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Abstract: The photooxidative degradation process of plastics caused by ultraviolet irradiation leads
to bond breaking, crosslinking, the elimination of volatiles, formation of free radicals, and decreases
in weight and molecular weight. Photodegradation deteriorates both the mechanical and physi-
cal properties of plastics and affects their predicted life use, in particular for applications in harsh
environments. Plastics have many benefits, while on the other hand, they have numerous disad-
vantages, such as photodegradation and photooxidation in harsh environments and the release of
toxic substances due to the leaching of some components, which have a negative effect on living
organisms. Therefore, attention is paid to the design and use of safe, plastic, ultraviolet stabilizers
that do not pose a danger to the environment if released. Plastic ultraviolet photostabilizers act as
efficient light screeners (absorbers or pigments), excited-state deactivators (quenchers), hydroperox-
ide decomposers, and radical scavengers. Ultraviolet absorbers are cheap to produce, can be used
in low concentrations, mix well with polymers to produce a homogenous matrix, and do not alter
the color of polymers. Recently, polyphosphates, Schiff bases, and organometallic complexes were
synthesized and used as potential ultraviolet absorbers for polymeric materials. They reduced the
damage caused by accelerated and natural ultraviolet aging, which was confirmed by inspecting the
surface morphology of irradiated polymeric films. For example, atomic force microscopy revealed
that the roughness factor of polymers’ irradiated surfaces was improved significantly in the presence
of ultraviolet absorbers. In addition, the investigation of the surface of irradiated polymers using
scanning electron microscopy showed a high degree of homogeneity and the appearance of pores
that were different in size and shape. The current work surveys for the first time the use of newly
synthesized, ultraviolet absorbers as additives to enhance the photostability of polymeric materials
and, in particular, polyvinyl chloride and polystyrene, based mainly on our own recent work in
the field.

Keywords: plastics; polyvinyl chloride; photostabilizers; plastic photodegradation and photooxida-
tion; recycling of plastics; photoirradiation

1. Introduction

Ultraviolet (UV) light has harmful effects on materials used in outdoor applications.
Plastics suffer photooxidation when exposed to harsh conditions (high temperature, sun-
light for long duration, and humidity) in the presence of oxygen. Plastic degradation, as
a result of UV light absorption, leads to discoloration, cracks, and loss of mechanical and
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physical properties [1,2]. Photooxidation resembles autooxidation due to long-term heat
aging, except that the driving force is UV light and not heat [3]. Therefore, during plastic
manufacturing, measures should be taken to ensure that the materials will last longer and
to inhibit photooxidation and photodegradation processes.

The polymerization technique was developed over the years to allow the production
of plastics on an industrial scale. There has been a massive increase in the production of
plastics in recent years [4]. The scale of polyvinyl chloride (PVC) production has increased
over the years from 3 million tons in 1965 to over 40 million tons in 2018 and is expected
to grow further to 60 million tons in 2025 [5]. PVC can be produced in different forms
and shapes, using both suspension and emulsion polymerization [6]. Plastic waste is a
challenge, and there is a need for not only effective recycling but cutting the waste at the
source. Therefore, further developments in plastic are still needed to keep the environment
clean and to elongate the lifetime of plastic [7,8].

Plastic contains polymeric chains that are based on carbon, hydrogen, and heteroatoms
(e.g., sulfur, oxygen, or nitrogen). Polystyrene (PS), polypropylene (PP), polyethylene
(PE), PVC, polyethylene terephthalate (PET), and polyurethane (PU) represent 75–80%
of Europe’s plastic consumption (Table 1) [9,10]. These polymers have either C–C or
C–heteroatom backbones, and their properties are highly dependent on the repeating
units [11].

Table 1. The most common plastics and their European demand [10].

