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Abstract
Mutations in the ferritin light chain (FTL) gene cause the neurodegenerative disease neuro-

ferritinopathy or hereditary ferritinopathy (HF). HF is characterized by a severe movement

disorder and by the presence of nuclear and cytoplasmic iron-containing ferritin inclusion

bodies (IBs) in glia and neurons throughout the central nervous system (CNS) and in tis-

sues of multiple organ systems. Herein, using primary mouse embryonic fibroblasts from a

mouse model of HF, we show significant intracellular accumulation of ferritin and an

increase in susceptibility to oxidative damage when cells are exposed to iron. Treatment of

the cells with the iron chelator deferiprone (DFP) led to a significant improvement in cell via-

bility and a decrease in iron content. In vivo, iron overload and DFP treatment of the mouse

model had remarkable effects on systemic iron homeostasis and ferritin deposition, without

significantly affecting CNS pathology. Our study highlights the role of iron in modulating fer-

ritin aggregation in vivo in the disease HF. It also puts emphasis on the potential usefulness

of a therapy based on chelators that can target the CNS to remove and redistribute iron and

to resolubilize or prevent ferritin aggregation while maintaining normal systemic iron stores.

Introduction
Neuroferritinopathy or hereditary ferritinopathy (HF) is an autosomal dominant movement
disorder caused by mutations in the ferritin light chain (FTL) gene on chromosome 19q13.3.
All mutations occur in exon 4 of the FTL gene, leading to the generation of a ferritin light (L)
subunit with a longer than normal C-terminal sequence with disordered structure [1].
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Clinically, HF presents as a middle-age-onset chorea and dystonia, which may also include
extrapyramidal and pyramidal tract signs as well as cerebellar ataxia, dysautonomia, cognitive
decline, and psychiatric symptoms. The clinical presentation is highly variable both within and
between families, but despite the clinical differences, the neuroimaging is similar in all cases [2,
3]. The main pathologic findings in HF are cystic cavitation of the basal ganglia, the presence
of intranuclear and intracytoplasmic ferritin inclusion bodies (IBs) in glial cells and neurons in
the central nervous system (CNS), and substantial iron deposition. Intranuclear IBs are the
most abundant form of IBs in HF, but intracytoplasmic IBs and significant cytoplasmic ferritin
accumulation may also be seen in certain cell types [4]. Mutation carriers may present various
systemic diseases before the onset of the CNS disease, but it remains to be determined whether
these diseases are associated with the presence of IBs in tissues of multiple organ systems out-
side the CNS [3]. The presence of IBs in skin and muscle may be useful for the diagnosis of the
disease by a biopsy and to monitor the efficacy of therapeutic approaches [4].

Although HF is a rare disease, its study is particularly important due to the presence of a
direct link between an abnormality in an iron metabolism protein, the ferritin L subunit, and
neurodegeneration. Ferritin consists of 24 subunits (a mixture of L and heavy (H) chains) that
can self-assemble into a 480 kDa hollow sphere which can store up to 4500 atoms of iron as a
ferrihydrite biomineral. The exterior and interior of the ferritin shell are connected via chan-
nels (pores) along symmetry axes at subunit junctions [1]. Analysis of ferritin assembled from
L-mutant (Lm) subunits (p.Phe167SerfsX26) has shown remarkable disruption of the 4-fold
pores that are formed from four hydrophobically-associated C-terminal E-helices and a
reduced ability to store iron, potentially generating reactive oxygen species (ROS) leading to
cellular damage [5–8]. In vitro, IB formation has been shown to be strongly dependent on iron
levels and can be modified by using the iron chelators desferoxamine and phenanthroline [5].
Thus, a therapy aimed at decreasing CNS iron levels toward normal with appropriately
designed chelators could reduce pathological iron-induced aggregation and ROS production in
vivo. However, the use of the iron chelators desferrioxamine and deferiprone (as well as vene-
section) in patients with HF was reported to cause profound and refractory iron depletion
without clinical benefits [2, 9] underlining the lack of an effective treatment for HF.

A mouse model of HF (FTL-Tg) that expresses the mutant Lm p.Phe167SerfsX26 subunit
shows a significant decrease in motor performance, shorter life span, misregulation of iron
metabolism, and evidence of oxidative damage [10–12]. Ferritin IBs and iron deposition are
the main findings in the CNS of FTL-Tg mice, but IBs are also found in organ systems outside
the CNS, as in patients with HF [4, 10]. To further understand the role of iron in potentially
promoting/accelerating the course of the disease and the use of a chelation therapy aimed at
delaying/stopping the progression of HF, we investigated the consequences of iron overload
and a chelator treatment in a cell model and the FTL-Tg mouse model of HF.

Material and Methods

Ethics statement
This study was carried out in strict accordance with the Guidelines for the Care and Use of Lab-
oratory Animals of the National Institutes of Health. The protocol was approved by the Indiana
University School of Medicine Institutional Animal Care and Use Committee (Protocol Num-
ber: 10149). All surgeries were performed under anesthesia, and all efforts were made to mini-
mize animal suffering. Mice were anesthetized with acepromazine (2–5 mg/kg) + ketamine
(100 mg/kg) given intraperitoneally (i.p.). The animals remained anesthetized during the entire
procedure and were euthanized without awakening.
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Animals
Heterozygous FTL-Tg mice expressing a human FTL cDNA carrying the 498–499InsTCmuta-
tion in the C57BL/6J background were used. The presence of the transgene was detected by
PCR amplification as previously described [10]. Heterozygous FTL-Tg mice were generated by
crossing transgenic animals to non-transgenic C57BL/6J mice. Three months-old male and
female mice weighing 18–24 g were used in these experiments. Animals were kept under a 12
h–12 h light:dark cycle and allowed free access to food and water.

