
fmicb-08-02445 December 5, 2017 Time: 16:45 # 1

ORIGINAL RESEARCH
published: 07 December 2017

doi: 10.3389/fmicb.2017.02445

Edited by:
Diego P. Morgavi,

INRA Centre Auvergne Rhône-Alpes,
France

Reviewed by:
Marc Didier Auffret,

Scotland’s Rural College,
United Kingdom

Francesco Rubino,
The University of Queensland,

Australia
Sandra Kittelmann,

AgResearch, New Zealand

*Correspondence:
Le L. Guan

lguan@ualberta.ca

Specialty section:
This article was submitted to

Microbial Symbioses,
a section of the journal

Frontiers in Microbiology

Received: 28 September 2017
Accepted: 24 November 2017
Published: 07 December 2017

Citation:
Neves ALA, Li F, Ghoshal B,

McAllister T and Guan LL (2017)
Enhancing the Resolution of Rumen

Microbial Classification from
Metatranscriptomic Data Using

Kraken and Mothur.
Front. Microbiol. 8:2445.

doi: 10.3389/fmicb.2017.02445

Enhancing the Resolution of Rumen
Microbial Classification from
Metatranscriptomic Data Using
Kraken and Mothur
Andre L. A. Neves1, Fuyong Li1, Bibaswan Ghoshal1, Tim McAllister2 and Le L. Guan1*

1 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, 2 Lethbridge
Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada

The advent of next generation sequencing and bioinformatics tools have greatly
advanced our knowledge about the phylogenetic diversity and ecological role of
microbes inhabiting the mammalian gut. However, there is a lack of information on the
evaluation of these computational tools in the context of the rumen microbiome as these
programs have mostly been benchmarked on real or simulated datasets generated from
human studies. In this study, we compared the outcomes of two methods, Kraken
(mRNA based) and a pipeline developed in-house based on Mothur (16S rRNA based),
to assess the taxonomic profiles (bacteria and archaea) of rumen microbial communities
using total RNA sequencing of rumen fluid collected from 12 cattle with differing feed
conversion ratios (FCR). Both approaches revealed a similar phyla distribution of the
most abundant taxa, with Bacteroidetes, Firmicutes, and Proteobacteria accounting for
approximately 80% of total bacterial abundance. For bacterial taxa, although 69 genera
were commonly detected by both methods, an additional 159 genera were exclusively
identified by Kraken. Kraken detected 423 species, while Mothur was not able to assign
bacterial sequences to the species level. For archaea, both methods generated similar
results only for the abundance of Methanomassiliicoccaceae (previously referred as
RCC), which comprised more than 65% of the total archaeal families. Taxon R4-41B
was exclusively identified by Mothur in the rumen of feed efficient bulls, whereas Kraken
uniquely identified Methanococcaceae in inefficient bulls. Although Kraken enhanced
the microbial classification at the species level, identification of bacteria or archaea in
the rumen is limited due to a lack of reference genomes for the rumen microbiome. The
findings from this study suggest that the development of the combined pipelines using
Mothur and Kraken is needed for a more inclusive and representative classification of
microbiomes.

Keywords: rumen microbiota, bacteria, archaea, kraken, mothur

INTRODUCTION

The success of microbiome studies (composition, structure, diversity, and function) is primarily
ascribable to the development of bioinformatics tools embedded in creative algorithms specially
tailored to overcome the technical challenges posed by the analysis of massively paralleled, high-
throughput sequencing data (Simon and Daniel, 2011; Siegwald et al., 2017). These bioinformatics
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tools make use of several techniques (e.g., read mapping, k-mer
alignment, and composition analysis) (Piro et al., 2017) and
can be categorized into two distinct groups: (1) programs that
use all available genome sequences (Lindgreen et al., 2016),
also called assignment-first approaches (Siegwald et al., 2017)
(e.g., CLARK – Ounit et al., 2015; GOTTCHA – Freitas et al.,
2015; KRAKEN – Wood and Salzberg, 2014; MG-RAST – Meyer
et al., 2008), and (2) programs that target a set of marker genes
(Lindgreen et al., 2016), also known as clustering-first approaches
(Siegwald et al., 2017) (e.g., QIIME – Caporaso et al., 2010;
MOTHUR – Schloss et al., 2009; MetaPhlAn – Segata et al.,
2012; mOTU – Sunagawa et al., 2013). In the assignment-first
tools, all reads are assigned to the lowest taxonomy unit (lower
common ancestor-LCA) within a reference database based on
their annotations, while in the clustering-first approaches the
reads are grouped into Operational Taxonomic Units (OTUs)
using different OTU picking strategies (closed or open reference)
to assign reads to a taxonomic group based on their sequence
similarities (Siegwald et al., 2017).

However, most of the above studies are focused on
demonstrating how single analytical steps (e.g., sequence pre-
processing, OTU clustering or taxonomic assignment) generated
by the existing tools impact the microbial classification in real
or simulated datasets derived from the Human Microbiome
Project (Siegwald et al., 2017). Comparison of methodologies to
comprehensively classify the rumen microbiome is lacking which
may be in part due to its complexity, as the rumen microbial
community consists of bacteria, archaea, protozoa and fungi
(Russell and Rychlik, 2001). A recent study by Li F. et al. (2016)
developed a Mothur (Schloss et al., 2009) based pipeline to assess
active rumen microbiota from data generated from total RNA
sequencing. Later, the same researchers applied this pipeline
to investigate linkages between the active rumen microbiome
(structure and function) and feed efficiency in beef cattle using
metatranscriptomics (Li and Guan, 2017). Using the developed
mothur-based pipeline for taxonomic assignment, the authors
identified that the active microbial taxa differed in the rumen
of cattle with differing feed efficiency and suggested that the
active rumen microbiome is one of the biological factors that
may contribute to variations in feed efficiency in beef cattle
(Li and Guan, 2017). There were two steps employed in
taxonomic classification by Li F. et al. (2016): bacterial sequences
belonging to V1–V3 regions were extracted from the aligned
Greengenes database, and archaeal sequences belonging to the
V6–V8 regions were aligned with a rumen-specific archaeal
16S rRNA gene database (Janssen and Kirs, 2008). Despite the
efficacy of this pipeline, it still remains a challenge for researchers
to determine which approach (assignment- or clustering-first
methods) of taxonomic classification delivers the most realistic
representation of rumen microbial ecology.

In the current study, we propose a comparative analysis of the
outcomes of Kraken (Wood and Salzberg, 2014) and the pipeline
of Li F. et al. (2016) with a focus on the biological interpretation
of the rumen microbial classification from the perspective of
two conceptually different software packages. Unlike the pipeline
developed by Li F. et al. (2016), Kraken algorithms can make
multiple comparisons of single or assembled k-mers against any

hypervariable region, providing useful information regarding
a particular species detected in a region of the 16S rRNA
gene that is different from the targeted internal conserved
region initially sequenced (Wood and Salzberg, 2014; Valenzuela-
González et al., 2016). Although Kraken algorithms have been
originally designed to assign taxonomic identity to short DNA
reads (Wood and Salzberg, 2014), studies have shown that Kraken
is also useful to provide taxonomic classification for long (up to
1352.1 ± 153.72 bp) metagenomic DNA sequences (Valenzuela-
González et al., 2016). Therefore, our objectives were (i) to
compare and contrast the pipeline of Li F. et al. (2016) and Kraken
to assess the taxonomic profiles of rumen bacteria and archaea
and (ii) to investigate the impact of the comparative analysis of
both analytical approaches on the biological interpretation of the
rumen microbial classification obtained from cattle exhibiting
different feed efficiencies.

MATERIALS AND METHODS

Animal Study and Sampling
The experimental procedures described in this study were
approved by the Veterinary Services and the Animal Care
Committee, University of Manitoba, Canada, to ensure that
animals were cared for in compliance with those ethics. Rumen
contents were collected from 12 purebred Angus bulls (mean age
of 249 ± 22 days and average body weight of 313.9 ± 32 kg)
raised in confinement at the Glenlea Research Station located
at the University of Manitoba according to the guidelines of the
Canadian Council on Animal Care (CCAC) (Olfert et al., 1993),
with bulls being fed a forage diet over two 80-day feeding periods
(with a 20-day adaptation in between) as described by Thompson
(2015). In the current study, 250 ml of rumen contents (liquid
and solid fractions) were collected at the end of the second
feeding period using a Geishauser oral probe (Duffield et al.,
2004), immediately snap frozen in liquid nitrogen, and stored at
−80◦C for later processing. The feed intake of individual bulls
was recorded using the GrowSafe R© feeding system (GrowSafe
Systems Ltd., Airdrie, AB, Canada) and the feed conversion rate
(FCR) was calculated as a ratio of dry matter intake to average
daily gain (computed on a biweekly basis; Montanholi et al.,
2010). The bulls were ranked into two groups: high (n = 6) and
low (n = 6) FCR, with high (H-FCR) and low (L-FCR) standing
for inefficient and efficient cattle in terms of diet utilization,
respectively.