Plastic (Repeating Unit) Name European Demand (%)

C–C Backbone
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Plastics are highly involved in our daily lives, from household items to very complex
medical equipment. They are used in construction materials (e.g., windows, panels, glazing,
coatings, siding, roofing, flooring, fencing, and decoration), furniture, offices, agriculture
(e.g., mulch film, materials for greenhouses, and production of sacks), transportation (e.g.,
bodywork and production of protective coatings), flame and smoke retardants (high content
of chlorine; 57% by weight), insulators, and others [6]. Polycarbonate plastic has a low
thermal conductivity (k) and, therefore, is better than conventional glazing agents [12]. The
demand for plastic has extensively increased due to its unique mechanical and physical
properties (e.g., light weight, strength, resistance to corrosion and chemicals) and low
manufacturing cost. In addition, the shape and properties of plastics can be manipulated
based on the application. However, UV radiation has a negative effect on plastic (e.g.,
rigid PVC) lifetime and leads to the loss of its strength. The solar irradiation of PVC
causes discoloration and the emission of toxic volatiles, which hinders its use in outdoor
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applications [13]. PVC is still used as a construction material, but it can be replaced by
polyolefins, which are less harmful but cost more.

The degradation of plastics is of major concern from an environmental perspective
in terms of potential hazards to living organisms. The degradation of plastics takes place
under either abiotic or biotic (e.g., biodegradation) conditions [14]. Biodegradation is
highly dependent on environmental factors, which vary based on the type of polymer.
Color changes and the crazing of plastic are early signs of degradation, followed by surface
cracking and the formation of small fragments [15]. Floating plastics in seas and oceans are
moderately affected by temperatures, solar radiation, and oxygen through photoinitiated
oxidative degradation. For abiotic degradation, the contributing factors are sunlight and
oxygen, and they affect the plastic through a hydrolysis process [16].

Three steps (initiation, propagation, and termination) are involved in plastic degra-
dation [17]. The first step is initiated through solar or thermal initiators and leads to the
formation of free radicals. Photoinitiation is not likely for both PE and PP, since they do not
have unsaturated chromophores in their skeletons that are responsible for the absorption
of light [18]. Impurities or abnormalities within plastics allow for the production of free
radicals leading to C–H bonds cleavage in the backbone of polymers [19,20]. In the pres-
ence of oxygen, free radicals produce peroxy reactive moieties in the propagation step. In
addition, hydroperoxides can be produced, leading to the autoxidation of polymers [21]. In
the propagation step, crosslinking or chain scission takes place [22]. The deactivation of
free radicals occurs in the termination step, leading to stable products. In the presence of
oxygen, the formation of oxygen-containing moieties is expected, which leads to a photoini-
tiated degradation process. The chain scission and crosslinking (termination) of oxygenated
species leads to the formation of olefins (unsaturated polymeric chains), aldehydes, and
ketones (Figure 1) [23].
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Plastic natural degradation is initiated through photodegradation followed by thermo-
oxidative degradation [24]. Sun UV light provides the energy needed to initiate the incor-
poration of oxygen into the polymeric chains [25]. Plastics are degraded to small polymeric
fragments, and then metabolized by microorganisms in the surrounding environment.
Microorganisms tend to convent the polymeric chain carbons to either carbon dioxide or
biomolecules [26,27]. However, such a process is very slow (taking up to 50 years) for the
complete degradation of plastics [28]. Chromophores present within the skeleton of poly-
mers absorb visible or UV light, and therefore initiate the photodegradation process [29,30].
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Photodegradation takes place either in the presence of oxygen (e.g., photooxidation) or in
its absence (e.g., chain crosslinking or bond breaking). When polymers (e.g., polyolefins)
are exposed to heat, UV light, or mechanical stress in the presence of oxygen, they produce
free radicals that initiate the oxidation process. Therefore, plastics should be stabilized to
inhibit the oxidative processes to increase the half-life time of materials [31].

Plastic weathering involves changes in the physical, mechanical, and chemical proper-
ties of polymers, particularly at the surface [32]. Solar energy, moisture (e.g., rain, snow, or
humidity), oxidants (e.g., ozone or atomic or singlet oxygen), and air pollutants (e.g., sulfur
dioxide, nitrogen oxides, or polycyclic hydrocarbons) are responsible for these changes [33].
Uneven discoloration, surface cracks, or loss of strength are the most common changes
within plastics due to degradation [34]. Climate change and the rise in global temperatures
accelerate polymers’ weathering, and impurities (e.g., traces of metals or oxidants) present
in additives increase the rate of photodegradation [35].