Mouse embryonic fibroblasts isolation and culture
Primary mouse embryonic fibroblasts (MEF) were isolated from 13.5 days post-conception
mouse embryos from wild-type C57BL/6J and FTL-Tg mice. Embryo carcasses were rinsed in
PBS, minced and treated for 15 min in 5 ml of 0.25% trypsin solution (Thermo Scientific Inc.,
Waltham, MA). Trypsin was then inactivated by adding 25 ml of medium (DMEM with 25
mM glucose, 10% FBS, 100 U/ml Penicillin, 100 μg/ml Streptomycin, 0.25 μg/ml amphotericin
B, 6 mM glutamine and 1.5 mM pyruvate; all reagents were from Thermo Scientific Inc.). The
cell suspension was passed through a cell strainer and centrifuged for 15 min at 200 g. The cell
pellet was re-suspended in fresh media and plated. After 24 h, media was changed again to
eliminate dead cells. To obtain immortalized MEF (iMEF), primary cells at passage 2–3 were
transfected (FuGENE6, Promega, Madison, WI) with a plasmid containing a SV40 early pro-
motor followed by a retroviral MSV-LTR [13]. Immortalized cells were selected from individ-
ual colonies and maintained in media containing 500 μg/ml of the active form of geneticin
(G418) (Teknova, Hollister, CA). Cells were kept at 37°C with 5% CO2 in a humidified incuba-
tor. iMEF from passage 7–16 were used for all the experiments.

Iron loading and chelator treatment
For cell viability studies, ~10,000 cells/well were plated in a 96 well plate with increasing con-
centrations of ferric ammonium citrate (FAC) in the presence of 5% fetal bovine serum (FBS)
(Thermo Scientific Inc.). Cells were incubated for 3 days and then viability was assessed using
the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (DOT scientific,
Inc, Burton, MI) tetrazolium reduction assay. Quantification was performed on a Bio-Tek 880
microplate reader (BioTek, Winooski, VT) at a wavelength of 570 nm with a reference wave-
length of 630 nm. For iron accumulation studies, confluent iMEF cultures (>95%) were incu-
bated with 0.5% FBS media in the presence of 100 μM FAC (or PBS as control vehicle) for up
to 6 days, changing media daily. Cells were also treated with 100 μM deferiprone
(1,2-dimethyl-3-hydroxypyrid-4-one, or L1, or DFP) (Sigma, St. Louis, MO) for up to 3 days in
0.5% serum media with PBS as control vehicle. For hydrogen peroxide toxicity, confluent cells
were exposed to 0, 10 or 100 μM FAC in 0.5% serum media for 3 days [14, 15]. Cell viability
was assayed after cells were incubated for 1 h in serum-free media and exposed to 1 mM hydro-
gen peroxide (or PBS as vehicle control) in serum-free media for 24 h.

In-vivo iron and chelator treatments
For iron treatment, twenty-three FTL-Tg mice (male and female mice were utilized) were ran-
domized to one of the following two groups: (i) iron control (n = 10, equal number of males
and females) or (ii) chronic iron loading (n = 13, 7 males and 6 females). Control FTL-Tg mice
received placebo treatment with normal saline (0.5 mL/mouse/day) by i.p. injection once per
week for a period of 4 weeks. FTL-Tg mice in the chronic iron overload group received one
injection of iron dextran (100 mg/kg i.p./mouse) (Sigma) per week for a period of 4 weeks. The

Iron Overload and Chelation in Ferritinopathy

PLOS ONE | DOI:10.1371/journal.pone.0161341 August 30, 2016 3 / 20



dose of iron dextran administered to these mice was based on previous investigations [16, 17].
Body-weights were measured weekly for all groups. One month was allowed for equilibration
of iron after overloading, after which the animals were analyzed.

For DFP treatments, thirty-six FTL-Tg mice were randomized to one of the following treat-
ment groups: (i) chelator control (n = 11, 6 males and 5 females); (ii) chelator low-dose (50
mg/Kg/day; DFP50) (n = 11, 6 males and 5 females), or (iii) chelator high-dose (100 mg/Kg/
day; DFP100) (n = 14, 7 males and 7 females). Control mice received placebo treatment with
normal saline (0.5 mL/mouse/day) by i.p. injection. DFP was administered systemically by i.p.
route. Mice received a total of 70 doses, 5 out of 7 days per week for a period of 14 weeks. Mice
were observed immediately before dosing each day and again for at least 15 minutes afterwards.
The dose of DFP administered to these mice was based on previous investigations [16, 17].
Body-weights were measured weekly for all groups, and mice were analyzed at the end of the
treatment.

Serum biochemistry and hematological analyses
Blood samples were obtained prior to perfusion by cardiac puncture. Serum was separated by
centrifugation and used to determine unsaturated iron binding capacity (UIBC) and iron using
a COBAS MIRA Plus Chemistry Analyzer (Roche Diagnostics, Indianapolis, IN). A complete
blood cell count (CBC) was performed on whole blood using a Mascot HemaVet950FS (Drew
Scientific, Miami Lakes, FL) automated processor as previously described [18].

Histology and immunohistochemistry
After anesthesia, mice were transcardially perfused with 0.9% saline and then brains and
organs were fixed by immersion in 4% paraformaldehyde solution for 24 h at 4°C, embedded
in paraffin and sectioned. Eight-micrometer-thick sections were stained by the Hematoxylin-
Eosin (H&E) method. In addition, Perls’method for ferric iron enhanced with DAB was used
as previously described [10]. Immunohistochemical labeling was also carried out following
published protocols [10, 11]. For immunohistochemistry, sections were incubated overnight at
4°C with the primary antibodies (Abs) in blocking solution. We used primary Abs raised
against mutant L (Lm; Ab1283) [4] and heavy chain (H) (Ab65080; Abcam, Cambridge, MA).
Immunostaining was visualized using the avidin-biotin system (Vectastain; Vector Laborato-
ries, Burlingame, CA) and 3,3’-diaminobenzidine (Sigma) as the chromogen. The sections
were counterstained with cresyl violet or H&E, and images were captured by a digital camera
coupled to a Leica DM4000B microscope (Leica Microsystems, Buffalo Grove, IL).