RNA Extraction and Sequencing
Total RNA was extracted from rumen samples using the TRIzol
protocol based on the acid guanidinium-phenol-chloroform
method (Chomczynski and Sacchi, 2006; Béra-Maillet et al.,
2009) with the modified procedures described by Li F. et al.
(2016). Briefly, ∼200 mg of rumen sample was subjected to
RNA extraction with the addition of 1.5 ml of TRIzol reagent
(Invitrogen, Carlsbad, CA, United States), followed by 0.4 ml of
chloroform, 0.3 ml of isopropanol, and 0.3 ml of high salt solution
(1.2 M sodium acetate, 0.8 M NaCl) for the extraction protocol
(Li F. et al., 2016). The yield and integrity of the RNA samples
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were determined using a Qubit 2.0 fluorimeter (Invitrogen,
Carlsbad, CA, United States) and Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, United States). RNA
samples were subjected to downstream RNA-sequencing only if
they exhibited RNA with integrity number (RIN) higher than
7.0. Briefly, total RNA (100 ng) of each sample was used for
library construction using the TruSeq RNA sample prep v2 LS
kit (Illumina, San Diego, CA, United States) without the mRNA
enrichment step (Li F. et al., 2016). The quality of libraries was
assessed using Agilent 2200 TapeStation (Agilent Technologies)
and Qubit 2.0 fluorimeter (Invitrogen). Finally, cDNA fragments
(∼140 bp) were paired-end (2 × 100 bp) sequenced using

an Illumina HiSeq 2000 system at the McGill University and
Génome Québec Innovation Centre (Montréal, QC, Canada).

Pipeline Settings
A flow chart is shown in Figure 1 to present the software
parameters used to obtain the microbial classification from either
Mothur (Schloss et al., 2009) or Kraken (Wood and Salzberg,
2014) taxonomic assignment strategies. In the pre-processing
steps, all fastq-formatted sequences were firstly uploaded into
FastQC1 for quality control and removal of ambiguous sequences,

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FIGURE 1 | Flow chart of the pipelines (Mothur and Kraken) presenting software parameters used to analyze the rumen microbiota. Part of this figure was adapted
from the pipeline published by Li F. et al. (2016).
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and then the software Trimmomatic (version 0.32; Bolger et al.,
2014) was used to trim residual artificial sequences, cut bases with
quality scores below 20, and remove reads shorter than 50 bp
(Li F. et al., 2016). After pre-processing, SortMeRNA (version
1.9; Kopylova et al., 2012) was used to sort the filtered reads
into fragments of 16S rRNA (for taxonomic identification using
Mothur) based on the rRNA reference databases SILVA_SSU
(release 119; Quast et al., 2013) and mRNA (for microbial
classification using Kraken). In the pipeline developed by
Li F. et al. (2016), sorted paired-end reads belonging to bacterial
and archaeal 16S rRNA were joined to increase the read length
by combining the forward and reverse sequences. After the
16S rRNA sequences were enriched, downstream analyses were
performed using Mothur (version 1.31.2; Schloss et al., 2009)
as described by Kozich et al. (2013) (Figure 1). For taxonomic
classification, bacterial and archaeal 16S rRNA sequences were
aligned with the V1–V3 region-enriched Greengenes database
(DeSantis et al., 2006) and the V6–V8 region-enriched rumen-
specific archaea database (Janssen and Kirs, 2008, which was
updated from Kittelmann et al., 2013), respectively. De novo
chimera detection was then conducted using UCHIME (Edgar
et al., 2011), and non-chimeric sequences were taxonomically
assessed using a naive Bayesian method (Wang et al., 2007). The
pipeline developed by Li F. et al. (2016) will be referred as Mothur
through the rest of the paper.

As for the Kraken pipeline (Wood and Salzberg, 2014), newly
developed Perl scripts were used to retrieve all complete genomes
of bacteria (5,294) and archaea (209) from NCBI (RefSeq) (May
2016), to build a Kraken standard database (June 2016) based
on their annotations at the lowest taxonomic level (Figure 1).
Ninety-one complete genomes from organisms isolated from
the rumen or from ruminant feces or saliva deposited in the
Hungate1000 project were also retrieved from JGI’s IMG database
(using NCBI Taxon IDs). After downloading the genomes, the
script kraken-build (option –build) was used to set the lowest
common ancestors (LCAs) in a bacteria-archaea joint database
(size: 115G; number of sequences mapped to profiles: 10,174;
and time for database construction: 6h33m35s). Thereafter, each
pair of mRNA sequences was assembled by MEGAHIT (Li
et al., 2015), with the resulting contigs (with average extension
of 472.31 ± 31.10 bp) being assigned by Kraken (through
k-mer discrimination) to the LCA in the customized standard
database for microbial classification (Figure 1). Full taxonomic
names associated with each classified sequence (separated from
unclassified reads using kraken option –preload) and standard
ranks (from domain to species) for each taxon were provided by
kraken-translate and kraken-mpa-report (Figure 1).

Statistical Analysis
In this study, a phylotype was considered as classified by
both methods if it had at least one count detected in the 12
samples. For comparisons between H-FCR and L-FCR groups,
we investigated only bacterial and archaeal profiles with a relative
abundance > 0.1% prevalent in at least three samples (3 out 6)
to avoid sparsely observed counts, which tend to introduce noise
in the analysis (Chen and Li, 2013). The ANCOM procedure
(Mandal et al., 2015), which uses an alternative normalization

approach called Aitchison’s log-ratio transformation (Aitchison,
1982), was then used to normalize the sequence data and to
compare the normalized log ratio of the abundance of each
taxon to the abundance of all remaining taxa (Weiss et al.,
2017). To deal with zero counts in the datasets, ANCOM used
an arbitrary pseudo count value of 0.001 (Mandal et al., 2015).
Thereafter, Wilcoxon rank sum tests were calculated on each
log ratio to find differences between feed efficiency groups
(H-FCR vs. L-FCR) as provided by each classification method
(Mothur or Kraken) (Figure 1). The p-value of each test were
adjusted into false discovery rate (FDR) using the Benjamini-
Hochberg algorithm (Benjamini and Hochberg, 1995), and a
threshold of FDR lower than 0.15 (Korpela et al., 2016) was
applied to determine the significance due to the small sample
size of this study. Correlation circle plots and relevance networks
for core bacterial genera and archaeal species (with a relative
abundance > 0.1% detected in all rumen samples; Li and
Guan, 2017) were generated from the output of regularized
canonical correlation (rCC) analysis as implemented in the R
package mixOmics (Gonzalez et al., 2008) and Cytoscape 3.4.0
(Shannon et al., 2003). Before running rCC analysis, the data
was normalized by total sum scaling (TSS) (dividing each taxon
count by the total number of counts in each individual sample
to account for uneven sequencing depths across samples) and
then transformed by centered log ratio to project the data from a
simplex to a Euclidian space (Aitchison, 1982; Mandal et al., 2015;
Cao et al., 2016). Then, estimation of regularization parameters
(λ1 and λ2) and canonical correlations were calculated using the
cross-validation procedure (Gonzalez et al., 2008). Finally, alpha-
diversity indexes were calculated using the R package vegan (as
provided by each classification method) and compared between
FCR groups (H-FCR vs. L-FCR) using paired Wilcoxon signed
rank test. All statistical procedures were performed using R 3.3.2
(R Core Team, 2016).

Data Submission
The datasets analyzed in this study were submitted to NCBI
Sequence Read Archive (SRA) under the accession number
PRJNA403833.

RESULTS

Taxonomic Distribution of the Microbial
Profiles Performed by Mothur or Kraken
In this study, two bioinformatics approaches, Kraken and a
Mothur-based pipeline developed in-house by Li F. et al.
(2016), were used to obtain taxonomic classifications (bacteria
and archaea) of the ruminal microbiota in bulls exhibiting
different (P < 0.05) feed efficiencies (average FCR for H-FCR
group = 7.64 kg dry matter intake (DMI)/kg gain; average FCR
for L-FCR group= 5.71 kg DMI/kg gain; P = 0.008). Taking into
consideration the total number of microbial taxa in the samples,
Kraken identified a higher number of bacterial and archaeal
phylotypes at all taxonomic ranks than Mothur (Table 1). At
the phylum level, the results of bacterial profiles revealed a
similar taxa distribution of the most abundant taxa classified
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TABLE 1 | Quantification of taxonomic phylotypes identified by each method.

Phylotypes Mothur1 Kraken2 Commonly
detected

phylotypes
(N◦)

Classified
(N◦)

Unclassified
(N◦)

Classified
(N◦)

Bacteria

Phyla 23 1 26 16

Families 121 66 204 78

Genera 189 135 348 69

Species – – 423 0

Archaea

Phyla 1 1 2 1

Families 3 3 7 2

Genera 4 5 8 1

Species 5 6 8 1

1Pipeline to assess the rumen microbiota developed by Li F. et al. (2016) based
on Mothur (Schloss et al., 2009). Clustering-first approaches (such as Mothur)
allow the discrimination of unclassified reads (Siegwald et al., 2017). 2Metagenomic
sequence classification method developed by Wood and Salzberg (2014). Unlike
clustering-first approaches, assignment-first tools (such as Kraken) do not allow
the discrimination of unclassified reads (Siegwald et al., 2017).

