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Motor performance varies substantially between individuals. This variance is rooted in
individuals’ innate motor abilities, and should thus have a neural signature underlying
these differences in behavior. Could these individual differences be detectable with
neural measurements acquired at rest? Here, we tested the hypothesis that motor
performance can be predicted by resting motor-system functional connectivity and
motor-evoked-potentials (MEPs) induced by non-invasive brain stimulation. Twenty
healthy right handed subjects performed structural and resting-state fMRI scans. On
a separate day, MEPs were measured using transcranial magnetic stimulation (TMS)
over the contrateral primary motor cortex (M1). At the end of the session, participants
performed a finger-tapping task using their left non-dominant hand. Resting-state
functional connectivity between the contralateral M1 and the supplementary motor area
(SMA) predicted motor task performance, indicating that individuals with stronger resting
M1-SMA functional connectivity exhibit better motor performance. This prediction was
neither improved nor reduced by the addition of corticospinal excitability to the model.
These results confirm that motor behavior can be predicted from neural measurements
acquired prior to task performance, primarily relying on resting functional connectivity
rather than corticospinal excitability. The ability to predict motor performance from
resting neural markers, provides an opportunity to identify the extent of successful
rehabilitation following neurological damage.

Keywords: functional connectivity, motor skill, individual differences, transcranial magnetic stimulation, motor-
evoked-potentials, excitability

INTRODUCTION

Since most of our daily behavior requires efficient and accurate motor function, studying the
motor system has been a central focus of neuroscience research. People vary greatly in their
motor performance. Upon initial presentation of a motor task, some will exhibit high motor
performance from the first attempt, while others might struggle and get better only through
extensive practice. Newly acquired motor skills can be directly evaluated through behavioral
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performance (for example see Karni et al., 1995; Walker et al.,
2003; Korman et al., 2007; Kantak et al., 2010; Censor et al., 2014b;
de Beukelaar et al., 2014; Herszage and Censor, 2017; Lugassy
et al., 2018), which remains a commonly used and robust measure
in studies exploring the motor system. As previously argued
(Krakauer et al., 2017), although technological improvements
enable an extensive exploration of the nervous system, cognitive
neuroscience research is highly dependent on behavioral level
measurements. Indeed, behavior undoubtedly detects the quality
of skill acquisition and improvements in performance. In motor
skill tasks (Karni et al., 1995) for example, better skill acquisition
is usually observed as a higher number of accurate sequences
tapped in a fixed duration.

In parallel, the motor system is frequently evaluated through
multiple modalities and scales, including neural measurements.
While these measurements can enrich the collected data beyond
behavior per se, it might result in even greater variability
between measures. Current research lacks the knowledge of a
possible integration of data sampled from different measurement
levels, limiting the ability to explain individual differences in
motor performance.

Could behavior be predicted from an integration of neural
measurements acquired prior to task performance? Execution of
a motor task requires multiple levels of precise neural processes
involving motor planning, motor control and skill acquisition
at the central nervous system (Allen et al., 1997; Braitenberg
et al., 1997; Muellbacher et al., 2002; Hanakawa et al., 2008;
Cohen et al., 2009; Narayana et al., 2014; Gabitov et al., 2016),
transformation of the motor command along the corticospinal
tract to the peripheral nervous system (Rossini et al., 1994; Di
Lazzaro et al., 1998; Groppa et al., 2012), and a correct execution
of the movement by the corresponding peripheral muscle.

Correspondingly, motor function can be measured
from the central nervous system by assessing functional
connectivity within the motor system. This can be achieved
through functional MRI scans acquired during resting-
state sessions, while measuring the correlation between
motor regions of interests (Friston, 1994; Biswal et al.,
1995). Such evaluation provides an opportunity to assess
the underlying mechanism of motor performance. For
example, measurements of functional connectivity before
and after motor skill acquisition, showed increased connectivity
within the motor system (Taubert et al., 2011). Neuroimaging
studies repeatedly show that bilateral primary motor cortex
(M1) and the supplementary motor area (SMA) (Perez
et al., 2007; Kasess et al., 2008; Dayan and Cohen, 2011)
constitute the core motor network not only during active tasks
but also during rest, in health and in recovery from stroke
(Grefkes et al., 2010; van den Heuvel and Hulshoff Pol, 2010;
Kristo et al., 2014).