Western blot analysis
Cellular or tissue fractions were prepared using the CelLytic NuCLEAR Extraction Kit (Sigma)
following the manufacturer’s procedures. After cells were incubated in the lysis buffer, the
supernatant (containing soluble cytoplasmic proteins) was separated by centrifugation and
considered the “supernatant” fraction. The pellet, containing nuclei, cell membranes, and
insoluble proteins was analyzed as the “pellet” fraction. The purity of the fractions was assessed
by immunoblotting with antibodies against the nuclear protein Histone H2A and the cytosolic
protein GAPDH. Actin distributed consistently between the supernatant and pellet. Protein
extracts were aliquoted and stored at -80°C until used. Protein concentration was determined
by using a protein assay dye reagent kit (Bio-Rad, Hercules, CA). Between 3–4 μg of cell or
2.5–10 μg of tissue protein lysates were run in denaturing 16% acrylamide Tris-Tricine gels
and transferred to Protran nitrocellulose membranes (GE Healthcare, Pittsburgh, PA). Mem-
branes were blocked for 1 h in 4% low fat dried milk in TBS containing 0.1% Tween-20
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(TBS-T) and then incubated for 16 h with the primary Ab. The following Abs were used:
Ab1283, anti-L (Ab63010; GeneTex, Irvine, CA), anti-H, and anti-β actin (Sigma). After wash-
ing in TBS-T, the membranes were incubated with peroxidase-conjugated secondary Ab (Cay-
man Chemical, Ann Arbor, MI) (1:5,000) for 1 h. Membranes were developed using the ECL
chemiluminescent detection system (GE Healthcare). Equal protein load was confirmed using
anti-β-actin Abs. The films were scanned and the densities of the bands measured using NIH
ImageJ Software. The densities of the bands were normalized against those of β-actin and the
mean ratios calculated. Statistical analysis was performed using GraphPad Prism (GraphPad
Software, La Jolla, CA).

Non-heme iron
Iron was determined in cell homogenates and tissue homogenates from the liver and kidney.
iMEFs were trypsinized, pelleted in DMEM supplemented with 10% FBS, rinsed 3 times in PBS
and digested for 2 hours at 55°C rocking in 50 mMNaOH. Cellular fractions from tissue sam-
ples were prepared using the CelLytic NuCLEAR Extraction Kit. Non-heme iron content was
determined spectrophotometrically by the ferrozine method. Briefly, samples (100 μl) were
incubated for 2 hours at 65°C with 1 volume of iron releasing reagent (2.25% KMn4 and 0.7 N
HCl) and 1 volume of 10 mMHCl to ensure all the protein-complexed iron is effectively
released. Thirty μl of ferrozine solution [6.5 mM 3-(2-pyridyl)-5,6-bis(4-phenylsulphonic
acid)-1,2,4-triazene, 6.5 mM neocuprine, 2.5 M ammonium acetate, 1 M ascorbic acid]
(Sigma) was added to the cooled reaction, and the absorbance was determined at 570 nm. To
calculate the absolute iron content, a standard curve of ferric ammonium citrate solution of
known concentration was used.

RNA isolation and multiplex expression analysis
Mice were anesthetized, transcardially perfused with 0.9% saline, and the brain and liver removed.
Microdissected cerebral cortex and liver samples were placed in 500μl of RNA later (Qiagen,
Valencia, CA) and frozen at -20°C. RNA was isolated using RNeasy Lipid Tissue Mini Kit (Qia-
gen) according to the manufacturer’s protocol. Samples were treated on column with the RNase
free DNase Kit (Qiagen) according to the manufacturer instructions. Reverse transcription was
performed on 25 ng of total RNA for each sample followed by multiplex PCR, and fragment
separation by capillary electrophoresis using the GeXP Chemistry Protocol (Beckman Coulter,
Indianapolis IN). Gene specific primer pairs (without universal tags) used in RT-PCR were as
described [11, 18]. Fragments were separated using a CEQ 8000 Automated Capillary DNA
sequencer/Genetic Analysis Systems (Beckman Coulter), and analyzed with the GenomeLab
GeXP Genetic Analysis System (Beckman Coulter) using the following fragment analysis parame-
ters: slope threshold = 0.9999, peak height threshold = 800 rfu, peak size< 375, peak size> 150,
dye = D4. Multiplex-specific fragments were selected by applying exclusion filters and the data
exported to eXpress Analysis software, where they were normalized against the mouse polymerase
II polypeptide A (Polr2a) gene or the β-actin gene as described [11, 18]. Relative mRNA level val-
ues for each of the triplicates for each sample were averaged and the mean for the replicates were
compared between treated and control FTL-Tg mice by an unpaired two-tailed t-test using
GraphPad Prism. Differences in relative mRNA levels with p-values< 0.05 were considered sta-
tistically significant. Data are reported as mean ± standard error of the mean (SEM).

Statistics
Data is presented as mean ± SEM. IC50 was calculated fitting the viability curve to a four
parameter logistic equation. For each parameter, normality was tested by the Shaphiro-Wilk
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test. We used One-Way Analysis of Variance, followed by the LSD post-hoc test, when com-
paring data with more than 2 groups. Two-Way Analysis of Variance was used when compar-
ing samples with 2 independent factors. When only 2 sample groups were compared, we
performed an unpaired two-tailed t-test using GraphPad Prism. A value of p<0.05 was consid-
ered statistically significant.