PVC is a synthetic plastic that is similar to PP, but the backbone carbons are attached
to chlorine atoms instead of hydrogens. PVC is one of the most common manufactured
plastics [36]. Due to the high content of chlorine, PVC is hard and stiff. In addition, PVC is
polar due to the presence of C–Cl bonds and is soluble in many solvents, particularly those
containing polar atoms such as ethers (e.g., dioxane, tetrahydrofuran, ketones, or nitroben-
zene). It has a low cost, is durable, has excellent performance, is easily molded, and can be
obtained in different shapes that are suitable for many applications. PVC is commonly used
in packaging, health care devices, toys, construction materials, electrical wire insulation,
clothes, and furnishing [5,6]. For outdoor applications, PVC photostability should be
enhanced through the addition of suitable additives to inhibit its photodegradation. The
dechlorination of PVC is autocatalytic, which leads to the formation of –C=C–. The forma-
tion of unsaturated double bonds within the backbone of PVC leads to its photodegradation,
in which small fragments and polyene residues are produced (Figure 2) [37].
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Plastic recycling has received attention recently due to the large volume of waste
that it generates [38]. Pyrolysis and incineration of PVC are not recommended due to
the high level of hydrogen chloride (HCl) and other toxic volatiles produced [39]. The
most common methods for PVC recycling include chemical and mechanical techniques.
Mechanical recycling is preferred when the PVC waste composition is known [40]. On the
other hand, the chemical recycling of PVC converts plastics back to chemicals that can be
reused in the polymerization process. The development of techniques and instrumentation
for the separation of PVC from the waste stream is still important to allow for the recovery
of most wasted PVC.

Recently, our research was directed towards investigating the use of newly synthesized
aromatic compounds and those that include organometallics as potential UV absorbers. We
made some progress in this field, which is reported in the current work.

2. Photostabilization of Polymers

The photostabilization of polymers has received much attention recently, in order to
find efficient methods to inhibit their photochemical degradation. Additives are added
to polymers to improve their performance and mechanical and thermal properties [41].
The additives act as stabilizers, fillers, plasticizers, softeners, lubricants, colorants, flame
retardants, blowing agents, crosslinking agents, and UV absorbers. UV stabilizers are
capable of reducing the rate of photooxidation of polymeric materials [42]. Various pa-
rameters such as color, stability, compatibility, volatility, and cost should be taken into
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consideration in the selection of additives. The additives should be capable of absorbing the
harmful UV radiation and dissipating the energy as heat over time at a harmless rate to the
polymers. Some polymers, such as polymethyl methacrylate and polytetrafluoroethylene
are highly stable and do not require the addition of photostabilizers for outdoor applica-
tions. Moderately photostable polymers, such as polyvinyl fluoride and polyvinylidene
fluoride have a lifetime of a few years in outdoor applications and can be used without the
addition of photostabilizers. On the other hand, poorly stable polymers such as PVC, PS,
and polyamides have a short lifetime (less than a year), and therefore require the use of UV
stabilizers for outdoor use [43,44]. The polymer additives act as UV screeners, excited state
deactivators, hydroperoxide decomposers, and radical scavengers [45].

In the case of PVC, the dipoles along the polymer chain, due to the presence of chlorine
atoms, lead to a high level of secondary valency forces, and therefore reduce chain flexibility.
The van der Waals force within PVC chains is insignificant in cohesion due to the relative
bulkiness of the chlorine atoms. The polarized groups within plasticizers bound to polymer
dipoles and the non-polar moiety act as shields between polymer dipoles. Therefore, a
reduction in dipole bonding between polymer chains, less overall cohesion, and an increase
in the flexibility of movement are observed [46]. The incorporation of a low concentration
of plasticizers can lead to flexible products but increases the stiffness at the same time.
The addition of plasticizers in a low concentration leads to an increase in the crystallinity
level of the polymers [47]. Therefore, it appears that plasticized PVC has a degree of
microcrystalline structure. PVC shows solvated regions, which are flexible due to the
presence of a plasticizer and non-solvated crystalline areas. The PVC crystallite network
structure has an impact on the toughness and strength and is responsible for the variation
of PVC properties [48,49].