An additional prominent tool which provides a measurement
of the motor system is non-invasive brain stimulation.
Transcranial magnetic stimulation (TMS) administered over
M1 can induce a movement in subjects’ contralateral hand,
known as the motor-evoked-potential (MEP), measured with
electromyography (EMG). As such, it reflects the passage
of information from the central nervous system toward the

peripheral muscle. Single pulse TMS over the M1 in posterior-
anterior orientation is known to produce I-waves (Di Lazzaro
et al., 1998) which are activated by trans-synaptic corticospinal
neurons within M1 (Volz et al., 2014). These signals are thought
to reflect the excitability of the underlying motor cortex (Calancie
et al., 1999; Hamzei et al., 2006; Di Lazzaro et al., 2008; Hiraoka
et al., 2010; Volz et al., 2014; Strigaro et al., 2016), and can be
modulated directly via TMS (Volz et al., 2019), or due to motor
learning (Tunovic et al., 2014; Ostadan et al., 2016). As such,
corticospinal excitability may play an important role in the
investigation of the motor system.

While each of the above measurements provides valuable
information on the motor system, they are measured at different
levels of the motor system, and could thus provide different data
sets. A timely goal is to unravel a holistic framework integrating
brain and behavior, which could provide the opportunity to unify
between multiple levels of analysis. This effort was previously
addressed across domains, spanning from molecular to systems
neuroscience (Friston, 2010; Love, 2016; Kim et al., 2017). In
correspondence with this view, this study aims to integrate
three levels of motor system measurements in humans: brain
functional connectivity, corticospinal excitability, and behavior.
Namely, could subjects’ behavioral performance in a task
be predicted from recordings of functional connectivity and
corticospinal excitability? Such integration could shed light on
individual differences in motor performance, and the neural
markers enabling these differences in performance.

MATERIALS AND METHODS

Subjects
A total of 20 healthy volunteers (8 males and 12 females; mean
age = 26.1 ± 0.8 years) participated in the study. Subjects were
all right handed. Five additional subjects were excluded from
the experiment: three subjects were excluded before receiving
TMS due to artifacts in the MRI scans, and 2 subjects stopped
their participation during the TMS session due to discomfort. All
subjects provided written informed consent and all procedures
were in accordance with a protocol approved by the Tel-
Aviv Sourasky Medical Center and Tel-Aviv University’s Ethics
committees. Musicians and video-gamers (past or present) were
excluded from the study, as well as subjects with psychiatric or
neurological history. In addition, subjects were required to sleep
at least 6 hr before each of the experimental sessions.

Procedure and Task
The study comprised of 2 sessions (see Figure 1). Subjects first
underwent an imaging session where resting-state scans were
acquired, in which they were instructed to keep their eyes closed
and not fall asleep. Then, on a different session, subjects received
single pulse TMS over the right M1 (see details below), while
measuring their measuring their MEPs. At the end of this session,
following the MEP recordings, subjects performed a sequential
finger-tapping task, with their non-dominant left hand. During
the task, participants were required to repeatedly tap a 5-element
sequence of finger movements (4-1-3-2-4 or 1-4-2-3-1, constantly
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FIGURE 1 | Study design. (A) In the first session resting-state functional MRI scans were acquired, from which functional connectivity measures where extracted.
(B) Then, in the second session, MEPs were induced via single pulse TMS applied over the right M1, and measured from the left FDI muscle to quantify corticospinal
excitability. At the end of that session, participants performed a sequential finger tapping task, to measure their motor performance.

displayed on the screen), for 30 s, as quickly and accurately
as possible. Tapping movements were performed using a 4-key
response box (Cedrus Lumina LU440) which was placed in front
of the subjects at a comfortable distance and height. Response
data were collected for offline analysis using Psychtoolbox
(Matlab 8.4). During the task, the sequence was displayed at the
middle of the screen and remained in this position throughout
the task. The number of correct sequences tapped served as
the primary behavioral outcome measure, a common and highly
replicable end-point measure for performance in motor sequence
tasks (Karni et al., 1995; Walker et al., 2003; Korman et al., 2007;
Censor et al., 2010, 2014a,b; de Beukelaar et al., 2014). The full
procedure included two additional rTMS sessions, conducted
after session 2, and thus assured no interfering outcomes. rTMS
in those sessions was applied over the lateral prefrontal cortex
and vertex, designed to probe the role of human prefrontal
cortex in successful reinforced skill formation, reported elsewhere
(Dayan et al., 2018).