Results

Iron and ferritin accumulation in iMEFs. Role of DFP in iron accumulation
and cell survival
Viability studies show that iMEFs from FTL-Tg mice were more sensitive to iron than iMEFs
from C57BL/6J wild-type (WT) control mice (Fig 1A), with a lower IC50 (124μM) than control
cells (844μM). Compared to control cells, iMEFs from FTL-Tg mice begin to accumulate sig-
nificantly more iron after 3 days of incubation in the presence of 100 μM FAC (p< 0.001) (Fig
1B). Western blot analysis shows accumulation of ferritin in both, the supernatant (Fig 1C)
and pellet (Fig 1D) with iron loading. Interestingly, Lm was also detected in the stacking gel
(St) of iron-loaded iMEFs from FTL-Tg mice, suggesting the formation of SDS-resistant aggre-
gates, as we previously described [10]. Addition of hydrogen peroxide to iron loaded cells led
to a significant (p< 0.001) decrease in the viability of iMEFs from FTL-Tg mice compared to

Fig 1. Iron loading and response to oxidative stress of iMEFs.Compare to non-transgenic wild-type (WT)
control cells, iMEFs from FTL-Tg mice show a decreased viability in the presence of increasing concentrations of
iron (A). iMEFs from FTL-Tg mice accumulated a significantly higher level of intracellular iron after 3 days of iron
(100 μM) loading (p < 0.001). Cells were iron-loaded for up to 6 days (B). The levels of wild type L, Lm, and H
polypeptides were determined in the supernatant (C) and the pellet (D) after cells were exposed for 1, 3 or 5 days to
iron as in B. As control (0 days), cells were cultured for 3 days without iron. Lm was detected in the resolving (Rs)
gel above the 20 KDa marker and also in the stacking (St) gel (the line represents the 250KDamarker). The blots
show triplicates from a representative experiment. A significant (p < 0.001) decreased in cell viability was observed
in confluent cells from FTL-Tg mice cultured in the presence of FAC after being exposed to hydrogen peroxide. %
of cell viability was calculated as the viability of cells with PBS in the same iron load context (E). All experiments
were repeated a minimum of three times to ensure reproducibility.

doi:10.1371/journal.pone.0161341.g001
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iMEFs from wild-type control mice (Fig 1E). Treatment of the iron loaded cells with DFP led
to a significant increase (~30%) in cell viability in iMEFs from control (p< 0.001) and FTL-Tg
mice (p< 0.001), but the effect was more significant in the control cells (p = 0.042) (Fig 2A). A
significant decrease in iron content (Fig 2B) was also observed, which was more significant in
iMEFs from FTL-Tg mice (p< 0.001) with a redistribution of ferritin proteins from the pellet
to the supernatant (Fig 2C). The difference observed in iron accumulation in response to the
chelator treatment suggests that the iron accumulating in iMEFs from FTL-Tg mice may be
loosely bound to ferritin, highlighting the role of intracellular iron as a major modulator of fer-
ritin aggregation in vivo and the potential use of a chelator-based therapy for the disease.

Fig 2. DFP treatment of iMEFs. Cell viability of iron loaded iMEFs (3 days with 100 μM iron) increased
considerably after 3 days of DFP exposure (A). The iron content of the cells decreased significantly after DFP
treatment, in particular in iMEFs from FTL-Tg mice. Values are expressed as % of iron content of cells treated with
DFP compared to cells treated with PBS for the same period of time (B). The levels of wild type L, Lm, and H
polypeptides were determined in the supernatant (Sup) and pellet after cells were exposed for 3 days to DFP or
PBS (-DFP) (C). For H, long and short exposure times are shown. The blots show triplicates from a representative
experiment. All experiments were repeated a minimum of three times to ensure reproducibility.

doi:10.1371/journal.pone.0161341.g002
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Iron overload and systemic iron homeostasis in FTL-Tg mice
No significant difference in body weight between iron dextran-treated and control FTL-Tg
mice was observed (not shown). No mortality was observed due to the treatment. To assess the
impact of iron loading on the major systemic iron utilization pathway, we determined serum
iron levels, unsaturated iron binding capacity (UIBC), and hematological parameters. Com-
pared to untreated mice, a significant (p = 0.0022) increase in serum iron levels was observed
in iron loaded mice (Fig 3A). UIBC levels were lower in iron loaded mice, but this change did
not reach statistical significance (p = 0.6055) (Fig 3B). No significant differences were observed
in red cell (RBC) and leukocyte (WBC) counts, serum hemoglobin (Hb) values, and mean cor-
puscular hemoglobin concentration (MCHC) between controls and iron loaded FTL-Tg mice.
A significant elevation of the values of hematocrit (HtC; p = 0.045), mean corpuscular volume
(MCV; p< 0.001), mean corpuscular hemoglobin (MCH; p = 0.003), red cell distribution
width (RDW; p = 0.0012), platelets (Pt; p = 0.003), and mean platelet volume (MPV;
p = 0.0021) was observed in the iron loaded group (Table 1).

