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Deep learning has great potential for imaging classification by extracting low to high-level
features. Our aim was to train a convolutional neural network (CNN) with single T2-
weighted FLAIR sequence to classify different cognitive performances in patients with
subcortical ischemic vascular disease (SIVD). In total, 217 patients with SIVD [including
52 with vascular dementia (VaD), 82 with vascular mild cognitive impairment (VaMCI),
and 83 with non-cognitive impairment (NCI)] and 46 matched healthy controls (HCs)
underwent MRI scans and neuropsychological assessments. 2D and 3D CNNs were
trained to classify VaD, VaMCI, NCI, and HCs based on FLAIR data. For 3D-based
model, the loss curves of the training set approached 0.017 after about 20 epochs,
while the curves of the testing set maintained at about 0.114. The accuracy of training
set and testing set reached 99.7 and 96.9% after about 30 and 35 epochs, respectively.
However, the accuracy of the 2D-based model was only around 70%, which performed
significantly worse than 3D-based model. This experiment suggests that deep learning is
a powerful and convenient method to classify different cognitive performances in SIVD
by extracting the shift and scale invariant features of neuroimaging data with single
FLAIR sequence. 3D-CNN is superior to 2D-CNN which involves clinical evaluation with
MRI multiplanar reformation or volume scanning.

Keywords: subcortical ischemic vascular disease, convolution neural network, cognitive impairment, deep
learning, magnetic resonsnce imaging

INTRODUCTION

As the population keeps aging, the social and family burden of cognitive impairment has been
gradually increasing (Sun et al., 2011). Vascular cognitive impairment (VCI) is a broad term
including mild to severe cognitive impairment associated with or caused by cerebrovascular disease
(Hachinski and Bowler, 1993). Subcortical vascular cognitive impairment (SVCI) is the most
common form of VCI caused by subcortical ischemic vascular disease (SIVD) with various signs in
MRI, including lacunar infarction, white matter hyperintensities (WMH) (also termed white matter
lesions or leukoaraiosis), prominent perivascular spaces, cerebral microbleeds, and atrophy. These
MRI signs have been recognized as the reflection of major pathologies underlying vascular dementia
(VaD) and important causes of age-related cognitive decline (Pantoni, 2010; Roh and Lee, 2014).
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Both the aging of the population and the high incidence of
SIVD in aging subjects led to projections of major growth in
the numbers of patients with SVCI over the next 30 years
(Gorelick et al., 2011). Previous research emphasized that
cognitive impairment may be the earliest, most common and
sensitive manifestation of cerebrovascular disease, and proposed
it as a prognostic indicator (Ingles et al., 2007). However, early
detection of subtle cognitive decline is not that easy. The fact
is that VaD is detected at a much later stage when treatment
cannot stop or reverse but only slow the progression of cognitive
decline. So finding an efficient way to perform early diagnosis of
VaD is essential for disease prevention and modifying therapies
(Smith and Beaudin, 2018). Nowadays, SVCI diagnosis requires
very careful clinical assessments such as patients’ history, physical
and neurobiological exams, and a detailed neuropsychological
evaluation, which are time-consuming, poorly reproducible and
even traumatic. More efficient and convenient methods are
required to identify the subgroup of SVCI who rapidly decline.

MRI scans allow the non-invasive and efficient collection of
multimodal/multiparametric information about morphometry,
microstructure, function, perfusion, and even metabolism of the
brain. MRI has become a one-stop shop for the macro-scale study
of the brain (Diciotti et al., 2015). Meanwhile, computational
approaches for excavating and combining the quantitative,
intrinsically multivariate and multiparametric information from
MR imaging have recently been explored in the field of
neuroimaging, although not in an effective enough way. The
key challenge of SVCI diagnosis is to determine the clinical
relevance patterns for individual patients, as it is difficult to judge
whether the load of SIVD is sufficient to result in corresponding
clinical cognitive syndromes such as VaMCI or VaD. Recent
criteria from the International Society for Vascular Behavior
and Cognitive Disorders proposed that one large infarct or
hemorrhage, a strategic infarct or hemorrhage, multiple lacunes,
or extensive and confluent WMH of vascular origin may be
sufficient (Sachdev et al., 2014). However, there is little validation
of these thresholds. Besides, most of the existing researches on
SVCI diagnosis focused on binary classification problems, i.e.,
differentiating SVCI subjects from healthy controls (HCs) (Wang
et al., 2017). However, for a more precise diagnosis, we need
to distinguish among multiple SVCI stages, which makes it a
multi-class classification problem.

