrowski,3 assessing the full costs of testing regime
decisions for various stakeholders is much more challen-
ging than simply assessing the direct unit costs of admin-
istering different types of tests. One approach to moving
beyond these unit costs is to look at total lost productive
hours in monetary terms, such that they may be com-
pared and added to the direct unit costs of testing to esti-
mate patients’ total actual costs. As a simple but crude
estimate, we can take the pre-tax average hourly earnings
of American workers plus fringe benefits (approximately
$36 per hour in 201835) as a typical societal cost of a lost
hour of work, and the value of a lost hour of leisure as

Table 9 Outcome Measure Averages (95% CI Half-Widths in Parentheses)

Rural Community Hospital-Based

A: Average time in the clinical system per patient (hr)
POCT 1.69 (0.01) 1.69 (0.01) 1.69 (0.01)
POCA 17.17 (0.57) 10.28 (0.81) 2.74 (0.01)
Central lab 15.62 (0.86) 6.78 (0.20) 2.74 (0.01)

B: Average subsequent sick days per patient
POCT 1.73 (0.01) 1.73 (0.01) 1.73 (0.01)
POCA 1.51 (0.01) 1.53 (0.01) 1.53 (0.01)
Central lab 1.52 (0.01) 1.52 (0.01) 1.52 (0.01)

C: Average total lost productive hours per patient
POCT 15.50 (0.08) 15.50 (0.08) 15.50 (0.08)
POCA 29.29 (0.57) 22.49 (0.81) 14.97 (0.08)
Central lab 27.80 (0.87) 18.93 (0.21) 14.92 (0.08)

D: Average cost per tested patient ($)
POCT 361.12 (0.58) 361.12 (0.58) 361.12 (0.58)
POCA 315.26 (0.45) 315.18 (0.43) 314.94 (0.41)
Central lab 328.09 (0.50) 328.9 (0.50) 328.01 (0.56)

E: Total societal costs per patient ($)
POCT 842.97 (3.24) 842.97 (3.24) 842.97 (3.24)
POCA 1244.61 (21.51) 1024.14 (29.36) 778.13 (3.22)
Central lab 1203.92 (30.99) 916.63 (9.42) 784.39 (3.23)

CI, confidence interval; POCA, point-of-care sample acquisition; POCT, point-of-care testing.
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post-tax average hourly earnings of American workers
plus fringe benefits, as recommended by the Second
Panel on Cost-Effectiveness in Health and Medicine.36

Time spent seeking and receiving care is typically
assumed to come from leisure time,36 so we apply a value
of $36 minus 9.2% (the estimated effective individual tax
rate in the United States in 2014)37 per hour to average
time spent in the system, or $32.69. We can thus estimate
total ‘‘societal’’ costs (sans treatment costs) by multiply-
ing the values in Table 9, section A, by $32.69, the values
in section B (multiplied by 8) by $36, and then adding
these both of these values to the test costs per tested
patient in section D scaled by the ratio of tested patients
to total patients discharged from the clinic (this ratio ran-
ged from 0.75 to 0.76).

Finally, we consider costs of treatment. These arise in
two testing situations: true positive and false positive
testing results. These can be estimated on a per-patient
basis by calculating the proportions of true and false
positives among all patients checking out, multiplying
these proportions by the unit cost of treatment ($61 for
pneumonia, as noted in Table 5), and finally adding the
per-patient true positive and false positive treatment
costs. The resulting average total treatment costs per
patient, as well as true and false positive calculations, are
shown in Table 10 for the Rural scenario (unsurpris-
ingly, numbers for other scenarios are very similar). As
expected, POCT has a higher proportion of, and thus
higher cost due to, false positives relative to central lab
testing and POCA because of its lower specificity—these
costs can be considered unnecessary expenditures owing
to test quality. On the other hand, lower POCT sensitiv-
ity means that true positive treatment costs are lower as
well. The resulting total treatment costs are similar
between the three testing regimes, and the costs of treat-
ment relative to other expenses in the case of pneumonia
are relatively minor. These total treatment costs (shown
in the final column of Table 10 for the Rural scenario)
are added to the societal costs sans treatment costs calcu-
lated above, and the results of this combination are pre-
sented as total societal costs in Table 9, section E.