by both methods (Tables 1, 2), with Bacteroidetes, Firmicutes,
and Proteobacteria being highly abundant and accounting for
approximately 80% of the total bacterial community. However,
Spirochaetes (4.9%) were the fourth-most abundant taxon
identified by Kraken, followed by Verrucomicrobia (2.3%),
Actinobacteria (2.1%), Tenericutes (1.9%), and Fibrobacteres
(1.2%). In contrast, Fibrobacteres (3.4%) was found to be
the fourth-most abundant taxon detected by Mothur, followed
by Spirochaetes (2.2%), Verrucomicrobia (1.7%), Tenericutes
(0.8%), and Cyanobacteria (0.6%). Although there was some
congruency (69 commonly detected taxa) at the most resolvable
level (up to genus) of bacteria in between the two pipelines,
an additional 159 genera were exclusively identified by Kraken.
Genera such as Ruminiclostridium, Lachnoclostridium, and
Acholeplasma were uniquely identified by Kraken, whereas
Ruminobacter, Coprococcus, YRC22, and Oscillospira were
exclusively detected by Mothur. As for the most abundant
genera, Kraken revealed Prevotella (33.5%), Treponema (4.1%),
Ruminoccocus (4.1%), Ruminiclostridium (3.2%), Bacteroides
(3.0%), Butyrivibrio (2.4%) and Clostridium (2.2%) at relatively
high abundances, while Mothur identified Prevotella (22.6%),
Ruminoccocus (14.6%), Ruminobacter (4.9%), Fibrobacter (4.3%),
Treponema (2.4%), and Butyrivibrio (1.2%) as more abundant.
It is worth noting that although Mothur could theoretically
classify sequences at the species level, it was not able to assign
bacterial contigs further than the genus level in the current
study. Conversely, Kraken detected 423 species (Tables 1, 2)
such as Prevotella ruminicola (27.6%), Butyrivibrio proteoclasticus
(2.8%), Treponema succinifaciens (2.6%), Ruminiclostridium sp
KB18 (2.2%), and Fibrobacter succinogenes (1.8%). A complete
list of all bacteria phylotypes (in all taxonomic ranks) classified
by Mothur or Kraken is provided in Supplementary Tables 1, 2,
respectively. In addition, the direct comparisons of the bacterial
taxonomic assignments obtained from both methods across all
samples are included in Supplementary Table 3.

In terms of archaea identification, both methods exhibited
similar results on the abundance of Methanomassiliicoccaceae
(previously referred to as RCC), which comprised more than
65% of the total archaeal families (Table 3). However, the two
methods generated significantly different archaeal profiles at the
species level, with 7 species being exclusively identified by Kraken
and 4 taxa being exclusively detected by Mothur (Tables 1, 3).
Only Methanobrevibacter ruminantium was commonly detected
by the two methods, being the second-most abundant species
classified by Mothur and the seventh-most abundant identified by
Kraken. A detailed list of archaeal classification (in all taxonomic
ranks) for Mothur or Kraken can be found in the Supplementary
Tables 1, 2, respectively, together with the information on
the direct comparison of the archaeal taxonomic assignments
obtained from both methods across all samples included in
Supplementary Table 4.

Differences in Relative Abundances of
Taxa in H- vs. L-FCR Rumen Samples
To evaluate how the above two approaches affect the
biological interpretation of bacteria and archaea diversity
and community structure, comparisons of rumen microbiota
between H- and L-FCR cattle were performed. Differences in
microbial abundance between H- and L-FCR datasets were
found to be minimal (making up less than 1% of the total
microbial community), regardless of the classification method
(Tables 2, 3). In this regard, only the family R4-41B (exclusively
detected by Mothur) were more (FDR < 0.15) abundant in the
rumen of L-FCR bulls, while the family Actinomycetaceae was
more (FDR < 0.15) abundant in L-FCR samples classified by
Kraken (Table 2). Methanococcaceae and Xenorhabdus exhibited
a higher (FDR < 0.15) abundance in the rumen of H-FCR
bulls when sequences were exclusively classified by Kraken
(Tables 2, 3).

In addition, alpha-diversity indexes of bacteria (genus level)
and archaea (species level) were compared between H- and
L-FCR groups to determine how the two pipelines differed in
microbial biodiversity estimates. Shannon, Inverse Simpson and
Simpson (with rarefy) indexes were higher (P < 0.05, paired
Wilcoxon signed rank test) in H-FCR than in L-FCR bulls as
shown by both pipelines (Table 4). On the other hand, a higher
(P < 0.05, paired Wilcoxon signed rank test) archaeal diversity
in the H-FCR group was observed only by the Kraken pipeline
(Table 4).

Potential Interactions between Bacteria
and Archaea Detected by Mothur or
Kraken
To investigate interactions among different taxa classified
by Kraken or Mothur, rCC analysis was implemented to
identify relationships within and between bacteria and archaea
communities. Our results revealed that bacteria and archaea
interactions were quite contrasting between the two methods,
with the microbial groups exhibiting different correlation
outcomes as shown in Figure 2. Within bacterial communities,
negative correlations between Prevotella, Treponema, Fibrobacter
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and Ruminobacter, Butyrivibrio, and Ruminoccocus were
observed using the Mothur pipeline (Figure 2A), while
Prevotella and Bacteroides were negatively correlated with
Treponema, Fibrobacter and Ruminoccocus when Kraken was
used (Figure 2C). Associations within archaeal species were also
different between the two methods, with Methanobrevibacter
gottschalkii and Methanobrevibacter ruminantium being
negatively correlated with each other from the Mothur pipeline,
and Candidatus Methanoplasma termitum and Candidatus
Methanomethylophilus alvus exhibiting negative correlations
with each other in the Kraken pipeline (Figures 2A,C). Relevance
networks of the associations between bacteria and archaea
revealed a positive correlation between Methanobrevibacter
ruminantium and Fibrobacter, RFN20, Treponema, and
BF311, and a positive correlation between Methanobrevibacter
gottschalkii and Ruminococcus, Butyrivibrio, and Succiniclasticum
based on the microbial classification by Mothur (Figure 2B).
On the other hand, the positive correlations were detected
between Candidatus Methanoplasma termitum and Prevotella,

Porphyromonas, Bacillus, Sphingobacterium, and Moraxella, as
well as between Candidatus Methanomethylophilus alvus and
Fibrobacter, Eubacterium, and Mageeibacillus in the classification
provided by Kraken (Figure 2D).

DISCUSSION

In this study, the comparison of taxonomic outcomes of two
pipelines, Mothur (developed by Li F. et al., 2016) and Kraken
(developed by Wood and Salzberg, 2014, and adapted to the
conditions of this study), was performed to determine which
is a better approach in rumen microbial classification when
total RNA-seq data were used. The advent of high-throughput
sequencing has greatly advanced our knowledge of the ecology
and functional capacity of rumen microbes and their role
in converting low-quality and unusable feedstuffs into energy
sources for host productivity (McCann et al., 2017). As a result,
an assiduous effort has been made to unveil the linkage between

TABLE 2 | Differentially abundant bacteria in efficient (low FCR) and inefficient (high FCR) cattle according to the two classification methods1,2,3.

Phylotypes Mothur Kraken

High (%) Low (%) High (%) Low (%)

Phyla

Bacteroidetes 35.0 ± 8.52 43.2 ± 6.98 37.7 ± 9.75 46.1 ± 11.35

Firmicutes 24.8 ± 9.53 19.2 ± 6.71 28.1 ± 7.01 22.6 ± 6.98

Proteobacteria 20.0 ± 4.88 14.6 ± 3.12 15.7 ± 2.59 12.8 ± 2.63

Fibrobacteres 2.50 ± 0.80 4.4 ± 1.28 1.1 ± 0.42 1.3 ± 0.31

Spirochaetes 2.0 ± 0.50 2.5 ± 0.33 4.6 ± 0.60 5.1 ± 1.02

Verrucomicrobia 1.4 ± 0.19 2.1 ± 0.82 2.1 ± 0.42 2.4 ± 0.62

Families

Prevotellaceae 18.4 ± 6.73 23.7 ± 6.17 26.9 ± 10.48 35.3 ± 13.63

Ruminococcacea 10.2 ± 4.38 7.73 ± 3.89 8.4 ± 3.01 5.7 ± 3.33

Lachnopiraceae 7.1 ± 3.62 5.5 ± 2.23 7.1 ± 1.65 6.1 ± 1.95

Fibrobacteriacea 2.6 ± 0.83 4.6 ± 1.34 1.8 ± 0.37 1.67 ± 0.51

Spirochaetaceae 1.8 ± 0.56 2.3 ± 0.34 4.8 ± 0.73 5.3 ± 1.21

R4 – 41B 0.02 ± 0.037a 0.13 ± 0.118b – –

Actinomycetaceae – – 0.1 ± 0.03b 0.2 ± 0.04a

Genera

Prevotella 20.0 ± 8.28 25.2 ± 7.10 28.8 ± 10.75 37.5 ± 14.15

Ruminococcus 5.9 ± 2.88 4.4 ± 2.56 3.9 ± 1.70 2.7 ± 1.83

Fibrobacter 3.2 ± 1.12 5.5 ± 1.56 1.4 ± 0.56 1.6 ± 0.34

Butyrivibrio 1.0 ± 0.19 1.3 ± 0.68 2.2 ± 0.29 2.5 ± 1.31

Xenorhabdus – – 0.29 ± 0.246a 0.04 ± 0.036b

Species

Prevotella ruminicola – – 23.0 ± 9.99 31.6 ± 13.15

Butyrivibrio proteoclasticus – – 2.6 ± 0.33 2.9 ± 1.44

Ruminiclostridium sp KB18 – – 2.8 ± 0.98 1.6 ± 1.14

Fibrobacter succinogens – – 1.6 ± 0.66 1.8 ± 0.37

Ruminococcus albus – – 1.7 ± 0.89 1.0 ± 0.77

1Statistical comparisons were obtained by the application of ANCOM (Mandal et al., 2015) on taxa counts determined by Mothur (OUTs) or Kraken (K-mers), and thus
estimators are comparable only between High (n = 6) and Low (n = 6) FCR cattle as provided by each classification method. 2P-values were obtained using Wilcoxon
exact test (calculated on the log-ratio matrix; Mandal et al., 2015), and then adjusted to FDR using Benjamini–Hochberg algorithm (Benjamini and Hochberg, 1995).
A threshold of FDR < 0.15 was applied to determine significance. Within a row, means with different superscript are statistically different between High and Low FCR
cattle for each method (separately). 3Blank spaces indicate that the phylotypes were not detected in the dataset either by Mothur or Kraken.
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the rumen microbiota and phenotypic traits of interest such
as feed efficiency (Li and Guan, 2017), enzyme discovery (Qi
et al., 2011) and methane emissions (Kittelmann et al., 2014;
Shi et al., 2014; Kamke et al., 2016). Metagenomic studies
have shown that the host may regulate the microbiota and its
metabolic activity in relation to feed efficiency (FCR) through
host-microbiome cross talk genes such as TSTA3 (GDP-L-fucose
synthetase) and Fucl (L-fucose isomerase), suggesting that the
relative abundance of these genes could be used as a predictor