Previous studies made efforts to address this challenging
task by traditional machine learning using multimodal MRI
data, including diffusion and morphometry features, and
eventually proved the usefulness of machine learning techniques
in discriminating HCs from patients suffering from VaD
and its prodromal stage: vascular mild cognitive impairment
(VaMCI) (Diciotti et al., 2015), which represents a transitional
state between non-cognitive impairment (NCI) and dementia.
Another study implemented SVM-based machine learning
strategy for discrimination between SVCI patients with different
cognitive performances through predefined feature vectors
extracted from diffusion tensor imaging (DTI) data alone
(Ciulli et al., 2016). However, the sensitivity (72.7–89.5%),
specificity (71.4–83.3%), and accuracy (77.5–80.0%) are not high
enough, probably due to the limited generalization ability of the

artificial features. Additionally, extracting those features requires
a lot of time, money, and manpower such as human experts.
With the rapid development of deep learning algorithms, we
can now extract numerous features directly from the images
without the engagement of human experts (Ji et al., 2013).
Deep learning technologies have been proved to be efficient in
various medical image analysis tasks such as MRI, CT, X-ray,
mammography, ultrasound, and microscopy (Hamidian et al.,
2017; Jyoti and Yanqing, 2018). Deep learning models showed
excellent performances in organ and substructure segmentation,
disease detection and classification in some areas of pathology,
brain, lung, abdomen, cardiac, breast, bone, retina, etc (Ji et al.,
2013; Dou et al., 2016; Hamidian et al., 2017; Lao et al., 2017).
Classification of such imaging and clinical data were challenging
and the most problematic part has always been the selection of the
most discriminative features. With the rapid progress of this field,
convolutional neural network (CNN) has been utilized in many
medical fields, such as in the classification of Alzheimer’s brains
and healthy brains and the prediction of underlying molecular
genetic mutation status in gliomas (Sarraf and Tofighi, 2016;
Chang et al., 2018), which demonstrated that CNNs are capable of
learning key imaging components without prior feature selection
or human-directed training.

In particular, to our knowledge, no studies have been reported
using CNN-based deep learning technique to develop a diagnosis
model based on single FLAIR sequence for recognizing SIVD
from normal subjects, and discriminating different cognitive
performances within the SIVD group. Our hypothesis is that 3D-
CNN would show ideal performance. This approach enables us to
expand our methodology to predict more complicated systems.

MATERIALS AND METHODS

Participants
In total, 217 subjects with SIVD were recruited from patients
admitted to the Neurology Department of Renji Hospital from
July 2012 to January 2018. 46 matched HCs were recruited
from the community through advertising. SIVD can be defined
as subcortical WM hyperintensity on T2-weighted images with
at least one lacunar infarct, in accordance with the criteria
suggested by Galluzzi et al. (2005). All participants received
baseline evaluation, including complete sociodemographic and
clinical (cognitive, behavioral, neurological, functional, and
physical) data collection. Patient histories were collected from
knowledgeable subjects, usually from their spouses. All patients
underwent laboratory examinations and conventional MRI for
routine investigation of dementia (Wang et al., 2017).

The exclusion criteria were cerebral hemorrhages, cortical
and/or corticosubcortical non-lacunar territorial infarcts and
watershed infarcts, specific causes of white matter lesions
(e.g., multiple sclerosis, sarcoidosis, and brain irradiation),
neurodegenerative disease (including AD and Parkinson’s
disease), and signs of normal pressure hydrocephalus or
alcoholic encephalopathy. Patients with a low education level
(<6 years), severe depression [Hamilton Depression Rating
Scale (HDRS) ≥ 18], other psychiatric comorbidities or severe
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cognitive impairment (inability to perform neuropsychological
tests), severe claustrophobia, and contraindications to MRI (e.g.,
pacemaker, metallic foreign bodies) were also excluded. All the
participants had lacunar infarcts, small WMH, and slight atrophy
(Wang et al., 2017).