Non-invasive Brain Stimulation
Transcranial magnetic stimulation was administered using a
Magstim R© 70 mm double coil, placed over the right hand-knob
area of M1, oriented at 45◦ to the midsagittal line at a posterior-
anterior (PA) direction, with interstimulus intervals jittered
between 3–4 s. Individual resting motor thresholds (RMT) were
defined as the minimal M1 stimulation intensity yielding five out
of ten motor-evoked potentials (MEPs) greater than 0.05 mV
in the left first dorsal interosseous (FDI) muscle (Rossini et al.,

1994). Brainsight R© 2 (Rogue Research, Montreal, QC, Canada)1

was used to coregister participants’ head and to mark stimulation
sites prior to TMS administration. Four landmarks were used for
coregistering the participants’ head to their MRI anatomic scan
(nasion, tip of the nose, left and right crus of helix).

Electromyography (EMG)
Electromyography data were measured from the left first dorsal
interosseous (FDI) muscle (Rossini et al., 1994), corresponding
to the main behavioral task performed with subjects’ non-
dominant left hand. MEP recordings of the FDI muscle
are the most common measurement for motor corticospinal
excitability, and have been reported in previous studies (for
example see Di Lazzaro et al., 1998; Tunovic et al., 2014;
Volz et al., 2014, along with most of the TMS studies
using the finger tapping task, which measured MEP from the
FDI to set the motor threshold such as Perez et al., 2007;
Censor et al., 2014b; Narayana et al., 2014). Two 10 mm
diameter Ag/AgCl surface electrodes were placed on the left
FDI muscle, and one additional ground electrode was placed
on subjects’ left ulnar tuberosity. MEP data were amplified
using a Digitimer D360 amplifier (Digitimer, Welwyn Garden
City, United Kingdom) at a gain of 1000×, band-pass filtered
25 Hz to 1 kHz, and notch filtered at 50 Hz. Data were
sampled via a Cambridge Electronic Design (CED; Cambridge,
United Kingdom) 1401 A/D converter at a rate of 2 kHz and

1www.rogue-research.com/
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stored on computer using a commercial data collection software
(Signal 6.02, CED).

Corticospinal Excitability
Motor-evoked-potentials amplitudes were extracted from each
response to single-pulse TMS. Individual recruitment-curves
were measured based on MEP amplitudes with increasing
stimulation intensities by 10% of the RMT. 12 stimulation pulses
were given at 100% RMT, and 6 pulses per each condition of
110%, 120%, 130%, 140%, and 150% of RMT (van der Salm
et al., 2009), in a non-randomized order (Wassermann et al.,
1998). Recruitment curves were then individually extrapolated
as the average amplitude at each intensity and excitability was
quantified as the slope of the recruitment curve (Wassermann
et al., 1998; Ward et al., 2006; Rosenkranz et al., 2007; Orth et al.,
2008; Schippling et al., 2009).

Imaging Data Acquisition
Imaging data were acquired with a 3T SIEMENS MAGNETOM
Prisma scanner equipped with a 20-channel head coil at the
Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical
Center. Structural images were acquired with a MPRAGE
sequence [repetition time/echo time (TR/TE) = 1860/2.74 ms;
flip angle = 8◦; field of view (FOV) = 256 mm × 256 mm;
slice thickness = 1 mm; 208 axial slices]. Resting-state
fMRI images were acquired with a gradient echo-planar
imaging (EPI) sequence of functional T2∗-weighted images
[TR/TE = 2000/35 ms; flip angle = 90◦; field of view
(FOV) = 384 mm × 384 mm; slice thickness = 4 mm;
34 interleaved axial slices per volume]. The functional scans
comprised a total of 240 volumes which lasted 8 minutes. The
first 3 volumes were discarded to account of T1-equilibrium
effects. Two subjects (of the total 20) were scanned with different
functional parameters [TR/TE = 3000/35 ms; flip angle = 90◦;
field of view (FOV) = 672 mm× 672 mm; slice thickness = 3 mm;
46 interleaved axial slices per volume].

Imaging Data Analysis
Imaging data analysis was performed with Brain Voyager
software (R. Goebel, Brain Innovation, Maastricht, Netherlands).
Preprocessing of functional images included realignment and
slice-time correction, band-pass filtering (0.01 to 0.1 Hz),
segmentation of gray-matter, white matter, and cerebrospinal
fluid (CSF) and normalization to the MNI template. The data
were additionally spatially smoothed with a Gaussian kernel set
at 4 mm full width at half maximum. Signals from the segmented
white matter and CSF, and the six motion realignment parameters
were regressed out of the signal. Subsequently, reference time
courses were extracted from core components of the cortical
motor system: the right primary motor cortex (M1) handknob
area (each subject’s specific stimulation location, contralateral
to the left hand from which behavioral and MEP data was
measured, as described above), left primary motor cortex and
the SMA, set at MNI (−32, −30, and 51) and (1, −21, and
54) correspondingly (Censor et al., 2014a), each defined as a
sphere with radial size of 5 voxels. Correlations between these
reference time courses were then calculated for each subject.