for host feed efficiency (Roehe et al., 2016). Although the number
of rumen metagenomics and metatranscriptomics studies has
grown enormously over the last couple of years (McCann et al.,
2017), the functional outcomes and biological interpretation of
omics data strongly depend on the computational methods used
(Simon and Daniel, 2011; Siegwald et al., 2017). In this study,
both Mothur and Kraken pipelines showed the rumen of the
bulls to be dominated by Prevotella, Treponema, Ruminoccocus,
Fibrobacter, and Butyrivibrio, which are considered as part of

TABLE 3 | Differentially abundant archaea in efficient (low FCR) and inefficient (high FCR) cattle according to the two classification methods1,2,3.

Phylotypes Mothur Kraken

High (%) Low (%) High (%) Low (%)

Families

RCC and relatives 73.2 ± 3.77 71.9 ± 13.12 – –

Methanomassiliicoccaceae – – 65.5 ± 9.92 67.1 ± 11.29

Methanococcaceae – – 13.6 ± 8.96a 4.1 ± 4.85b

Methanobacteriaceae 23.9 ± 4.19 24.8 ± 13.75 6.0 ± 6.42 7.0 ± 7.52

Methanosarcinaceae 0.3 ± 0.35 0.6 ± 0.72 5.6 ± 8.51 10.7 ± 5.32

Genera

Candidatus Methanoplasma – – 49.0 ± 13.61 55.4 ± 9.51

Candidatus Methanomethylophilus – – 19.0 ± 7.92 12.8 ± 6.78

Methanosarcina – – 5.1 ± 9.20 11.0 ± 5.81

Methanobrevibacter 21.8 ± 3.85 21.8 ± 10.53 4.7 ± 5.01 5.3 ± 5.35

Methanosphaera 0.8 ± 0.47 1.2 ± 1.57 – –

Methanimicrococcus 0.3 ± 0.33 0.6 ± 0.70 – –

Species

Candidatus Methanoplasma termitum – – 51.0 ± 14.27 62.8 ± 11.23

Candidatus Methanomethylophilus alvus – – 19.7 ± 8.28 14.6 ± 8.09

Methanobrevibacter gottschalkii and relatives 14.8 ± 3.60 14.7 ± 6.11 – –

Methanobrevibacter ruminantium 3.8 ± 1.70 4.0 ± 4.19 2.4 ± 4.05 1.2 ± 3.14

Methanobrevibacter wolinii and relatives 0.1 ± 0.14 0.2 ± 0.32 – –

Methanobrevibacter woesei 0.1 ± 0.10 0.05 ± 0.06 – –

Methanobrevibacter smithii 0.03 ± 0.07 0.10 ± 0.14 – –

1Statistical comparisons were obtained by the application of ANCOM (Mandal et al., 2015) on taxa counts determined by Mothur (OUTs) or Kraken (K-mer), and thus
estimators are comparable only between High (n = 6) and Low (n = 6) FCR cattle as provided by each classification method. 2P-values were obtained using Wilcoxon
exact test (calculated on the log-ratio matrix; Mandal et al., 2015), and then adjusted to FDR using Benjamini–Hochberg algorithm (Benjamini and Hochberg, 1995).
A threshold of FDR < 0.15 was applied to determine significance. Within a row, means with different superscript are statistically different only between High and Low FCR
cattle for each method (separately). 3Blank spaces indicate that the phylotypes were not detected in the dataset either by Mothur or Kraken.

TABLE 4 | Comparison of bacterial and archaeal alpha-diversity indexes between efficient (low FCR) and inefficient (high FCR) cattle according to the two microbial
classification methods1

Bacteria Archaea

Indexes Mothur Kraken Mothur Kraken

High Low High Low High Low High Low

Number of observed phylotypes 244.1 ± 23.88 239.3 ± 19.98 241.1 ± 28.29 224.5 ± 28.37 8.8 ± 1.33 8.8 ± 0.75 5.0 ± 0.89 4.5 ± 1.05

Shannon2 2.78 ± 0.12a 2.73 ± 0.14b 3.93 ± 0.42a 3.51 ± 0.62b 0.90 ± 0.08 0.91 ± 0.28 1.27 ± 0.19a 1.06 ± 0.25b

Inverse Simpson 9.8 ± 1.93a 8.7 1.82b 12.7 ± 5.75a 8.8 ± 5.60b 1.74 ± 0.13 1.85 ± 0.61 2.95 ± 0.89a 2.30 ± 0.64b

Simpson (with rarefy) 0.89 ± 0.03a 0.88 ± 0.03b 0.90 ± 0.07a 0.83 ± 0.11b 0.42 ± 0.05 0.42 ± 0.15 0.64 ± 0.04a 0.54 ± 0.05b

1Within a row, means with different superscript were different at P < 0.05. Comparison was conducted using paired Wilcoxon signed rank test for bacteria (genus level)
and archaea (species level) separately for High and Low FCR cattle as provided by each classification method, and thus estimators between bacterial and archaeal groups
are comparable only within each method and between High and Low FCR animals. 2Shannon indices showed in the table are the raw values, and the comparison of
Shannon indices between High and Low FCR cattle was based on the exponentially transformed values (Jost, 2007) using paired Wilcoxon signed rank test.
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FIGURE 2 | Correlation circle plots and relevance networks generated from the output of regularized canonical correlation (rCC) method (Total Sum
Scaling + Centered Log Ratio) applied to rumen bacteria (genera) and archaea (species) classified by Mothur or Kraken. (A,B) show the correlation and network
plots of the first two rCC components for Mothur. (C,D) Represent the correlation and network plots of the first two rCC components for Kraken. In the correlation
circle plots, bacteria (X) and archaea (Y) are shown inside a circle of radius 1 centered at the origin, with strongly associated (or correlated) variables being projected
in the same direction from the origin. The greater the distance from the origin indicates stronger association. Two circumferences of radius 1 and 0.5 are plotted to
reveal the correlation structure of the variables (Gonzalez et al., 2008). In the relevance networks, red and green edges indicate positive and negative correlations
respectively, and the sizes of the nodes indicate the mean average abundance. Only bacterial genera and archaeal species with a relative abundance > 0.1%
detected in all rumen samples were included in the rCC analysis (Li and Guan, 2017).

a “core bacterial microbiome” (Henderson et al., 2016). In
addition to the mutual “core microbiome” shared by the two
pipelines at the genus level, Kraken detected a relatively high
abundance of (1) Prevotella ruminicola (Supplementary Table 2),
which is involved in the ruminal digestion of hemicellulose
and pectin (Marounek and Duskova, 1999); (2) Fibrobacter
succinogenes (Supplementary Table 2), a gram-negative, fiber
degrader species (Suen et al., 2011); and (3) non-motile species
within the Ruminoccocus genus (Supplementary Table 2) that

share different niches (La Reau et al., 2016): R. bicirculans,
which selectively utilizes hemicelluloses but not cellulose or
arabinoxylan (Wegmann et al., 2014), and R. albus, which is
capable of digesting cellulose and xylan (Christopherson et al.,
2014).

Interestingly, both methods identified about 1% of
Cyanobacteria (Supplementary Tables 1, 2), corroborating the
findings of previous studies that have reported low abundances
of these oxygenic phototrophic bacteria in the rumen of dairy
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(Scharen et al., 2017) and beef cattle (Li and Guan, 2017), and
of camels (Gharechahi et al., 2015). Cyanobacteria are aerobic
bacteria that can perform carbohydrate fermentation in a
deficient N2 concentration (heterocystous) or in a combination
of N2 deficiency and anoxic conditions (non-heterocystous)
(Nandi and Sengupta, 1998). Although the ruminal environment
is widely considered to be anaerobic, significant concentrations
of O2 (60 and 100 nmol/min per mL) can be detected in
the rumen fluid (Newbold et al., 1996), indicating that the
presence of Cyanobacteria in the rumen may be related to O2
scavenging and sugar fermentation performed under restrict
aerobic conditions. It is important to mention that although
Cyanobacteria has been widely detected in aqueous and soil
environments (Williams et al., 2004; Cruz-Martinez et al., 2009),
the identification of this phylum in the mammals’ gut has raised
critical questions on what roles these organisms may play in
aphotic and anaerobic habitats (Soo et al., 2014) like the rumen.
Recent researches have reported that gut Cyanobacteria are
highly conserved but their 16S rRNA gene phylogenetic tree
differed from the photosynthetic Cyanobacteria, which led to
the designation of a new candidate class called Melainabacteria
(Soo et al., 2014) whose members are capable of fermenting a
range of sugars (e.g., glucose, fructose, sorbitol) into acetate and
butyrate in the gut (Di Rienzi et al., 2013). Neither Kraken nor
Mothur identified Melainabacteria in the samples, demonstrating
that further studies are needed to disentangling its role in the
rumen.