Finally, all SIVD patients recruited were subdivided based
on cognitive status into subcortical vascular disease with no
cognitive impairment group [NCI group (n = 83), VaMCI
group (n = 82), and VaD group (n = 52)]. All the participants
were right-handed.

The current study was approved by the Research Ethics
Committee of Renji Hospital, School of Medicine, Shanghai Jiao
Tong University, China. Written informed consent was obtained
from each patient.

Neuropsychological Assessment
Neuropsychological assessments were performed within 2 weeks
of the MRI. All subjects did not suffer a new clinical stroke
or TIA between the MRI and assessment. A comprehensive
battery of neuropsychological tests was designed based on a
review of relevant published reports. These tests are as follows:
Trail-Making Tests A and B, Stroop color-word test, verbal
fluency (category) test, auditory verbal learning test (short and
long delayed free recall), Rey–Osterrieth Complex Figure Test
(delayed recall), Boston Naming Test (30 words), Rey–Osterrieth
Complex Figure Test (copy), Lawton and Brody’s Activities of
Daily Living (ADL) Scale Test, Barthel Index (BI), HDRS, and
the Neuropsychiatric Inventory (Wang et al., 2017).

To assess the subjects’ cognitive statuses, the scores for each
measure of normal-aged patients in Shanghai, China, were used
as the normal baseline (norms). Cognitive dysfunction was
defined as −1.5 SD in at least one neuropsychological test.
According to the AHA Statement on Vascular Contributions to
Cognitive Impairment and Dementia (Gorelick et al., 2011), VaD
diagnosis was based on a decline in cognitive function from
a prior baseline and a deficit in performance in ≥2 cognitive
domains that were of sufficient severity to affect the subject’s
ability to perform daily activities, which were independent of the
motor/sensory sequelae of the vascular event. VaMCI diagnosis
was based on the following criteria: (1) ADL could be normal
or mildly impaired, (2) does not meet criteria for dementia, and
(3) mild quantifiable cognitive impairment within one or more
domains (i.e., attention, executive function, memory, language,
and visuospatial function). Functional ability was assessed using
BI and Lawton and Brody’s ADL scales. However, because
most patients with cognitive impairment due to cerebrovascular
disease have some degree of disability, the study carefully
excluded those with disability due to cognitive damage and
motor sequelae using cognitive impairment history and clinical
judgement. NCI was defined as subcortical vascular disease with
no cognitive impairment, which means the patients’ scores in all
neuropsychological tests were within the normal range (<−1.5
SD) (Wang et al., 2017).

MRI Protocol
MRI was performed with the SignaHDxt 3T MRI scanner (GE
Healthcare, United States). An eight-channel standard head coil

with foam padding was used to restrict head motion. In addition
to conventional brain MRI plain scanning, T2-fluid attenuated
inversion recovery sequences (FLAIR) with high resolution were
acquired as follows: TE = 150 ms, TR = 9075 ms, TI = 2250 ms,
FOV = 256 mm × 256 mm, matrix = 128 × 128, slice
thickness = 2 mm, number of slices = 66.

MRI Pipeline
The pipeline of the proposed method consists of two major parts,
data preprocessing and disease classification with CNN-based
deep learning strategy. Data preprocessing is designed to extract
Region of Interests (ROI) from raw MRI images since the raw
ones consist of too many irrelevant data. Then, the processed
images are fed to the CNNs we proposed.