3. Photostabilization of Polymers Using UV Absorbers

UV absorbers play an important role in absorbing harmful radiation from light and
dissipating it as harmless thermal energy [50–52]. In addition, they block the formation
of free radicals that are produced at the early stages of degradation. The most common
industrial UV absorbers are titanium oxide, carbon black, benzophenones, and triazoles
(e.g., hydroxylbenzophenone and hydroxyphenylbenzotriazole), while the most common
additives used recently for research include Schiff bases and organometallic complexes
(Figure 3).
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Figure 3. Structures of some common UV absorbers.

These additives have unique UV absorbance characteristics. For example, benzophenone
-containing additives absorb UV strongly in the short-wavelength region through a proton
transfer or tautomeric structure equilibrium (Figure 4). They are more efficient compared
with the additives containing benzotriazole. Benzophenone-based UV absorbers have unique
properties such as a low cost, low toxicity, and good resistance to water and acids [53].
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Triazoles have high molar extinction coefficients (5 × 106 cm−1M−1) and absorb the
most destructive wavelength of light (280–370 nm), which is highly involved in polymer
degradation. The excitation of benzotriazoles takes place once the UV light is absorbed; the
benzotriazoles then dissipate the energy through either heat release, involving a hydrogen
transfer, or fluorescence emission [54]. In addition, UV absorbers act as quenchers (Q)
for the triplet excited state of the polymer chromophoric group (P *), followed by the
release of energy as harmless heat (Figure 5) [55]. Similarly, metal complexes act as effective
UV quenchers due to their low excitation coefficients and quench the triplet state of the
carbonyl groups in polyolefins [56–58].
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Recently, we synthesized a range of UV stabilizers (e.g., aromatics, heterocycles,
Schiff bases, organometallic complexes, and polyphosphates) and tested their efficiency
for the stabilization of polymers [59–94]. These additives, at a low concentration of
0.5% by weight, led to a significant improvement in the photostability of polymers. The
stabilization effect that the UV absorbers induced in polymers was examined using
infrared spectroscopy, the determination of weight and molecular weight, and inspection
of the surface of polymers.

4. Morphological Study of the Surface of Irradiated Polymers in the Presence
of Additives

An investigation of the surface morphology of polymers can provide important
information about the damage that takes place due to weathering and the changes
in particles’ size and shape. Scanning electron microscopy (SEM) and field-emission
scanning electron microscopy (FESEM) are used to provide information about distortion,
variation on the surface, the shape and size of particles, and homogeneity [95–99]. The
irradiated polymers show the presence of cracks, holes, lumps, spots, and amorphous
and irregular surfaces. These changes are mainly due to dehydrochlorination, chain
scission, and crosslinking. However, the damage on the surface of polymers was limited
in the presence of UV absorbers compared with the blank polymers. In some cases, the
irradiated films containing additives showed the interesting changes that took place
on the surface [100–104]. For example, the SEM image of the surface of the irradiated
PVC film blended with a polyphosphate containing benzidine at 25 ◦C, showing the
formation of hexagonal pores (Figure 6) with a honeycomb-like structure, which do not
appear within the blank irradiated material [74]. Increasing the irradiation time by up to
300 h led to an increase in the number of hexagonal pores. The reasons for the formation
of such a structure are not clear, but it could be a result of the elimination of HCl at a
low rate and its scavenging by the Sn complex. Crosslinked materials could produce
honeycomb-like structures as a result of water stabilization [105–110]. For example,
the irradiation of a thin film of crosslinked polystyrene, at 25 ◦C for 6 h, produced a
honeycomb-like structure [106]. The irradiation of polyacrylic glycidyl ether for a short
duration led to the formation of a honeycomb film [107]. Similarly, the SEM image
of the irradiated PVC film containing a 4-methoxybenzoic acid-Sn complex showed a
honeycomb-like structure (Figure 7) [95].
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The irradiated PVC film, blended with a Schiff base and containing a thiadiazole
moiety in the presence of nickel chloride, showed the presence of hexagonal pores on the
surface (Figure 8) [72]. The presence of nickel ions is necessary to produce the honeycomb-
like structure and to enhance the photostability of the polymeric materials [111]. The
structure of the irradiated film was highly porous with a large surface area, possibly due
to the incorporation of nickel ions within the polymer. The formation of a honeycomb
structure depends on the type of solvent used during the fabrication process of the film,
the length of the side-chain within the polymer, and the concentration of the polymer [112].
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Figure 8. SEM image of the surface of an irradiated PVC film blended with a Schiff base containing a
thiadiazole moiety in the presence of nickel chloride.