However, the two methods (Kraken and Mothur) generated
microbial classification at different taxonomic levels for rumen
bacteria. To completely understand the function of the rumen
microbiota, it is essential to identify organisms at the species
level since different species, within the same genus, can have
varied functions and niches. The Mothur based method was
useful to identify a diverse bacterial microbiota from the
RNA-seq datasets, but it was not able to classify any of the
bacterial sequences further than the genus level (Tables 1, 2).
Microbial classification up to the species level is a major
challenge for clustering-first approaches based on targeted
regional 16S rRNA when short (up to 250 bp) or even
longer reads generated from total RNA-seq are used to identify
environmental microbes (Xiang et al., 2017). Most existing
tools (for bacteria and archaea) lack solid probabilistic-based
criteria to evaluate the accuracy of taxonomic assignments
to determine the best-matched database hits to distinguish
multiple species from the targeted sequence region of the
16S rRNA gene (Xiang et al., 2017). To identify bacteria at
the species level, sequencing of full length of 16S rRNA is
desired and thus future studies need to increase the sequence
length to enhance the resolution for microbial identification.
For the Kraken based approach, the reference database was
built based on all known microbial genomes and as a result it
generated a higher resolution (to the species level) of the rumen
microbiota, enabling the program to annotate each microbial
sequence to the LCAs (Wood and Salzberg, 2014). In this
process, k-mer paths formed by Kraken assign a specific weight
to each node (equal to the number of sequences associated
with the node’s taxon) while increasing the sensitivity of the

species classification even if regions (for example, V3–V5) of
the 16S rRNA gene were analyzed (Wood and Salzberg, 2014;
Valenzuela-González et al., 2016). Consequently, the generation
of chimeric trees using short or long input sequences is
improbable with Kraken as unlike other programs (such as
Ribosomal Database Project classifier and Mothur), it leaves out
specific sequences if there is insufficient evidence for classification
and they are designated as unclassified (Valenzuela-González
et al., 2016). Therefore, inputting short or long environmental
sequences (containing most of the 16S hypervariable regions
or mRNA sequences) into Kraken may generate a more
representative profile of complex microbiomes (Valenzuela-
González et al., 2016) like the rumen. However, the lack of
reference genomes for rumen microorganisms also limits Kraken.
For example, the classification of Xenorhabdus (Table 2) and
Xenorhabdus doucetiae [data not shown; relative abundance
(%): H-FCR, 0.1 ± 0.10 found in 6 samples; L-FCR, 0%],
a motile, gram-negative soil bacterium usually described as
being part of entomopathogenic nematode/bacterium symbiotic
complex (Furgani et al., 2008) has not been previously
reported in amplicon based sequencing (Li F. et al., 2016)
or metagenomic/metatranscriptome sequencing (Li and Guan,
2017) of rumen contents. The classification of this bacterial
species may indicate that Kraken did not properly identify the
microbe since the reference genome information was built mostly
from all microbial genomes annotated in the NCBI database.
However, these organisms may have been actually detected in the
rumen since cattle can consume soil, raising the possibility that
their detection was transitory.

It is noteworthy that Methanobrevibacter (family Methano-
bacteriaceae) was identified in both databases (Supplementary
Tables 1, 2, and 4). This genus has been reported to be the most
abundant archaeal population in the rumen based on DNA
datasets (Kittelmann et al., 2013; Henderson et al., 2016), but it
had a lower abundance than Methanomassiliicoccaceae at the
RNA level in this study. This result is consistent with the research
conducted by Li F. et al. (2016), who reported a predominance
of Methanomassiliicoccaceae over Methanobrevibacter in
RNA-based datasets when compared to DNA Amplicon-seq
outcomes, suggesting that Methanomassiliicoccaceae may
be more active in the rumen than Methanobacteriaceae.
However, further studies are needed to determine whether
the differences in abundance between those two archaeal
populations have a methodological influence or are controlled
by diet, host animal or management strategies. Unlike bacterial
classification, Kraken and Mothur generated contrasting results
on archaea identification (Table 3), which reflects the divergent
taxonomic profiles at the species level. For example, certain
archaeal genomes, such as Methanobrevibacter wolinii and
Methanobrevibacter woesei, were only found in the rumen-
specific archaea database, as the Kraken standard database
lacked these complete genomes. However, Kraken was able to
detect Candidatus Methanoplasma termitum and Candidatus
Methanomethylophilus alvus, which were not identified by
Mothur pipeline. Li Y. et al. (2016) isolated the archaeon
ISO4-H5 (member of the order Methanomassiliicoccales)
from the sheep rumen and discovered that this archaeal taxon
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exhibited genome size (1.9 Mb) and GC content (54%) similar to
Candidatus Methanoplasma termitum (enriched from the termite
gut) and Candidatus Methanomethylophilus alvus (enriched from
human feces). These two species encode pathways required
for hydrogen-dependent methylotrophic methanogenesis by
reduction of methyl substrates, without the ability to oxidize
methyl substrates to carbon dioxide (Li F. et al., 2016). Thus,
it is possible that these microbes reside in the rumen. Future
analysis with archaeon ISO4-H5 sequences included in the
databases of both pipelines as well as its isolation, culture
and characterization may provide further evidence of this
possibility.

To further verify how these two methods affected data
interpretation, the rumen microbiota of H-FCR and L-FCR bulls
were compared based on the taxonomic outcomes generated
by the two software packages. Both computational pipelines
revealed differences in microbial abundance between H- and
L-FCR groups at all taxonomic ranks, with Mothur exclusively
identifying a higher abundance of poorly characterized bacterial
phylotypes (e.g., R4-41B) in L-FCR bulls (Table 2). It has been
reported that the abundance of R4-41B was negatively correlated
with production traits over the first 12 weeks postpartum in
dairy cows (Lima et al., 2015), suggesting that it may have
undesirable impacts on the function of the rumen microbiome
of L-FCR cattle. Although Kraken identified a relatively higher
abundance of Xenorhabdus in H-FCR bulls (Table 2), this result
could be erroneous with further validation needed as described
above. However, researchers have enumerated and identified
a high number (15.7 × 104 Most Probable Number/g) of
chlortetracycline resistant Enterobacteriacea in cattle feces that
largely consisted of Xenorhabdus doucetiae (Watanabe et al.,
2016). Since antimicrobial agents (e. g., chlortetracycline) are
typically administered subtherapeutically to beef cattle (Inglis
et al., 2005), our results suggest that H-FCR animals may be
more susceptible to harbor chlortetracycline resistant bacteria
than L-FCR animals in the event of a therapeutic administration
of this antibiotic. Further investigations aiming to evaluate
the effects of antimicrobial agents (e. g., chlortetracycline) on
the development of antimicrobial resistance in Xenorhabdus
recovered from less efficient cattle (H-FCR) are warranted.
Kraken also detected a higher (P = 0.09) abundance of
Methanococcaceae [relative abundance (%): H-FCR, 13.6± 8.96;
L-FCR, 4.1 ± 4.85] in the rumen of H-FCR bulls, indicating
that Methanococcaceae may play a potential role in the
linkages between methanogenesis and reduced feed efficiency in
cattle. Although RNA-targeted DNA probes and genomic DNA
sequencing have revealed a significant population of this archaeal
family residing in the rumen (Janssen and Kirs, 2008) and
exhibiting a positive correlation with increased forage content
in the diet (Pitta et al., 2016), members of this methanogenic
archaea family still need to be cultured from the rumen to test
our findings.

Finally, our study demonstrated that both pipelines (Mothur
and Kraken) were effective in detecting a lower bacterial
diversity in efficient (L-FCR) cattle (Table 4), corroborating
the recent findings by Li and Guan (2017) and (Shabat et al.,
2016) that the rumen microbiota of efficient cattle is less

complex and more specialized in harvesting energy from the diet
through simpler metabolic networks (e.g., acrylate pathway) than
inefficient cattle. However, only Kraken identified a significantly
lower diversity in the archaeal community in L-FCR bulls, but
this result should be carefully interpreted as many archaea
phylotypes classified by Kraken are environmental organisms
that have not yet been described in the rumen. For example, the
methane-producing archaeon Methanothermococcus okinawensis
(the third-most abundant archaea taxon classified by Kraken,
Supplementary Table 2) was first isolated from a deep-sea
hydrothermal vent system (Takai et al., 2002), Picrophilus
torridus and Acidilobus saccharovorans (the fourth and fifth-
most abundant archaea taxa detected by Kraken, Supplementary
Table 2) were isolated from a dry solfataric field (Fütterer et al.,
2004) and a terrestrial acidic hot spring (Mardanov et al., 2010),
respectively. Thus, it is worth mentioning that, in spite of
the Kraken’s promising results, this pipeline is severely limited
when studying a microbiome that is not well described in its
standard database (like the rumen), indicating that Mothur
(using a specific archaea database described by Li F. et al.,
2016) could be more suited for identifying archaeal taxonomic
profiles.