While this total societal cost estimation does not
change the ordering found in the costs of Table 9, section
C, by much (with the exception of POCA and Central
lab costs in the Hospital-based scenario), the relative
advantages of POCT decrease across the board. This is
particularly apparent when examining the relative advan-
tages of POCT in the Hospital-based scenario—it is easy
to imagine that with different assumptions about the
costs of a lost hour of productivity (work or leisure),
expected number of sick days after discharge, and direct
costs of testing, total costs evaluated in this way might
give POCA or central lab testing an edge in some scenar-
ios. Figure 3 illustrates an example of this point by vary-
ing the estimated hourly wage rate + fringe benefits:
increasing cost of labor can significantly increase advan-
tages of the testing regime that minimizes hours lost.

Sensitivity Analysis on Pneumonia Input
Parameters

The simulation results for pneumonia presented thus far
are based on the default values for sensitivities and speci-
ficities as listed in Table 5, most of which were estimated
based on expert knowledge. POCT’s sensitivity and spe-
cificity are important factors that affect its utility relative
to other testing regimes. For this reason, we conducted
sensitivity analyses to analyze our simulation output
under various combinations of sensitivity and specificity
parameter values. Simulations were run for 30 replica-
tions each (see Appendix B.2).

We vary the sensitivity and specificity for each testing
regime in the neighborhood of their default values. This
allows us to check if, and to what extent, outcomes vary
in the expected direction. It also allows us to understand
the tradeoffs in costs and outcomes with respect to sensi-
tivity and specificity. For example, one might imagine
the introduction of a new POCT technology with better
test characteristics but similar costs, which can signifi-
cantly change POCT utility in a given clinical scenario if
patient outcomes are greatly improved due to the better
test characteristics.

Table 10 Average Per-Patient Treatment Costs for Pneumonia (Rural)

Testing Regime
False Positive

Treatments (% of Total)
False Positive

Costs ($)
True Positive Treatments

(% of Total)
True Positive
Costs ($) Total Costs ($)

POCT 12.24 7.47 16.38 10.00 17.47
POCA 9.57 5.84 18.95 11.56 17.40
Central lab 9.69 5.91 18.83 11.49 17.40

POCA, point-of-care sample acquisition; POCT, point-of-care testing.
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Figure 4 plots total lost productive hours, as sensitiv-
ity and specificity are varied, for different clinical scenar-
ios and testing regimes. From Figure 4a, we find that the
total number of lost productive hours per patient for all
three testing regimes in the Rural scenario decrease as
sensitivity and/or specificity increases for that scenario.
Total lost productive hours under the POCT regime are
much smaller than those under the other two testing
regimes, even when POCT sensitivity and specificity

values are much lower than those for the other two test-
ing regimes (less than 0.80/0.80, for example). This is
explained by the fact that in the Rural scenario, patient
transportation and sample transportation times are
much higher than the other two clinical scenarios.

Figure 4b shows the total number of lost productive
hours in all three testing regimes for the Community sce-
nario. Because of shorter transportation times, the time
difference between POCT and other testing regimes is

Figure 3 Total societal cost per patient ($) as hourly wage rate + fringe benefits is varied for Rural (left panel) and Hospital-
based (right panel) scenarios (with pneumonia as the target condition). Increasing hourly wage rate increases the advantages of
lower lost productive hours: in the Rural scenarios, the advantage of POCT becomes significantly greater, while in Hospital-
based scenarios, the disadvantages of POCT become more obvious.

Figure 4 Total number of lost productive hours, for the Rural (a), Community (b), and Hospital-based (c) scenarios, for varied
sensitivity and specificity values on the x- and y-axes, respectively. Green = POCT; Red = POCA; Blue = Central Lab.
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smaller. If POCT’s sensitivity and specificity are much
lower than those of central lab testing (lower than 0.70/
0.70, for example), central lab testing could gain an edge
over POCT in this metric. Otherwise, POCT still has an
advantage over the other two testing regimes in this sce-
nario. Figure 4c shows the total number of lost produc-
tive hours in the Hospital-based scenario. Because
transportation times for central lab testing and POCA
are relatively small in this scenario (approximately 1
hour each), the total time spent for all three testing
regimes is similar in overlapping sensitivity and specifi-
city ranges. Because POCT usually has a lower sensitivity
and specificity among all three testing regimes, POCA
and central lab testing have a slight advantage over
POCT in the Hospital-based scenario. As expected, for
the same sensitivity and specificity levels, POCT always
has an advantage over central lab testing and POCA in
terms of lost productive hours.