Only significant correlations were considered for further analysis
(p < 0.05 resulting in r > 0.128 for a sample size of n = 237
time points). Accordingly, data from 17/20 subjects in whom
there were significant resting-state correlation measurements
were included for further behavioral and corticospinal analysis.

Behavioral Data Analysis
Behavioral data were analyzed with SPSS 25 and Matlab 2017a.
Behavioral performance was measured by the number of correct
sequences tapped, a highly common measure which accounts for
both speed and accuracy (Walker et al., 2003; Korman et al.,
2007; Censor et al., 2010, 2014b; de Beukelaar et al., 2014;
Herszage and Censor, 2017). To test for the relation between
functional connectivity and behavior, as well as other pairwise
correlations, we computed Pearson’s coefficient. One subject
was excluded from the analysis due to extremely high influence
value (Cook’s distance = 7.48, see Cook, 1977), hence all of the
analyses in this study were conducted with 16 subjects in total.
To test for the relation between all three motor measurements
(functional connectivity, corticospinal excitability and behavior),
a hierarchical multiple regression was conducted with behavioral
performance as the dependent variable (Gelman and Hill, 2006).

RESULTS

To test whether behavior can be predicted from resting-state
functional connectivity of the motor system, we first calculated
Pearson’s correlation coefficients between the two core regions
of the cortical motor system, the contralateral M1 and SMA
(Perez et al., 2007; Kasess et al., 2008; van den Heuvel and
Hulshoff Pol, 2010; Dayan and Cohen, 2011; Kristo et al., 2014).
Indeed, functional connectivity between the contralateral M1
and the SMA (see Figure 2A) significantly correlated with task
performance (Pearson’s r = 0.64, p < 0.01, see Figure 2B)
and accounted for R2 = 40.7% of the variation in participants’
motor behavior. The correlation was not affected by outliers,
with Cook’s distance values lower than 0.15, well below the
critical threshold of 1.

To further examine the predictability of motor behavior, we
conducted a hierarchical multiple regression. This enabled to
test whether corticospinal excitability could further improve
the prediction model. In accordance with the above result, the
first step model included functional connectivity which indeed
significantly predicted behavior (F1,14 = 9.63, p < 0.01). Then,
at the second stage of the hierarchical regression, corticospinal
excitability was added to the model, resulting in a non-significant
contribution (R2 change = 2.7%, F1,13 = 0.63, p = 0.44).
Nevertheless, the full model could still significantly predict
behavior (ANOVA F2,13 = 5.0, p < 0.03, see Figure 3). The
coefficients of the full regression model follow the equation:

Behavior = 21.77 ∗ Functional Connectivity− 0.21 ∗

Excitability + 5.31

Prior to conducting the hierarchical multiple regression, the
relevant assumptions were tested. Hence, the assumption
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FIGURE 2 | Functional connectivity predicts behavioral performance. (A) Sphere regions-of-interest used for the functional connectivity measurement:
Supplementary motor area and right M1, contralateral to the left hand which later performed the motor task (see section “Materials and Methods” for MNI
coordinates). Regions-of-interest are visualized with the BrainNetViewer (Xia et al., 2013, http://www.nitrc.org/projects/bnv/). (B) Correlation between behavior and
functional connectivity. Data points were jittered at 2% to minimize overlap. The black line represents the single variant regression line.

of singularity was met as the independent variables
(corticospinal excitability and functional connectivity)
were not significantly correlated (Pearson’s r = −0.15,
p = 0.57). This was further supported by multicollinearity
statistics (variance inflation factor = 1.02 for both predictors)
which were all within accepted limits, asserting that the
assumption of multicollinearity was met (Coakes, 2007).
In addition, corticospinal excitability did not correlate
directly with behavioral performance (Pearson’s r = −0.26,
p = 0.33), and importantly, an independent two-sample
t-test comparing behavior with sequence as between
group factor showed no difference in performance between
sequences [t(14) = −0.72, p = 0.48], confirming an equivalent
level of difficulty for both sequences counter-balanced
across participants.

Unimanual motor activity is known to activate connections
between bilateral M1, known as inter hemispheric inhibition
(IHI; for a review see Perez and Cohen, 2009), in addition
to frontal areas (such as the SMA). To rule out effects
of IHI per se (rather than innate differences in unimanual
performance), we conducted a control analysis which showed
that functional connectivity measured between bilateral primary
motor cortices (right and left M1) did not significantly contribute
to the model (R2 change = 1.2%, F1,12 = 0.27, p = 0.62),
and was not correlated directly with performance (Pearson’s
r = 0.17, p = 0.26).