CONCLUSION

The current study is the first to compare the molecular-
phylogenetic outcomes of Mothur and Kraken using
transcriptomic sequence data (∼140 bp in length) of rumen
samples. The Kraken pipeline has been adapted to include
reference genomes for rumen specific organisms, which has
led to the identification of rumen bacteria at species level
and more bacterial phylotypes. However, the results of the
archaeal classification as well as some of the bacterial species
identified by Kraken should be carefully interpreted as many
detected phylotypes have not yet been described in the rumen,
highlighting the importance of strengthening the Kraken
database through the inclusion of more genomes annotated
by single cell sequencing of rumen cultures/isolates to enable
a more accurate classification. As to the future directions, we
plan to include new sequenced genomes (410 draft bacterial and
archaeal genomes) by Hungate1000 project (JGI database) into
Kraken standard database and the recently developed Rumen
and Intestinal Methanogen Database (Seedorf et al., 2014) for
further analysis, with the goal of improving the accuracy of the
results. We also propose the configuration of a joint pipeline
using both Kraken and Mothur simultaneously to improve the
resolution of taxonomic profiling of the rumen microbiome.
This joint pipeline will produce a final rumen microbial profile
obtained from the combination of multiple results generated
from different bioinformatics tools as outlined by Piro et al.
(2017), who published a computational method called MetaMeta
that executes and integrates results from six metagenomic
analysis tools (CLARK – Ounit et al., 2015; DUDes – Piro et al.,
2016; GOTTCHA – Freitas et al., 2015; KRAKEN – Wood and
Salzberg, 2014; KAIJU – Menzel et al., 2016; and mOTUs –
Sunagawa et al., 2013). If the rumen microbiome datasets are
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strengthened to the same level as the human databases, the joint
pipeline will generate more sensitive and reliable results than
those of the best single profile (generated separately by each tool)
(Piro et al., 2017). We also believe that a joint pipeline supported
by a collection of tools could be useful to control sources
of variation present in any metagenomics/metatranscriptomic
analysis (e.g., analytical pipelines, related databases and software
parameters), which will ultimately lead to standardized results
and more reliable biological interpretations. In addition,
although Kraken has improved the taxonomic assessment
at species level, the high number of unclassified sequences
(65%) suggests a need for identifying rumen microbes with
a more resolved taxonomic classification. Regardless of the
approach we undertake, the only way for improvement is
through a continued strengthening of the databases by including
additional information of whole genome sequencing of rumen
isolates as well as single cell sequencing of unculturable rumen
microbes, as the ability to culture rumen microorganisms is still
limited.

AUTHOR CONTRIBUTIONS

AN and LG conceived and designed the experiment. AN and
BG executed Kraken, and FL executed the pipeline based on
Mothur. AN analyzed the data and performed the statistical
analysis. AN, FL, and BG executed the experiment and wrote
the manuscript. LG and TM contributed to the experiment and
revised the manuscript.

FUNDING

This project was supported by Alberta Livestock and Meat
Agency (Edmonton, AB, Canada) under the grant number
2013R029R as well as the NSERC discovery grant.

ACKNOWLEDGMENTS

The authors acknowledge Dr. Kim Ominski (University of
Manitoba, Canada) for providing the rumen samples used in this
study. They also acknowledge the Brazilian Agricultural Research
Corporation (EMBRAPA) and the Alberta Innovates Technology
Futures (AITF) for providing Ph.D. scholarships, as well as
Ms. Y. Chen and Dr. Kim-Anh Lê Cao for the assistance in the lab
and statistical analysis, respectively. They thank Dr. M. Watson
for helping us to devise customized Perl scripts to download the
genomes of bacteria and archaea that were used to build the
Kraken standard database. The shell scripts we used to download
the complete genomes to build the Kraken database and the
R code used for the rCC statistical analysis (Figure 2) can be
provided upon the request.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2017.02445/full#supplementary-material

REFERENCES
Aitchison, J. (1982). The statistical analysis of compositional data. J. R. Stat. Soc. B

Methodol. 44, 139–177.
Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate - a

practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol.
57, 289–300.

Béra-Maillet, C., Mosoni, P., Kwasiborski, A., Suau, F., Ribot, Y., and Forano, E.
(2009). Development of a RT-qPCR method for the quantification of
Fibrobacter succinogenes S85 glycoside hydrolase transcripts in the rumen
content of gnotobiotic and conventional sheep. J. Microbiol. Methods 77, 8–16.
doi: 10.1016/j.mimet.2008.11.009

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
doi: 10.1093/bioinformatics/btu170

Cao, K. A. L., Costello, M. E., Lakis, V. A., Bartolo, F., Chua, X. Y., Brazeilles, R.,
et al. (2016). MixMC: a multivariate statistical framework to gain insight into
microbial communities. PLOS ONE 11:e0160169. doi: 10.1371/journal.pone.
0160169

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput
community sequencing data. Nat. Methods 7, 335–336. doi: 10.1038/nmeth.
f.303

Chen, J., and Li, H. Z. (2013). Variable selection for sparse dirichlet-multinomial
regression with an application to microbiome data analysis. Ann. Appl. Stat. 7,
418–442. doi: 10.1214/12-aoas592

Chomczynski, P., and Sacchi, N. (2006). The single-step method of RNA
isolation by acid guanidinium thiocyanate-phenol-chloroform extraction:
twenty-something years on. Nat. Protoc. 1, 581–585. doi: 10.1038/nprot.2006.83

Christopherson, M. R., Dawson, J. A., Stevenson, D. M., Cunningham, A. C.,
Bramhacharya, S., Weimer, P. J., et al. (2014). Unique aspects of fiber

degradation by the ruminal ethanologen Ruminococcus albus 7 revealed
by physiological and transcriptomic analysis. BMC Genomics 15:1066.
doi: 10.1186/1471-2164-15-1066

Cruz-Martinez, K., Suttle, K. B., Brodie, E. L., Power, M. E., Andersen, G. L., and
Banfield, J. F. (2009). Despite strong seasonal responses, soil microbial consortia
are more resilient to long-term changes in rainfall than overlying grassland.
ISME J. 3, 738–744. doi: 10.1038/ismej.2009.16

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K.,
et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and
workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.
doi: 10.1128/AEM.03006-05

Di Rienzi, S. C., Sharon, I., Wrighton, K. C., Koren, O., Hug, L. A., Thomas,
B. C., et al. (2013). The human gut and groundwater harbor non-photosynthetic
bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife
2:e01102. doi: 10.7554/eLife.01102

Duffield, T., Plaizier, J. C., Fairfield, A., Bagg, R., Vessie, G., Dick, P.,
et al. (2004). Comparison of techniques for measurement of rumen pH in
lactating dairy cows. J. Dairy Sci. 87, 59–66. doi: 10.3168/jds.S0022-0302(04)
73142-2

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics
27, 2194–2200. doi: 10.1093/bioinformatics/btr381

Freitas, T. A. K., Li, P.-E., Scholz, M. B., and Chain, P. S. G. (2015). Accurate
read-based metagenome characterization using a hierarchical suite of unique
signatures. Nucleic Acids Res. 43:e69. doi: 10.1093/nar/gkv180

Furgani, G., Böszörményi, E., Fodor, A., Máthé-Fodor, A., Forst, S., Hogan, J. S.,
et al. (2008). Xenorhabdus antibiotics: a comparative analysis and potential
utility for controlling mastitis caused by bacteria. J. Appl. Microbiol. 104,
745–758. doi: 10.1111/j.1365-2672.2007.03613.x

Fütterer, O., Angelov, A., Liesegang, H., Gottschalk, G., Schleper, C., Schepers, B.,
et al. (2004). Genome sequence of Picrophilus torridus and its implications for

Frontiers in Microbiology | www.frontiersin.org 11 December 2017 | Volume 8 | Article 2445

https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02445/full#supplementary-material
https://doi.org/10.1016/j.mimet.2008.11.009
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1371/journal.pone.0160169
https://doi.org/10.1371/journal.pone.0160169
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1214/12-aoas592
https://doi.org/10.1038/nprot.2006.83
https://doi.org/10.1186/1471-2164-15-1066
https://doi.org/10.1038/ismej.2009.16
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.7554/eLife.01102
https://doi.org/10.3168/jds.S0022-0302(04)73142-2
https://doi.org/10.3168/jds.S0022-0302(04)73142-2
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/nar/gkv180
https://doi.org/10.1111/j.1365-2672.2007.03613.x
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02445 December 5, 2017 Time: 16:45 # 12

Neves et al. Enhancing the Rumen Microbial Classification

life around pH 0. Proc. Natl. Acad. Sci. U.S.A. 101, 9091–9096. doi: 10.1073/
pnas.0401356101

Gharechahi, J., Zahiri, H. S., Noghabi, K. A., and Salekdeh, G. H. (2015). In-depth
diversity analysis of the bacterial community resident in the camel rumen. Syst.
Appl. Microbiol. 38, 67–76. doi: 10.1016/j.syapm.2014.09.004

Gonzalez, I., Dejean, S., Martin, P. G. P., and Baccini, A. (2008). CCA: an
R package to extend canonical correlation analysis. J. Stat. Softw. 23, 1–14.
doi: 10.18637/jss.v023.i12

Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Janssen, P. H., et al.
(2016). Rumen microbial community composition varies with diet and host, but
a core microbiome is found across a wide geographical range. Sci. Rep. 6:14567.
doi: 10.1038/srep14567

Inglis, G. D., McAllister, T. A., Busz, H. W., Yanke, L. J., Morck, D. W., Olson, M. E.,
et al. (2005). Effects of subtherapeutic administration of antimicrobial agents to
beef cattle on the prevalence of antimicrobial resistance in Campylobacter jejuni
and Campylobacter hyointestinalis. Appl. Environ. Microbiol. 71, 3872–3881.
doi: 10.1128/aem.71.7.3872-3881.2005

Janssen, P. H., and Kirs, M. (2008). Structure of the archaeal community of the
rumen. Appl. Environ. Microbiol. 74, 3619–3625. doi: 10.1128/AEM.02812-07

Jost, L. (2007). Partitioning diversity into independent alpha and beta components.
Ecology 88, 2427–2439. doi: 10.1890/06-1736.1

Kamke, J., Kittelmann, S., Soni, P., Li, Y., Tavendale, M., Ganesh, S., et al.
(2016). Rumen metagenome and metatranscriptome analyses of low methane
yield sheep reveals a Sharpea-enriched microbiome characterised by lactic
acid formation and utilisation. Microbiome 4, 56–56. doi: 10.1186/s40168-016-
0201-2

Kittelmann, S., Pinares-Patino, C. S., Seedorf, H., Kirk, M. R., Ganesh, S., McEwan,
J. C., et al. (2014). Two different bacterial community types are linked with
the low-methane emission trait in sheep. PLOS ONE 9:e103171. doi: 10.1371/
journal.pone.0103171

Kittelmann, S., Seedorf, H., Walters, W. A., Clemente, J. C., Knight, R.,
Gordon, J. I., et al. (2013). Simultaneous amplicon sequencing to explore
co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms
in rumen microbial communities. PLOS ONE 8:e47879. doi: 10.1371/journal.
pone.0047879

Kopylova, E., Noé, L., and Touzet, H. (2012). SortMeRNA: fast and accurate
filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28,
3211–3217. doi: 10.1093/bioinformatics/bts611

Korpela, K., Salonen, A., Virta, L. J., Kekkonen, R. A., Forslund, K., Bork, P., et al.
(2016). Intestinal microbiome is related to lifetime antibiotic use in Finnish
pre-school children. Nat. Commun. 7:10410. doi: 10.1038/ncomms10410

Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss, P. D.
(2013). Development of a dual-index sequencing strategy and curation pipeline
for analyzing amplicon sequence data on the MiSeq Illumina sequencing
platform. Appl. Environ. Microbiol. 79, 5112–5120. doi: 10.1128/AEM.01043-13

La Reau, A. J., Meier-Kolthoff, J. P., and Suen, G. (2016). Sequence-based analysis
of the genus Ruminococcus resolves its phylogeny and reveals strong host
association. Microb. Genomics 2:e000099. doi: 10.1099/mgen.0.000099

Li, D. H., Liu, C. M., Luo, R. B., Sadakane, K., and Lam, T. W. (2015). MEGAHIT:
an ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.
doi: 10.1093/bioinformatics/btv033

Li, F., and Guan, L. L. (2017). Metatranscriptomic profiling reveals linkages
between the active rumen microbiome and feed efficiency in beef cattle. Appl.
Environ. Microbiol. 83, e00061-17. doi: 10.1128/AEM.00061-17

Li, F., Henderson, G., Sun, X., Cox, F., Janssen, P. H., and Guan, L. L. (2016).
Taxonomic assessment of rumen microbiota using total RNA and targeted
amplicon sequencing approaches. Front. Microbiol. 7:987. doi: 10.3389/fmicb.
2016.00987

Li, Y., Leahy, S. C., Jeyanathan, J., Henderson, G., Cox, F., Altermann, E., et al.
(2016). The complete genome sequence of the methanogenic archaeon ISO4-H5
provides insights into the methylotrophic lifestyle of a ruminal representative
of the Methanomassiliicoccales. Stand. Genomic Sci. 11:59. doi: 10.1186/s40793-
016-0183-5

Lima, F. S., Oikonomou, G., Lima, S. F., Bicalho, M. L. S., Ganda, E. K., De Oliveira
Filho, J. C., et al. (2015). Prepartum and postpartum rumen fluid microbiomes:
characterization and correlation with production traits in dairy cows. Appl.
Environ. Microbiol. 81, 1327–1337. doi: 10.1128/AEM.03138-14

Lindgreen, S., Adair, K. L., and Gardner, P. P. (2016). An evaluation of
the accuracy and speed of metagenome analysis tools. Sci. Rep. 6:19233.
doi: 10.1038/srep19233

Mandal, S., Van Treuren, W., White, R. A., Eggesbo, M., Knight, R., and
Peddada, S. D. (2015). Analysis of composition of microbiomes: a novel
method for studying microbial composition. Microb. Ecol. Health Dis. 26:27663.
doi: 10.3402/mehd.v26.27663

Mardanov, A. V., Svetlitchnyi, V. A., Beletsky, A. V., Prokofeva, M. I.,
Bonch-Osmolovskaya, E. A., Ravin, N. V., et al. (2010). The genome
sequence of the crenarchaeon Acidilobus saccharovorans supports a new order,
Acidilobales, and suggests an important ecological role in terrestrial acidic
hot springs. Appl. Environ. Microbiol. 76, 5652–5657. doi: 10.1128/AEM.
00599-10

Marounek, M., and Duskova, D. (1999). Metabolism of pectin in rumen bacteria
Butyrivibrio fibrisolvens and Prevotella ruminicola. Lett. Appl. Microbiol. 29,
429–433. doi: 10.1046/j.1472-765X.1999.00671.x

McCann, J. C., Elolimy, A. A., and Loor, J. J. (2017). Rumen microbiome,
probiotics, and fermentation additives. Vet. Clin. North Am. Food Anim. Pract.
33, 539–553. doi: 10.1016/j.cvfa.2017.06.009

Menzel, P., Ng, K. L., and Krogh, A. (2016). Fast and sensitive taxonomic
classification for metagenomics with Kaiju. Nat. Commun. 7:11257.
doi: 10.1038/ncomms11257

Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M., et al.
(2008). The metagenomics RAST server - a public resource for the automatic
phylogenetic and functional analysis of metagenomes. BMC Bioinformatics
9:386. doi: 10.1186/1471-2105-9-386

Montanholi, Y. R., Swanson, K. C., Palme, R., Schenkel, F. S., McBride, B. W.,
Lu, D., et al. (2010). Assessing feed efficiency in beef steers through feeding
behavior, infrared thermography and glucocorticoids. Animal 4, 692–701.
doi: 10.1017/s1751731109991522

Nandi, R., and Sengupta, S. (1998). Microbial production of hydrogen: an overview.
Crit. Rev. Microbiol. 24, 61–84. doi: 10.1080/10408419891294181

Newbold, C. J., Wallace, R. J., and McIntosh, F. M. (1996). Mode of action of the
yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76,
249–261. doi: 10.1079/bjn19960029

Olfert, E. D., Cross, B. M., and McWilliams, A. A. (1993). Guide to the Care and
Use of Experimental Steers. Ottawa, ON: Canadian Council on Animal Care.

Ounit, R., Wanamaker, S., Close, T. J., and Lonardi, S. (2015). CLARK: fast
and accurate classification of metagenomic and genomic sequences using
discriminative k-mers. BMC Genomics 16:236. doi: 10.1186/s12864-015-1419-2

Piro, V. C., Lindner, M. S., and Renard, B. Y. (2016). DUDes: a top-
down taxonomic profiler for metagenomics. Bioinformatics 32, 2272–2280.
doi: 10.1093/bioinformatics/btw150

Piro, V. C., Matschkowski, M., and Renard, B. Y. (2017). MetaMeta: integrating
metagenome analysis tools to improve taxonomic profiling. Microbiome 5,
101–101. doi: 10.1186/s40168-017-0318-y

Pitta, D. W., Indugu, N., Kumar, S., Vecchiarelli, B., Sinha, R., Baker, L. D.,
et al. (2016). Metagenomic assessment of the functional potential of the
rumen microbiome in Holstein dairy cows. Anaerobe 38, 50–60. doi: 10.1016/j.
anaerobe.2015.12.003

Qi, M., Wang, P., O’Toole, N., Barboza, P. S., Ungerfeld, E., Leigh, M. B., et al.
(2011). Snapshot of the eukaryotic gene expression in muskoxen rumen–a
metatranscriptomic approach. PLOS ONE 6:e20521. doi: 10.1371/journal.pone.
0020521

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The
SILVA ribosomal RNA gene database project: improved data processing and
web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219

R Core Team (2016). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Roehe, R., Dewhurst, R. J., Duthie, C. A., Rooke, J. A., McKain, N., Ross, D. W.,
et al. (2016). Bovine host genetic variation influences rumen microbial methane
production with best selection criterion for low methane emitting and efficiently
feed converting hosts based on metagenomic gene abundance. PLOS Genet.
12:e1005846. doi: 10.1371/journal.pgen.1005846

Russell, J. B., and Rychlik, J. L. (2001). Factors that alter rumen microbial ecology.
Science 292, 1119–1122. doi: 10.1126/science.1058830