Data Preprocessing
DICOM images of FLAIR were firstly transformed into Mat
format with a Matlab program, which stores only meaningful
volumes for deep CNN and discards the redundant data. Then,
the data in Mat format assume the shape of m∗n∗l∗c, where
the m, n, l, and c denote length, width and depth as well as
number of color channel, respectively. In this work, the m, n,
l, and c are equal to 256, 256, 66, and 1, respectively. Brain
Extraction Tool (BET) in the FMRIB Software Library (FSL),
which is a comprehensive library of analysis tools for FMRI, MRI,
and DTI brain imaging data, is employed to extract the brain
tissues from the original images, since non-brain tissues may
cause unexpected classification results. As a wildly used brain-
extraction tool, FSL-BET can easily remove all non-brain tissues
from raw images by optimizing the fractional intensity threshold
and reducing image bias as well as residual neck voxels. In this
work, we set the threshold at a constant, 0.5. The results are
shown in Figure 1.

Nevertheless, even when the non-brain tissues are wiped off
from the original MRI images, the data are still not able to be
fed to the CNN. As shown in Figure 1, the FSL-BET tool can
ideally extract the brain-tissues from the original data, but too
many zero-values are left in the image. These meaningless zero-
values will not only increase the computational expense, but also
have a negative impact on the final result. There are basically
two strategies to solve this problem, simply downsampling and
then rescaling the image to a smaller size or extracting the
target region needed. In this work, we used the latter one to
get a better result since the first one would reduce the accuracy
of classification.

First, we defined the region with non-zero values in each
slice as a ROI. Different slices have different ROIs. To
keep the data as a cubic shape, we found the ROI with
maximal are MROI in all slices, whose vertex coordinates are
(49,60), (207,200), (49,200), (207,200), respectively. Then, each
slice was tailored to MROI without changing the positional
relationship. With the volume of data reduced from 256∗256∗66
to 159∗141∗66, not only it is much easier to train the
networks, but the accuracy of classification is greatly improved
since the overfitting problem is resolved. The results are
shown in Figure 2.
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FIGURE 1 | Three views of the MRI data with the non-brain tissues (a) and the data without non-brain tissues (b).

FIGURE 2 | The 3D-shape data before and after preparation.

Statistical Analysis
Convolutional Neural Networks
The traditional machine leaning method requires manually
extracting the features using prior knowledge, and then trying to
find the linear or non-linear relationship between these features
and target label, which is quite challenging for researchers. Firstly,
it requires a very large amount of knowledge to designate the
features to be selected. In addition, large numbers of features
are time consuming. This problem has been solved thanks to the
development of deep learning. Recent studies have shown the
great capacity of deep learning in computer vision tasks, such as
image classification and object detection. With a deep structure,
it is easy to get a larger number of features, which are also are
commonly more complex and advanced.

Differently from the traditional image classification task, the
data after preprocessing has a 3D construction, which consists of

66 slices and each slice has a shape of 159∗141, as described above.
As a result, the traditional 2D-based convolutional networks,
such as AlexNet, VGG, and ResNet, etc., may be not suitable for
our task, as such models have no capacity to extract the structural
features among the correlative slices. Considering this situation,
we proposed a 3D-based convolutional network, as shown
in Figure 3.

Figure 3 shows the custom 3D-based architecture in this
study. A 3D-convolutional layer is represented as the cube, and
we used the text [channel numbers @ filter size] to indicate the
channel numbers and filter size in each convolutional layer. For
example, 32@3∗3∗3 means: (1) the output of this convolutional
layer contains 32 channels; (2) the filter size is 3∗3∗3, which
means the filter has a cubic shape, receiving the data from three
adjacent slices. This differs from a traditional 2D-based filter that
only receives data from only one slice at a time.
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FIGURE 3 | The construction of the 3D-based convolutional network we proposed.

Preprocessed data with resolution of 159∗141 and totally 66
slices are fed to our custom network. Generally, since the features
extracted at a deeper layer are more complex and abstract,
the number of channels would correspondingly and gradually
increase. According to this principle, the channel’s number in
convolutional layers in our custom network is gradually increased
from 32 to 512. Subsequently, there are eight convolutional layers
with different numbers of input and output channels followed
by two fully connected (FC) layers activated by linear function
and one FC layer activated by softmax. The Rectified Linear Unit
(RELU) function, defined as the Eq. 1, is used as the activation
function. In addition, the data every two convolutional layers
is downsampled by a max-pooling layer with a filter in the size
of 2∗2∗2 and stride of 2∗2∗2. The cross-entropy loss function,
defined as Eq. 2, is used to minimize the loss function along with
the Stochastic Gradient Descent (SGD) optimizer.