DISCUSSION

This study aimed to reveal origins of individual differences
in motor skill task performance, by integrating three

levels of motor system measurements in humans: brain
functional connectivity, corticospinal excitability, and behavior.
The results indicate that differences in behavior can be
predicted from subjects’ resting-state functional connectivity
between the SMA and the contralateral M1, corresponding
to the hand performing the task. Specifically, the main
finding predicts that individuals with stronger functional
connectivity between the contralateral M1 and SMA would
exhibit better motor performance. This prediction was not
improved nor reduced by corticospinal excitability data,
produced from brain stimulation over the same location in
contralateral M1.

The main finding of this study, showing that functional
connectivity can predict motor performance is in line with
previous studies (Mueller et al., 2013; Hamann et al., 2014;
Wu et al., 2014). For example, Wu et al. (2014) found
that coherence with the region of the left M1 in resting
EEG data was associated with motor skill acquisition. In
addition, the relation between functional connectivity and
behavior was reported in non-motor tasks as well, for example
stronger hippocampal connectivity at rest was shown to
predict lower episodic memory performance and declining
longitudinal memory performance (Salami et al., 2014), while
higher hippocampal and posteromedial connectivity at rest
predicted better performance in an associative memory task
(Wang et al., 2010).

In the current study, resting-state functional connectivity
and corticospinal excitability were not significantly correlated.
This result is consistent with previous studies investigating
the relation between functional connectivity and TMS
induced activity (Romei et al., 2007; Fox et al., 2012;
Volz et al., 2014; Nettekoven et al., 2015). For example,
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FIGURE 3 | Hierarchical regression model. (A) MEP signal, measured from the FDI muscle via EMG system. (B) Corticospinal excitability recruitment curves were
built based on all individual EMG recordings, averaging MEP amplitudes at each intensity. Error bars represent SEM. (C) Predicted behavior is portrayed by the
regression plane (gray, see equation above), with the observed single-subject data behavior represented as colored dots. Since the plane is semi-transparent, darker
dots represent data points which fall below the plane, while brighter dots represent data points above the plane.

Volz et al. (2014) reported that functional connectivity
did not correlate with MEP latency, another common
TMS induced measurement. However, when the TMS coil
orientation was changed to an anterior-posterior orientation,
different from the orientation used in the current study
(see section “Materials and Methods”), Volz et al., found
a significant correlation between latency and functional
connectivity, indicating that the relation between functional
connectivity and TMS induced activity might depend on
stimulation parameters.

Corticospinal Excitability did not directly predict behavioral
performance in the current study, and indeed, most of
the studies linking excitability and behavior focused on
time dependent changes in behavior, i.e., learning (for
example see Tunovic et al., 2014; Ostadan et al., 2016).
Adding to the existing literature, the current results
suggest that while corticospinal excitability often changes
due to learning processes, it might not be as critical
in predicting behavioral performance at early stages of
skill acquisition.

Interestingly, even though corticospinal excitability per
se was not associated with behavior, a combination of
functional connectivity and corticospinal excitability was found
to predict behavior. Using this unified combination of all
three measurements (functional connectivity, corticospinal

excitability, and behavior) links data from different levels of
measurement into a merged model that can explain the variability
in motor performance.

Pairwise relations between these three measurements of
the motor system were previously reported to associate with
different clinical conditions. For example, the disruption of
functional connectivity due to stroke, was found to predict
performance impairment (Carter et al., 2010). Furthermore,
Grefkes et al. (2010) demonstrated that in patients following
subacute stroke, inhibitory TMS over the M1 of the unaffected
hemisphere resulted in behavioral improvements and increased
connectivity between ipsilesional SMA and M1. In line
with these studies, corticospinal excitability was found to
be increased in patients with Alzheimer disease (Alagona
et al., 2001). Overall, the link of different diseases with
functional connectivity and corticospinal excitability has
been reported separately in many studies, pointing to
potential clinical application using the combination of both
measurements not only to predict motor performance in
normal populations, but also for the prediction and detection of
clinical conditions.

In sum, the current study shows that behavior can be predicted
from individuals’ functional connectivity measures, while
highlighting the need for additional research into the predictive
combination of resting-state functional connectivity and brain
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stimulation to explain differences in motor performance.
Importantly, the ability to predict motor performance from
resting state scans in healthy populations supports the utilization
of such measurements for clinical use such as assessment of
successful rehabilitation likelihood following stroke.
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