Scharen, M., Drong, C., Kiri, K., Riede, S., Gardener, M., Meyer, U., et al.
(2017). Differential effects of monensin and a blend of essential oils on rumen

Frontiers in Microbiology | www.frontiersin.org 12 December 2017 | Volume 8 | Article 2445

https://doi.org/10.1073/pnas.0401356101
https://doi.org/10.1073/pnas.0401356101
https://doi.org/10.1016/j.syapm.2014.09.004
https://doi.org/10.18637/jss.v023.i12
https://doi.org/10.1038/srep14567
https://doi.org/10.1128/aem.71.7.3872-3881.2005
https://doi.org/10.1128/AEM.02812-07
https://doi.org/10.1890/06-1736.1
https://doi.org/10.1186/s40168-016-0201-2
https://doi.org/10.1186/s40168-016-0201-2
https://doi.org/10.1371/journal.pone.0103171
https://doi.org/10.1371/journal.pone.0103171
https://doi.org/10.1371/journal.pone.0047879
https://doi.org/10.1371/journal.pone.0047879
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1038/ncomms10410
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1099/mgen.0.000099
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1128/AEM.00061-17
https://doi.org/10.3389/fmicb.2016.00987
https://doi.org/10.3389/fmicb.2016.00987
https://doi.org/10.1186/s40793-016-0183-5
https://doi.org/10.1186/s40793-016-0183-5
https://doi.org/10.1128/AEM.03138-14
https://doi.org/10.1038/srep19233
https://doi.org/10.3402/mehd.v26.27663
https://doi.org/10.1128/AEM.00599-10
https://doi.org/10.1128/AEM.00599-10
https://doi.org/10.1046/j.1472-765X.1999.00671.x
https://doi.org/10.1016/j.cvfa.2017.06.009
https://doi.org/10.1038/ncomms11257
https://doi.org/10.1186/1471-2105-9-386
https://doi.org/10.1017/s1751731109991522
https://doi.org/10.1080/10408419891294181
https://doi.org/10.1079/bjn19960029
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1093/bioinformatics/btw150
https://doi.org/10.1186/s40168-017-0318-y
https://doi.org/10.1016/j.anaerobe.2015.12.003
https://doi.org/10.1016/j.anaerobe.2015.12.003
https://doi.org/10.1371/journal.pone.0020521
https://doi.org/10.1371/journal.pone.0020521
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1371/journal.pgen.1005846
https://doi.org/10.1126/science.1058830
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02445 December 5, 2017 Time: 16:45 # 13

Neves et al. Enhancing the Rumen Microbial Classification

microbiota composition of transition dairy cows. J. Dairy Sci. 100, 2765–2783.
doi: 10.3168/jds.2016-11994

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister,
E. B., et al. (2009). Introducing mothur: open-source, platform-independent,
community-supported software for describing and comparing microbial
communities. Appl. Environ. Microbiol. 75, 7537–7541. doi: 10.1128/AEM.
01541-09

Seedorf, H., Kittelmann, S., Henderson, G., and Janssen, P. H. (2014). RIM-DB:
a taxonomic framework for community structure analysis of methanogenic
archaea from the rumen and other intestinal environments. PeerJ 2:e494.
doi: 10.7717/peerj.494

Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., and
Huttenhower, C. (2012). Metagenomic microbial community profiling using
unique clade-specific marker genes. Nat. Methods 9, 811–814. doi: 10.1038/
nmeth.2066

Shabat, S. K. B., Sasson, G., Doron-Faigenboim, A., Durman, T., Yaacoby, S.,
Berg Miller, M. E., et al. (2016). Specific microbiome-dependent mechanisms
underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958–2972.
doi: 10.1038/ismej.2016.62

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
et al. (2003). Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/
gr.1239303

Shi, W., Kang, D., Froula, J., Fan, C., Deutsch, S., Chen, F., et al. (2014). Methane
yield phenotypes linked to differential gene expression in the sheep rumen
microbiome. Genome Res. 24, 1517–1525. doi: 10.1101/gr.168245.113

Siegwald, L., Touzet, H., Lemoine, Y., Hot, D., Audebert, C., and Caboche, S.
(2017). Assessment of common and emerging bioinformatics pipelines for
targeted metagenomics. PLOS ONE 12:e0169563. doi: 10.1371/journal.pone.
0169563

Simon, C., and Daniel, R. (2011). Metagenomic analyses: past and future trends.
Appl. Environ. Microbiol. 77, 1153–1161. doi: 10.1128/AEM.02345-10

Soo, R. M., Skennerton, C. T., Sekiguchi, Y., Imelfort, M., Paech, S. J., Dennis,
P. G., et al. (2014). An expanded genomic representation of the phylum
cyanobacteria. Genome Biol. Evol. 6, 1031–1045. doi: 10.1093/gbe/evu073

Suen, G., Weimer, P. J., Stevenson, D. M., Aylward, F. O., Boyum, J., Deneke, J.,
et al. (2011). The complete genome sequence of Fibrobacter succinogenes s85
reveals a cellulolytic and metabolic specialist. PLOS ONE 6:e18814. doi: 10.1371/
journal.pone.0018814

Sunagawa, S., Mende, D. R., Zeller, G., Izquierdo-Carrasco, F., Berger, S. A.,
Kultima, J. R., et al. (2013). Metagenomic species profiling using universal
phylogenetic marker genes. Nat. Methods 10, 1196–1199. doi: 10.1038/nmeth.
2693

Takai, K., Inoue, A., and Horikoshi, K. (2002). Methanothermococcus okinawensis
sp. nov., a thermophilic, methane-producing archaeon isolated from a Western

Pacific deep-sea hydrothermal vent system. Int. J. Syst. Evol. Microbiol. 52(Pt 4),
1089–1095.

Thompson, S. (2015). The Effect of Diet Type on Residual Feed Intake and the Use of
Infrared Thermography as a Method to Predict Efficiency in Beef Bulls. Master’s
thesis, University of Manitoba, Winnipeg, MB.

Valenzuela-González, F., Martínez-Porchas, M., Villalpando-Canchola, E., and
Vargas-Albores, F. (2016). Studying long 16S rDNA sequences with ultrafast-
metagenomic sequence classification using exact alignments (Kraken).
J. Microbiol. Methods 122, 38–42. doi: 10.1016/j.mimet.2016.01.011

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.
00062-07

Watanabe, K., Horinishi, N., Matsumoto, K., Tanaka, A., and Yakushido, K.
(2016). A new evaluation method for antibiotic-resistant bacterial groups in
environment. Adv. Microbiol. 6, 133–151. doi: 10.4236/aim.2016.63014

Wegmann, U., Louis, P., Goesmann, A., Henrissat, B., Duncan, S. H., and Flint,
H. J. (2014). Complete genome of a new Firmicutes species belonging to
the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals
two chromosomes and a selective capacity to utilize plant glucans. Environ.
Microbiol. 16, 2879–2890. doi: 10.1111/1462-2920.12217

Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., et al. (2017).
Normalization and microbial differential abundance strategies depend upon
data characteristics. Microbiome 5:27. doi: 10.1186/s40168-017-0237-y

Williams, M. M., Domingo, J. W. S., Meckes, M. C., Kelty, C. A., and Rochon,
H. S. (2004). Phylogenetic diversity of drinking water bacteria in a distribution
system simulator. J. Appl. Microbiol. 96, 954–964. doi: 10.1111/j.1365-2672.
2004.02229.x

Wood, D. E., and Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 15:R46. doi: 10.1186/gb-
2014-15-3-r46

Xiang, G., Huaiying, L., Kashi, R., and Qunfeng, D. (2017). A Bayesian taxonomic
classification method for 16S rRNA gene sequences with improved species-level
accuracy. BMC Bioinformatics 18:247. doi: 10.1186/s12859-017-1670-4

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Neves, Li, Ghoshal, McAllister and Guan. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 13 December 2017 | Volume 8 | Article 2445

https://doi.org/10.3168/jds.2016-11994
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.7717/peerj.494
https://doi.org/10.1038/nmeth.2066
https://doi.org/10.1038/nmeth.2066
https://doi.org/10.1038/ismej.2016.62
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.168245.113
https://doi.org/10.1371/journal.pone.0169563
https://doi.org/10.1371/journal.pone.0169563
https://doi.org/10.1128/AEM.02345-10
https://doi.org/10.1093/gbe/evu073
https://doi.org/10.1371/journal.pone.0018814
https://doi.org/10.1371/journal.pone.0018814
https://doi.org/10.1038/nmeth.2693
https://doi.org/10.1038/nmeth.2693
https://doi.org/10.1016/j.mimet.2016.01.011
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.4236/aim.2016.63014
https://doi.org/10.1111/1462-2920.12217
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1111/j.1365-2672.2004.02229.x
https://doi.org/10.1111/j.1365-2672.2004.02229.x
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/s12859-017-1670-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Enhancing the Resolution of Rumen Microbial Classification from Metatranscriptomic Data Using Kraken and Mothur
	Introduction
	Materials And Methods
	Animal Study and Sampling
	RNA Extraction and Sequencing
	Pipeline Settings
	Statistical Analysis
	Data Submission

	Results
	Taxonomic Distribution of the Microbial Profiles Performed by Mothur or Kraken
	Differences in Relative Abundances of Taxa in H- vs. L-FCR Rumen Samples
	Potential Interactions between Bacteria and Archaea Detected by Mothur or Kraken

	Discussion
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