The SEM image of the surface of an irradiated PVC film, blended with a melamine-
Schiff base (Figure 9), showed ice-cube-like particles [75]. Meanwhile, the FESEM image of
the surface of an irradiated PVC film, blended with a trimethoprim-Sn complex, showed
rod-like particles (Figure 10) [93]. It is believed that the crosslinking and elimination of
volatiles and hydrogen chloride at a slow rate are the reasons for the formation of the
particles that have such shapes [113,114].

The PS film blended with a Schiff base of biphenyl-3,3′,4,4′-tetraamine showed spher-
ical and embedded ellipsoid pores that have a diameter from 3.4 to 4.3 µm (Figure 11)
after irradiation [73]. The formation of ball-like pores may be a result of the effective light
absorption and porous structure of UV absorbers.

For comparison, Figures 12 and 13 show the SEM images of the blank PVC and PS
films, respectively, in the absence of any additives after irradiation.
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Figure 13. SEM image of the surface of an irradiated PS film in the absence of any additive.

Atomic force microscopy (AFM) was used as a tool to measure the effectiveness of UV
absorbers towards the stabilization of polymers [115–117]. The roughness factor (Rq) for the
surface of the blank, irradiated polymers was always high compared with those obtained
for the films blended with additives. Such an observation is evidence for the important
role played by additives in stabilizing polymers upon irradiation. Highly aromatic (due to
the resonance effect) UV additives that contain heteroatoms (due to coordination with the
polymeric chain of PVC, for example) showed the most desirable stabilizing effect (Table 2).

Table 2. Reduction in the roughness factor Rq (by fold) of polymers in the presence of UV absorbers.

Polymer UV Absorber Organic Moiety Rq Reference

PS Schiff base Cephalexin 27.1 [92]
PS Schiff base Biphenyl-3,3′,4,4′-tetraamine 8.3 [73]
PS Schiff base 1,2,3,4-Triazole-3-thiol 3.3 [64]

PVC Polyphosphates Benzidine 16.8 [68]
PVC Schiff base Biphenyl-3,3′,4,4′-tetraamine 3.6 [66]
PVC Schiff base Melamine 6.0 [75]
PVC Ni complex 2-(4-Isobutylphenyl) propanoate 6.3 [65]
PVC Sn complex 4-Methoxybenzoic acid 21.2 [94]
PVC Sn complex 4-(Benzylideneamino) benzenesulfonamide 18.4 [91]
PVC Sn complex Ciprofloxacin 16.6 [70]
PVC Sn complex Trimethoprim 11.3 [93]
PVC Sn complex Telmisartan 9.4 [78]
PVC Sn complex Valsartan 7.4 [81]
PVC Sn complex Furosemide 6.6 [63]
PVC Sn complex Carvedilol 6.4 [88]
PVC Sn complex Naproxen 5.2 [77]
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5. Conclusions and Future Perspectives