Another revealing sensitivity analysis can be per-
formed on the cost of tests. New, cheaper POCT technol-
ogy may alter the calculus of when different testing
regimes are most desirable. We frame this as an opera-
tional question: at what cost would a new POCT technol-
ogy have to be for POCT to be preferable in all
scenarios, Rural, Community, and Hospital-based? In
order to explore this question concretely, we vary the cost
of the POCT blood test administered to potential pneu-
monia patients from its default value of $323. At this
default value, based on estimated total societal costs in
Table 9, section E, POCT is the most preferable among

the three testing regimes in Rural and Community sce-
narios, but not in the Hospital-based scenario. We adjust
the blood test cost, running 120 replications for each cost
scenario, until the estimated total societal costs per
patient under the POCT testing regime dip below those
of POCA and central lab testing regimes. As shown in
Figure 5, somewhere between a cost of $280 and $260 per
blood test, POCT becomes cheaper (from a societal per-
spective) than both the POCA and central lab regimes
even in the Hospital-based scenario.

Discussion

Driven by changes in the health care system and
advances in medical technology, the use of POCT is
growing quickly in US health care. At present, however,
understanding of where and when POCT can be opti-
mally applied is not completely clear. There is a great
opportunity to significantly improve health care delivery
by analyzing the performance of different testing regimes
in different clinical scenarios.

In this study, we used a simulation-based approach to
model a primary care clinic workflow and explore three
different clinical scenarios (Rural, Community, and
Hospital-based) to evaluate POCT performance. Under
default parameter values, derived from expert knowl-
edge, we analyzed the performance of three different test-
ing regimes in each of these three clinical scenarios along
several dimensions. Our results show that POCT can
reduce the average time in the clinical system for each
condition and clinical scenario. However, the total num-
ber of lost productive hours per patient can be greatly
affected by diagnostic quality, where POCT often has a
disadvantage (and can vary greatly depending on the
condition in question, as shown in Appendix A). When
the total lost productive hours are used to estimate a
total societal monetary cost in conjunction with direct
per-test costs and treatment costs, these advantages are
not obvious in the Hospital-based scenario. If costs of
lost productive time are increased (e.g., in the case of
higher salaried workers or essential service workers such
as doctors or air traffic controllers), the advantages of
POCT are greater in Rural scenarios, and POCT
becomes a significantly worse choice than POCA or cen-
tral lab testing in Hospital-based scenarios. Thus, costs
of lost productivity per hour in the patient population
may be an important consideration when evaluating test-
ing regimes.

Our study has a few limitations. First, our evaluation
only considers patients’ time spent/lost and the costs of
treatment and testing resources used, but neglects other

Figure 5 Estimated total societal costs per patient in the
Hospital-based scenario (with pneumonia as target condition),
as POCT blood test cost is varied. POCA and Central lab test
costs are held at their default values.
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potential outcome measures such as staff utilization or
annual clinic revenue. Central lab testing may allow for
economies of scale that could have advantages in these
dimensions. Additionally, many simulation parameters,
including sensitivity and specificity values, costs, and
time spent in each clinical process are based on expert
knowledge. These parameters and other aspects of clinic
operation may vary significantly in different settings and
with different patient populations. For example, esti-
mated process times and patient demographic informa-
tion would significantly benefit from further data
collection, and integration of fitted distributions into the
model could greatly improve its utility. Longer term
modeling of patient health outcomes beyond short-term
lost days of productivity could allow for deeper insights
about testing tradeoffs and the consequences of false
negatives and false positives (e.g., mortality risk as a
result of untreated pneumonia). With this article, we
have developed a simulation-based framework for evalu-
ating tradeoffs of different testing regimes in different
clinical scenarios. It is hoped that future work will
expand the flexibility, scope, and accessibility of models
of this type, such that decision makers in clinical situa-
tions can effectively evaluate and compare different test-
ing regimes in their particular settings of interest.
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