R(x) = max(x, 0) (1)

loss = −
N∑
i=1

yi log y∧i + (1− yi) log(1− y∧i ) (2)

To address the overfitting issues, the batch normalization method
is performed before each activation function. Learning rate is
lowered as the training process progresses, having been initialized
as 1e-2. The decayed learning rate is defined as Eq. 3, where the
decay step is equaled to 300.

lrnew = lrold ∗ lr_decay
global_step
decay_step (3)

Experimental Settings
We implemented our model with keras (with TensorFlow as
backend). All the experiments were performed on a workstation
with Inter Core i7 processor and three NVIDIA 1080 Ti GPUs.

We used 75 and 25% of the data for training and testing and
the accuracy was employed to evaluate our custom model. In
addition, we employed k-fold cross validation for the training set.

We divided the training dataset into 10 equal shares. For each
training time, nine shares were used for training and the other
one was used for validation. Finally, the mean of the results of 10
training sessions represented the accuracy of the training set.

In addition to accuracy, we also introduced three other
significant metrics vastly applied to evaluate a classification
model, including recall (R), precision (P), and F1 score. Using
TP, FN, FP, NP to denote the number of the positive samples
classified to positive, the positive sample classified as negative, the
negative samples classified as positive and the negative samples
classified as negative, respectively. Then, the R, P, and F1 score
can be defined as:

Recall =
TP

TP+ FP
(4)

Precision =
TP

TP+ FN
(5)

2
F1
=

1
R
+

1
P

(6)

Differently from the binary classification task, our custom model
has to figure out four different categories. Therefore, when we
calculate these metrics for each category, the positive samples
denote the target category and the other three categories would
be the negative samples. For example, when it comes to MCI, we
remark the MCI as positive samples and the NCI, dementia, and
contrast are all remarked as negative samples.

RESULTS

2D or 3D CNN
For traditional image classification task, 2D convolutional kernels
are more widely applied, since we normally regard an image as 2D
matrix without considering the discrete color channel. However,
quite differently from a traditional digital image, even without
considering the color channel, the MRI image still consists of
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three dimensions. More than the width and length of a traditional
image, we have to take the depth into account. If we just simply
apply traditional 2D convolutional kernels, the model will have
no ability to extract the spatial features among adjacent slices.
To compare the different performances of different models with
2D and 3D convolutional kernels, we also apply the VGG-16,
a wildly used and excellent 2D-based CNN model for natural
image classification task, to classify the SVCI disease. The results
obtained are shown in Table 1.

Loss and Accuracy
For our custom 3D-based deep CNNs, we trained the model for a
total of 50 epochs with random initialization. Meanwhile, we fine-
tuned the 2D-based VGG-16 model, which has been pre-trained
with ImageNet. After every epoch, we recorded both the values
of accuracy and loss function on the training dataset as well as
the testing dataset. Figure 4 shows the loss and accuracy curves
of our model for SVCI classification.

Our findings are that the 3D-based model performs much
better than 2D-based model. The main reason is that the 2D-
based model doesn’t have the ability to retract the structure
features among the adjacent slices, as described above. For the

TABLE 1 | Average evaluation metrics of 3D-based convolutional networks
compared to the traditional 2D-based convolutional networks.

Labels Classifier Recall Precision F1-score

Contrast 2D 0.61 0.62 0.61

3D 0.96 0.94 0.95

NCI 2D 0.59 0.54 0.56

3D 0.93 0.9 0.91

MCI 2D 0.57 0.55 0.56

3D 0.94 0.93 0.93

Dementia 2D 0.62 0.64 0.63

3D 0.95 0.91 0.93

3D-based model, the loss curves of the training set approach
0.017 after about 20 epochs, while the curves of the testing set
are stable at about 0.114. The loss curve continues to decline
and stabilize, demonstrating that the model works and there is
no slightly overfitting. The accuracy of training set and testing
set reached 99.7 and 96.9% after about 30 and 35 epochs,
respectively. However, the accuracy of 2D-based model is only
around 70%, which is much more poorly than the 3D-based
model’s performance.