Polymer stabilization is one of the most important processes that is used to elongate
the lifetimes of plastic products. Plastics used in outdoor applications suffer in harsh
environments and quickly lose their mechanical and physical properties. The proper
solution for inhibiting the photooxidation of plastics due to the inevitable exposure to light
and oxygen is through the addition of efficient ultraviolet absorbers that are capable of
acting as efficient scavengers for light and blocking the formation of free radicals within the
polymeric chains. The additives should absorb irradiation light directly and decompose
peroxide species. In addition, they should be very compatible with the polymers, not alter
the color, be used at a very low concentration, and be safe for the environment if released.
Progress was made with the design and use of safe additives to enhance plastic stability
and, in particular, polystyrene and polyvinyl chloride. Polyphosphates, Schiff bases, and
organometallic complexes containing aromatic moieties showed the potential to be used as
ultraviolet absorbers for plastics. The damage on the surface of irradiated plastics in the
presence of ultraviolet absorbers is low compared with the blank films.

Since the additives are not linked to plastic through covalent bonds, they can be
leached to the surrounding environments. The leakage of these chemicals followed by their
degradation poses a danger to both animals and humans. Therefore, future research should
be attention to the design, synthesis, and use of safe, non-toxic, and highly stable polymeric
additives to suppress the degradation of plastic. Some progress was made, but there is still
room for further improvements and modifications.
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98. Valko, L.; Klein, E.; Kovařík, P.; Bleha, T.; Šimon, P. Kinetic study of thermal dehydrochlorination of poly (vinyl chloride) in the

presence of oxygen: III. Statistical thermodynamic interpretation of the oxygen catalytic activity. Eur. Polym. J. 2001, 37, 1123–1132.
[CrossRef]

99. Shi, W.; Zhang, J.; Shi, X.-M.; Jiang, G.-D. Different photo-degradation processes of PVC with different average degrees of
polymerization. J. Appl. Polym. Sci. 2008, 107, 528–540. [CrossRef]

100. Pospíšil, J.; Nešpurek, S. Photostabilization of coatings. Mechanisms and performance. Prog. Polym. Sci. 2000, 25, 1261–1335.
[CrossRef]

101. Jafari, A.J.; Donaldson, J.D. Determination of HCl and VOC emission from thermal degradation of PVC in the absence and
presence of copper, copper (II) oxide and copper (II) chloride. J. Chem. 2009, 6, 685–692. [CrossRef]

102. Pi, H.; Xiong, Y.; Guo, S. The kinetic studies of elimination of HCl during thermal decomposition of PVC in the presence of
transition metal oxides. Polym. Plast. Technol. Eng. 2005, 44, 275–288. [CrossRef]

103. Nief, O.A. Photostabilization of polyvinyl chloride by some new thiadiazole derivatives. Eur. J. Chem. 2015, 6, 242–247. [CrossRef]
104. Chaochanchaikul, K.; Rosarpitak, V.; Sombatsompop, N. Photodegradation profiles of PVC compound and wood/PVC composites

under UV weathering. Express Polym. Lett. 2013, 7, 146–160. [CrossRef]
105. Zhang, A.; Bai, H.; Li, L. Breath figure: A nature-inspired preparation method for ordered porous films. Chem. Rev. 2015, 115,

9801–9868. [CrossRef]
106. Bui, V.-T.; Lee, H.S.; Choi, J.-H. Data from crosslinked PS honeycomb thin film by deep UV irradiation. Data Brief 2015, 5, 990–994.

[CrossRef]
107. Zheng, K.; Hu, D.; Deng, Y.; Maitloa, I.; Nie, J.; Zhu, X. Crosslinking poly (acrylic glycidyl ether) honeycomb film by cationic

photopolymerization and its converting to inorganic SiO2 film. Appl. Surf. Sci. 2008, 428, 485–491. [CrossRef]
108. Kayyarapu, B.; Kumar, M.; Mohommad, H.B.; Neeruganti, G.; Chekuria, R. Structural, thermal and optical properties of pure and

Mn2+ doped poly (vinyl chloride) films. Mater. Res. 2016, 19, 1167–1175. [CrossRef]
109. Dou, Y.; Jin, M.; Zhou, G.; Shui, L. Breath figure method for construction of honeycomb films. Membranes 2015, 5, 399–424.