Pathologic analysis was performed on tissue sections from the heart, muscle, liver, stomach,
intestine, spleen, adipose tissue, lungs, and reproductive organs (testis and ovaries). To be able
to detect small changes in ferritin and iron deposition, we analyzed young heterozygous

Fig 3. Serum iron levels and UIBC levels in iron-treated mice. Serum iron levels were significantly (p < 0.01)
increased in iron treated mice (145.9 ± 10.6 μg/dl) compared to untreated mice (104.3 ± 2.2 μg/dl) (A). A decrease
of UIBC levels in iron treated mice was observed but did not reach statistical significance (p = 0.6055) (B). For
serum studies, FTL-Tg untreated (control; n = 10, 5 males and 5 females) and treated (n = 12, 6 males and 6
females) mice were analyzed. Samples were analyzed by a two-tailed t-test and results considered significant for
p < 0.05.

doi:10.1371/journal.pone.0161341.g003

Table 1. Hematological parameters of FTL-Tgmice treated with iron dextran (Fe) (n = 13) compared to age-matched FTL-Tg untreated (Control (no
Fe)) (n = 10). DFP-treated FTL-Tg mice at a low dose (DFP50) (n = 11) or a high dose (DFP100) (n = 14) were compared to age-matched FTL-Tg untreated
(Control (no DFP)) (n = 11). The following hematological parameters were measured: RBC, red blood cells number (x 106/ml); WBC, white blood cells (x 103/
ml); Hb, hemoglobin (g/dl); HtC, hematocrit (%), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin con-
centration (MCHC), red cell distribution width (RDW), Platelet (Pt), and mean platelet volume (MPV). Significant differences compared to controls (p < 0.05)
are indicated by *. Values are mean ± SEM.

FTL-Tg RBC WBC Hb HtC MCV MCH MCHC RDW Pt MPV

No Fe 8.2 ± 0.3 4.8 ± 0.5 10.8 ± 0.4 36.2 ± 1.4 44.0 ± 0.2 13.1 ± 0.2 29.7 ± 0.3 16.5 ± 0.1 380 ± 19 4.06 ± 0.05

Fe 8.5 ± 0.3 4.9 ± 0.5 11.9 ± 0.3 40.4 ± 1.3* 47.6 ± 0.5**** 14.0 ± 0.1*** 29.42 ± 0.3 17.76 ± 0.3** 541 ± 28*** 4.33 ± 0.05**

No DFP 8.7 ± 0.7 4.1 ± 0.5 11.9 ± 0.9 38.6 ± 2.9 44.6 ± 0.7 13.7 ± 0.2 30.7 ± 0.3 17.8 ± 0.5 447 ± 32 4.25 ± 0.08

DFP50 8.8 ± 0.4 4.9 ± 0.7 12.1 ± 0.6 38.6 ± 1.8 44.1 ± 0.2 13.8 ± 0.1 31.4 ± 0.2 17.1 ± 0.2 483 ± 19 4.32 ± 0.05

DFP100 7.5 ± 0.5 4.1 ± 0.5 11.0 ± 0.7 36.0 ± 2.2 47.9 ± 0.6** 14.7 ± 0.2*** 30.6 ± 0.3 18.5 ± 0.3 476 ± 24 4.87 ± 0.16**

doi:10.1371/journal.pone.0161341.t001
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FTL-Tg mice, before high levels of ferritin were deposited. Iron treatment did not seem to
modify the tissue distribution of ferritin IBs in FTL-Tg mice, although tissues from iron loaded
mice appeared to have a larger number of IBs (Fig 4A–4D). No major differences were
observed during the pathologic examination of the organs; however, iron-containing ferritin
aggregates in the spleen and liver were remarkable different in iron loaded FTL-Tg mice (Fig
4E–4N). Ferritin aggregates in the liver were observed only in the iron-loaded group and
appeared morphologically different from the intracellular IBs characteristic of HF [10, 19] (Fig
4I–4N) in agreement with previous work on iron overload in mice [20, 21]. Aggregates were
stained by Abs against the Lm and H chains. Anti-H also showed a significant intracellular
accumulation of the H chain in the liver parenchyma, including hepatocytes (Fig 4L). Liver fer-
ritin aggregates were not detected in FTL-Tg control mice. At 3 month of age, heterozygous
transgenic mice do not show ferritin IBs in the liver since the expression of the transgene in the
liver is very weak (Fig 4I–4K), but a few ferritin IBs containing the mutant subunit may be
found in the liver of homozygous mice of the same age [10]. Liver ferritin aggregates were also
strongly stained by the Perls’method for ferric iron (Fig 4M and 4N).

To quantitatively assess protein deposition in the liver, we performed western blot analysis.
We observed that the levels of the L and H subunits were significantly increased in iron loaded
FTL-Tg mice in both supernatant (L, p = 0.0165; H, p< 0.0001) and pellet(L, p = 0.0003; H,
p = 0.0023) (Fig 5A and 5B). The Lm subunit was not detected in the liver samples. In addition,
we observed a statistically significant increase (p< 0.0001) in the levels of non-heme iron in
the same protein fractions of iron-treated FTL-Tg mice compared with non-treated FTL-Tg
controls as determined by the colorimetric ferrozine method. A difference of over 300% was
observed between control FTL-Tg mice (9. 97 ± 1.69 nmol Fe/mg protein) and iron-treated
FTL-Tg mice (40.60 ± 4.86 nmol Fe/mg protein) in the supernatant (Fig 5C). Similarly, a sig-
nificant increase (p = 0.0004) was also observed in the pellet of the iron loaded group (Fig 5D).
Analysis by multiplex RT-PCR of a total of 18 genes that play a role in iron metabolism and
related pathways in the liver was performed in triplicate.mRNA levels were compared between
untreated (control) and iron loaded FTL-Tg mice. A significant increase in the levels of Ftl
(p< 0.0001), Fth1 (p< 0.05), hepcidin (Hamp) (p< 0.001), AcoI (p< 0.05), Sod1 (p< 0.05),
andHmox1 (p< 0.05)mRNA was observed. A significant decrease in the levels of Tfrc
(p< 0.01) was also observed (S1 Fig). An increase in the levels of Cp was observed, but it did
not reach statistical significance (p = 0.0526). No other significant differences were observed in
the expression of the genes analyzed in the liver plex.