DISCUSSION

In this paper we presented deep learning models for classification
of different cognitive performances in SIVD, which overcome
the limited feature set extracted by conventional handcrafted
methods. Using 3D-CNN, we were able to accurately recognize
SIVD from normal subjects, and discriminate within the SVCI
group between patients with different cognitive performances,
based on single FLAIR sequence. Higher-order deep features
were extracted and included in our deep learning model. The
accuracy of the training set and the testing set reached 99.7 and
96.9% after about 30 and 35 epochs, respectively. This result
is not surprising, as deep features reflect higher-order imaging
patterns and capture more imaging heterogeneity compared with
low-level shape, intensity, and texture features.

Nowadays, neuroimaging is an indispensable part of clinical
assessments and has an increasingly important role for early
detection of SVCI. Researchers have been devoting their efforts to
neuroimaging techniques and computational approaches for the
qualitative and quantitative analysis of pathological brain changes
related to SIVD. Prior classic machine-learning approaches for
linking imaging features to cognitive decline in SIVD patients
have relied on human-derived feature extraction. For example,
Ciulli et al. (2016) employed a functional tree classifier for the
classification of healthy subjects and VaMCI and the prediction of
cognitive performance by combining DTI parameters with brain

FIGURE 4 | The loss curve (A) and the accuracy curve (B) of both 2D- and 3D-based models.
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morphometry. Compared with previous methods that employed
low-level hand-crafted descriptors, our method can take
full advantage of spatial contextual information in MR
volumes to extract more representative high-level features
with FLAIR data alone, and hence achieve a much better
detection accuracy.

In the medical image processing field, especially for 3D
data computing tasks, 3D CNNs hold promising potentials but
have not been well explored in SIVD subjects yet. However,
3D CNNs based on MR images have been widely used in
the field of other medical imaging, including Alzheimer’s
disease (Sarraf and Tofighi, 2016; Jyoti and Yanqing, 2018),
detection of cerebral microbleeds (Dou et al., 2016), prediction
brain age (Cole et al., 2016), classifying genetic mutations
in glioma (Lao et al., 2017). In particular, the application
of 3D CNN in Alzheimer’s disease has reference value for
the subdivision diagnosis of SIVD. For neuroimaging data,
deep learning algorithms have potential of discovering latent
or hidden representations and efficiently capture the disease-
related pathologies. Payan and Montana (2015) trained sparse
autoencoders and 3D CNN models for AD diagnosis. They
also developed a 2D CNN model and found that the 3D
approach has a superior performance for the 3-way comparison,
as well as the AD vs. MCI and HC vs. MCI comparisons. In
this paper, we also used a 2D-based CNN model to classify
the SVCI disease. Finally, results proved that 3D-based CNN
model performed much better than 2D-based model for SVCI
disease classification. This result is similar to a previous AD
study. The main reason is that MRI imaging data consists
of numerous slices which have a continuous spatial positional
relationship, which is hard for a 2D-based network like VGG-16
to extract. This prompted the proposal for clinical evaluation with
MRI multiplanar reformation or volume scanning to improve
classification accuracy. Last but not least, we chose FLAIR
sequence as raw data for the deep learning of SIVD because of the
high-contrast display and maximum reflection of pathological
changes, which is different from studies of AD usually using
T1-weighted images as raw data.

Although the proposed method has achieved an appealing
performance with a high accuracy, there are still several
limitations. First, this is a retrospective study with a relatively
small sample size. In the future, large-scale multicenter
studies are required to fully assess the generalization ability
of the model. Second, the interpretation of the association
between the deep features and the cognitive performances
remain challenging. It might be related to complex biological
processes. Further studies are needed to establish a rationale
to explain the correlation between deep imaging features and
cognitive performances.

CONCLUSION

We presented an efficient and robust method to automatically
recognize SIVD from normal subjects and discriminate within
the SIVD group between patients with different cognitive
performances by 3D CNN-based deep learning. This provides a
global perspective method for clinical evaluation of SIVD from
convenient single MRI scan.
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