[CrossRef]
110. Cheng, C.X.; Tian, Y.; Shi, Y.Q.; Tang, R.P.; Xi, F. Porous polymer films and honeycomb structures based on amphiphilic

dendronized block copolymers. Langmuir 2005, 21, 6576–6581. [CrossRef]
111. Rahman, M.Y.A.; Ahmad, A.; Lee, T.K.; Farina, Y.; Dahlan, H.D. Effect of ethylene carbonate (EC) plasticizer on poly (vinyl

chloride)-liquid 50% epoxidised natural rubber (LENR50) based polymer electrolyte. Mater. Sci. Appl. 2011, 2, 817–825. [CrossRef]
112. Huh, M.; Gauthier, M.; Yun, S. Honeycomb structured porous films prepared from arborescent graft polystyrenes via the breath

figures method. Polymer 2016, 107, 273–281. [CrossRef]
113. Wang, Z.M.; Wagner, J.; Ghosal, S.; Bedi, G.; Wall, S. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl

and fish guts. Sci. Total Environ. 2017, 603–604, 616–626. [CrossRef]
114. Devi, M.R.; Saranya, A.; Pandiarajan, J.; Dharmaraja, J.; Prithivikumaran, N.; Jeyakumaran, N. Fabrication, spectral characteriza-

tion, XRD and SEM studies on some organic acids doped polyaniline thin films on glass substrate. JKSUS 2019, 31, 1290–1296.
[CrossRef]

115. Kara, F.; Aksoy, E.A.; Yuksekdag, Z.; Hasirci, N.; Aksoy, S. Synthesis and surface modification of polyurethanes with chitosan for
antibacterial properties. Carbohydr. Polym. 2014, 112, 39–47. [CrossRef]

116. Shinato, K.W.; Huang, F.; Jin, Y. Principle and application of atomic force microscopy (AFM) for nanoscale investigation of metal
corrosion. Corros. Rev. 2020, 38, 423–432. [CrossRef]

117. See, C.H.; O’Haver, J. Atomic force microscopy characterization of ultrathin polystyrene films formed by admicellar polymeriza-
tion on silica disks. J. Appl. Polym. Sci. 2003, 89, 36–46. [CrossRef]

http://doi.org/10.3390/ma10020180
http://doi.org/10.3390/polym12030512
http://doi.org/10.1016/S0014-3057(00)00239-1
http://doi.org/10.1002/app.25389
http://doi.org/10.1016/S0079-6700(00)00029-0
http://doi.org/10.1155/2009/753835
http://doi.org/10.1081/PTE-200048727
http://doi.org/10.5155/eurjchem.6.3.242-247.1165
http://doi.org/10.3144/expresspolymlett.2013.14
http://doi.org/10.1021/acs.chemrev.5b00069
http://doi.org/10.1016/j.dib.2015.11.012
http://doi.org/10.1016/j.apsusc.2017.09.110
http://doi.org/10.1590/1980-5373-MR-2016-0239
http://doi.org/10.3390/membranes5030399
http://doi.org/10.1021/la050187d
http://doi.org/10.4236/msa.2011.27111
http://doi.org/10.1016/j.polymer.2016.11.032
http://doi.org/10.1016/j.scitotenv.2017.06.047
http://doi.org/10.1016/j.jksus.2018.02.008
http://doi.org/10.1016/j.carbpol.2014.05.019
http://doi.org/10.1515/corrrev-2019-0113
http://doi.org/10.1002/app.12092

	Introduction 
	Photostabilization of Polymers 
	Photostabilization of Polymers Using UV Absorbers 
	Morphological Study of the Surface of Irradiated Polymers in the Presence of Additives 
	Conclusions and Future Perspectives 
	References