Iron overload and brain iron homeostasis in FTL-Tg mice
To assess the impact of iron overload in ferritin deposition in the CNS of FTL-Tg mice, we ana-
lyzed brains of mice injected with iron dextran or normal saline as describe above. Neuropath-
ologic examination of brain tissues showed the presence of IBs throughout the brain as
previously reported in FTL-Tg mice [10], but did not reveal major histological differences
between control and iron loaded FTL-Tg mice (Fig 6). To quantitatively assess protein deposi-
tion in the cerebral cortex, we performed western blot analysis. The levels of the different sub-
units were not significantly different between control and iron loaded FTL-Tg mice in the
supernatant (Fig 6G); however, a significant increase in the levels of the L and H subunit was
observed in the pellet (L, p = 0.0205; H, p = 0.0019), without significant changes in the levels of
the mutant L chain (Lm) (Fig 6H). Analysis by multiplex RT-PCR showed a significant
decrease in the levels of Tfrc mRNA (p< 0.05) in iron-loaded FTL-Tg mice; however, this was
the only significant change in gene expression detected in the cerebral cortex. Analysis of the
expression of the ferritin transgene by multiplex PCR did not reveal any significant differences

Iron Overload and Chelation in Ferritinopathy

PLOS ONE | DOI:10.1371/journal.pone.0161341 August 30, 2016 9 / 20



Iron Overload and Chelation in Ferritinopathy

PLOS ONE | DOI:10.1371/journal.pone.0161341 August 30, 2016 10 / 20



in the expression of the transgene in the brain between controls and iron-loaded FTL-Tg mice
(not shown).

Effects of the iron chelator DFP in systemic iron homeostasis of FTL-Tg
mice
No significant differences in body weight between DFP-treated and control FTL-Tg mice
were observed after the 14-week treatment (not shown), and there was no mortality associated
with DFP treatment. A week after the last injection, blood and tissues were analyzed. At nec-
ropsy, a remarkable finding was a significant atrophy of the testis in males receiving a dose of
100 mg/kg/day (S2 Fig). To assess the impact of the iron chelation treatment on the major sys-
temic iron utilization pathway, we determined serum iron levels, UIBC, and hematological
parameters. No significant differences were observed in serum iron and UIBC levels between

Fig 4. Histological and immunohistochemical studies of iron-loaded and control FTL-Tgmice.
Analysis of paraffin embedded sections from FTL-Tg control (A, C, E, G, I, K, M) and iron-loaded (B, D, F, H,
J, L, N) mice. Sections shown are from kidney (A, B), adipose tissue (C, D), spleen (E-H), and liver (I-N).
Sections were immunostained with Abs against the mutant L chain (A-D, I, J) and against the H chain (E, F,
K, L), and stained with the Perls’ Prussian blue method (G, H, M, N). Original magnifications x10 (G, H), x20
(E), x40 (A-D, F, H-N).

doi:10.1371/journal.pone.0161341.g004

Fig 5. Western blot analysis and non-heme iron of liver of iron-loaded and control FTL-Tgmice. The levels
of wild type L and H polypeptides in the liver in the supernatant (A) and the pellet (B) were determined by western
blot. β-actin was used as loading control. The vertical lines in the panels denote non-adjacent bands from the same
blot. Representative blots are shown for four male mice on each group. Densitometric analysis from three
independent experiments shows a statistical significant difference between the controls and iron-loaded mice
(*p < 0.05). By the colorimetric ferrozine method, a significant increase in the levels of non-heme iron in the liver of
iron-treated FTL-Tg mice compared with non-treated FTL-Tg controls was observed in the supernatant (p < 0.0001)
(C) and the pellet (p = 0.0004) (D).

doi:10.1371/journal.pone.0161341.g005
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controls and the DFP50 treated group (not shown). In addition, treatment with DFP at a low
dose did not lead to significant differences in hematological parameters between treated mice
and controls. Compared to controls, treatment with the high dose of DFP did not change

Fig 6. Neuropathological examination and western blot analysis of iron-loaded and control FTL-Tgmice. Analysis of paraffin embedded sections from
control (A, C, E) and iron-loaded (B, D, F) FTL-Tg mice shows the presence of ferritin IBs. Sections shown are from the hippocampus (A, B), striatum (C, D),
and cerebellum (E-F). Sections were immunostained with Abs against the mutant L chain (A-F). Original magnifications x5 (A, B), x40 (C-F). The levels of
wild type L, L mutant (Lm), and H polypeptides in the cerebral cortex in the supernatant (G) and the pellet (H) were determined by western blot. β-actin was
used as loading control. The vertical lines in panel H denote non-adjacent bands from the same blot. Representative blots are shown for four male mice on
each group. Densitometric analysis from three independent experiments showed a statistical significant difference between the controls and iron-loaded
mice in the levels of the L and H subunit in the nuclear-insoluble fraction (H). (*p < 0.05).

doi:10.1371/journal.pone.0161341.g006
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significantly red cell counts, leukocyte counts, serum hemoglobin values, hematocrit, MCHC,
and Pt values; however, significant differences were observed in the values of MCV
(p< 0.0001), MCH (p< 0.0001), RDW (p = 0.0394), and MPV (p = 0.007) (Table 1).

Pathologic analysis was performed in tissue sections as described above. A remarkable dif-
ference from untreated FTL-Tg mice was the presence of a diffuse ferritin staining in tubule
cells of the kidney, most remarkably in the DFP100 treated group (Fig 7A–7C). Histochemical
analysis by Perls’ Prussian blue method showed the presence of iron in ferritin aggregates in
the spleen of control FTL-Tg mice, which was clearly reduced in the DFP-treated group (Fig
7D–7F). To quantitatively characterize the impact of the chelator treatment on systemic ferritin
deposition, we analyzed kidney protein samples by western blot analysis. The levels of the L,
Lm, and H subunits in the supernatant were found significantly decreased in the DFP100
treated group (L, p = 0.0300; Lm, p = 0.0014; H, p = 0.0005). A significant decrease was also
observed in the DFP50 treated group for the Lm and H subunits (Lm, p = 0.0248; H,
p = 0.0124) (Fig 7G). A significant decrease was also observed in the levels of the L
(p = 0.0035), Lm (p = 0.0009), and H (p = 0.0014) subunits in the pellet of the DFP100 treated
group, but not in the DFP50 treated group (Fig 7H). A statistically significant decrease in the
levels of non-heme iron in the kidney of DFP-treated FTL-Tg mice compared with non-treated
FTL-Tg controls was observed by the colorimetric ferrozine method in the supernatant (Fig 7I)
and in the pellet (Fig 7J) of the DFP100 group (p = 0.0299 and p = 0.0032), and in the pellet of
the DFP50 group (p = 0.0190). A decrease was observed in the pellet of the DFP50 group, but
did not reach statistical significance. Analysis of protein samples from the liver showed that the
levels of the L and H subunits were not significantly changed in the supernatant of DFP-treated
FTL-Tg mice. A decrease in the H levels was noted but failed to reach statistical significance
(Fig 8A). In contrast, a significant decrease was observed in the levels of the H subunit in the
pellet (DFP50; p = 0.092, DFP100; p = 0.0124) (Fig 8B). A decrease in the levels of non-heme
iron in the liver of DFP-treated FTL-Tg mice was observed by the colorimetric ferrozine
method in both supernatant and pellet, but it did not reach significance (Fig 8C). Analysis by
multiplex RT-PCR of DFP-treated mice showed a significant decrease in the livermRNA levels
of Ftl (DFP50; p = 0.0049, DFP100; p = 0.0199) and Fth1 (DFP50; p = 0.0006, DFP100;
p = 0.0007), without significant changes in Hamp or Tfrc mRNA levels. A significant decrease
in themRNA levels of Tfr2 (DFP50; p = 0.0075, DFP100; p = 0.0104), Tf (DFP100; p = 0.0146),
Aco1 (DFP50; p = 0.0003, DFP100; p = 0.0006), Cp (DFP50; p = 0.0072, DFP100; p = 0.0001),
Sod1 (DFP50; p = 0.0012, DFP100; p = 0.0010), Sod2 (DFP50; p = 0.0003, DFP100; p = 0.0006),
andHomx2 (DFP50; p = 0.0153, DFP100; p = 0.0207) was observed. No significant changes were
observed in themRNA levels of Hmox1 and additional genes analyzed in the liver plex (S3 Fig).

Effects of the iron chelator DFP in brain iron homeostasis of FTL-Tg
mice
To assess the impact of an iron chelation therapy on ferritin deposition in the CNS of FTL-Tg
mice, we analyzed brains of FTL-Tg mice injected with DFP or normal saline as described
above. Neuropathologic examination of brain tissues did not reveal major histological differ-
ences between FTL-Tg control mice and DFP treated mice (not shown). Western blot analysis
of protein samples from the cerebral cortex showed that the levels of the L, Lm, and H subunits
were not significantly different between control and DFP-treated FTL-Tg mice in both the
supernatant and the pellet (Fig 9). Analysis by multiplex RT-PCR showed a significant decrease
in themRNA levels of Ftl (DFP100; p = 0.0233), without significant changes in Fth1, Cp, Tfrc,
Tf, and Sod1 levels. An increase in themRNA levels of Tfr2 was observed, but only reached sig-
nificance at the low dose (DFP50; p = 0.0025). Significant increases in themRNA levels of Aco1
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Fig 7. Ferritin and iron deposition in the kidney and spleen of DFP-treated mice.Histological and immunohistochemical studies of DFP-
treated and control FTL-Tg mice (A-F). Analysis of paraffin embedded sections from control (A, D), DFP50 (B, E), and DFP100 (C, F) treated
FTL-Tg mice. Sections shown are from kidney (A-C) and spleen (D-F). Sections were immunostained with Abs against the mutant L chain
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(DFP100; p = 0.0437) and Sod2 (DFP50; p = 0.0217, DFP100; p = 0.0066) were also observed. No
significant changes were observed in themRNA levels of additional genes analyzed in the brain
plex (S4 Fig). Analysis of the expression of the ferritin transgene by multiplex PCR did not
reveal any significant differences in the cerebral expression of the transgene between controls
and DFP-treated FTL-Tg mice (not shown).

Discussion
Iron is a metal that is required as a cofactor in many metabolic processes in the CNS, including
oxidative phosphorylation, neurotransmitter production, nitric oxide metabolism, and oxygen
transport. Dysregulation of iron metabolism has been well-documented in neurodegenerative
diseases, in particular in the disease HF, in which abnormal iron metabolism plays a primary
role in the pathogenesis of the disease [1]. Herein, we present our results on the biological con-
sequences of modifying iron levels in vitro and in vivo using an established transgenic mouse
model of HF [10].

Using iMEFs from FTL-Tg mice, we examined the cellular response of mutant-containing
ferritin to iron loading and chelation. We had previously proposed that iron may lead to
enhanced transcription/translation of ferritinmRNAs and overproduction of ferritin by the
cells in response to a diminished iron-storage ability of ferritin that contains Lm polypeptides
[4, 11]. In iMEFs from FTL-Tg mice we observed a significant intracellular accumulation of
ferritin and iron and an increase in susceptibility to oxidative damage with reduced cell viabil-
ity when cells were exposed to iron, while treatment of the cells with the chelator DFP led to a
significant improvement in cell viability and a decrease in iron content. Our data are in agree-
ment with previous data obtained using astrocytes from FTL-Tg mice and fibroblasts from HF
patients after being challenged with iron and chelators [5, 19], and support the notion that
deranged iron metabolism plays a primary role in the pathogenesis of HF.

(A-C) or stained with the Perls’ Prussian blue method (D-F). Original magnifications x10 (D-F), x40 (A-C). Western blot analysis of protein
samples from the kidney using antibodies specific for the L, Lm, and H chains (B). β-actin was used as loading control. Representative blots
are shown for five control, three DFP50, and four DFP100 male mice. Densitometric analysis from three independent experiments shows
statistical significant differences between the controls and DFP-treated mice in the supernatant (G) and the pellet (H). (*p < 0.05). By the
colorimetric ferrozine method, a decrease in the levels of non-heme iron in the kidney of DFP-treated FTL-Tg mice compared with non-treated
FTL-Tg controls was observed in the supernatant (DFP50, p = 0.0190; DFP100, p = 0.0299) (I) and the pellet (DFP100, p = 0.0032) (J).

doi:10.1371/journal.pone.0161341.g007

Fig 8. Western blot analysis and non-heme iron of liver of DFP-treated and control FTL-Tgmice. The levels of
wild type L and H polypeptides in the liver in the supernatant (A) and the pellet (B) were determined by western blot. β-
actin was used as loading control. The vertical lines denote non-adjacent bands from the same blot. Representative
blots are shown for two male mice of each group. Densitometric analysis from three independent experiments shows a
statistical significant difference between the levels of the H subunit between controls and DFP-treated mice in the pellet
(B). By the colorimetric ferrozine method, a decrease in the levels of non-heme iron in the liver of DFP-treated FTL-Tg
mice compared with non-treated FTL-Tg controls was observed in the supernatant, although it did not reach statistical
significance (C).

doi:10.1371/journal.pone.0161341.g008
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To determine the consequences of increased systemic iron in vivo in HF, systemic iron over-
load was induced in FTL-Tg mice by i.p. injections of iron. Our data demonstrated four chief
findings. First, iron overload led to a significant increase in serum iron (Fe (III) bound to
serum transferrin) and in the hematologic indices HtC, MCV, MCH, RDW, Pt, and MPV,
without significant changes in RBC and WBC counts, serum Hb values, and MCHC. Second,
iron overload did not cause identifiable histological changes in the brain, but iron-containing
ferritin aggregates were observed in the liver and spleen. Third, western blot analysis showed a
significant increase in the levels of the L and H subunits in the brain, but only in the insoluble
fraction of iron overload mice. A significant change in levels of the L and H subunits, together
with an increase in non-heme iron, was observed in the liver. Fourth, significant changes in
mRNA levels compatible with iron overload were observed in the liver of iron overload mice,
but these changes were not seen in the brain, where only themRNA levels of Tfrc were signifi-
cantly decreased. Iron overload led to a significant increase in liver hepcidinmRNA levels,
which is produced predominantly by hepatocytes, as a response to an increase in serum iron
levels. The increase may also reflect a response to an increase in liver iron levels or a mix of
both [22].

A significant outcome from the iron overload study was that the overall impact of systemic
iron overload in the CNS was not as noticeable as in the systemic compartment. The relative
independence of the brain from iron in the systemic compartment may have protected the
brain from acute changes in systemic iron [23]. Our data suggest that a small variation in iron
body levels (from diet or other sources) may not significantly enhance CNS-related symptoms
in patients with HF; however, changes in systemic iron levels may increase systemic ferritin
deposition and lead to organ dysfunction. Since iron overload has a significant effect in sys-
temic iron metabolism, as seen here in the liver and spleen of FTL-Tg mice, additional studies
are needed to determine whether patients with HF may be more susceptible to hepatotoxicity
and spleen dysfunction, the most common pathological findings in patients with iron overload

Fig 9. Western blot analysis of cerebral cortex of DFP-treated and control FTL-Tgmice. The levels of wild
type L, Lm, and H polypeptides in the cerebral cortex in the supernatant (A) and the pellet (B) were determined by
western blot. β-actin was used as loading control. The vertical lines in panel A denote non-adjacent bands from the
same blot. Representative blots are shown for two control, two DFP50, and three DFP100 male mice. Densitometric
analysis from three independent experiments shows no statistical significant difference between the groups.

doi:10.1371/journal.pone.0161341.g009
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[22]. Various systemic diseases have been reported in individuals affected by HF, often before
the onset of neurological symptoms. These diseases include hypertension, diabetes mellitus,
thrombosis, dyslipidemia, hepatitis, and chronic renal failure [3]. Whether these conditions are
associated with the systemic deposition of ferritin in the organs involved awaits further
investigation.

Iron chelation was induced in FTL-Tg mice by injecting the membrane permeable bidentate
chelator DFP. DFP has been used clinically to treat iron overload, particularly hemosiderosis,
and in experimental models. Despite its side effects, it currently represents the only possibility
for removing and/or preventing iron accumulation in the brain [24, 25]. Some preliminary
studies suggest that DFP may be effective in the management of neurological manifestations
linked with iron accumulation [26]. The chelator forms a stable 3:1 chelant:iron(III) complex
and has been reported to be able to cross the blood brain barrier (BBB) [25]. Total iron balance
studies in iron overloaded thalassemia patients suggest that a dosage of 75 mg/kg/day of DFP
may be comparable to a dosage of 40 mg/kg/day of desferoxamine [24]. In this study, DFP was
administered i.p. because similar iron excretion is seen whether administered orally or i.p. [14].
Compared to controls, no significant changes in the hematological parameters were observed
in animals in the low-dose group, but treatment with DFP at high dose led to a significant dif-
ference in the values of MCV, MCH, RDW, and MPV. Interestingly, it has been observed in
iron overloaded thalassemia patients that a dose of 100 mg/kg/day of DFP increased the pro-
portion of patients achieving negative iron balance [24].

DFP-treated FTL-Tg mice showed noteworthy histological and biochemical changes in the
spleen and kidney, and significant changes in mRNA levels in the liver. Our data suggest that
DFP treatment led to a reduction in ferritin and iron deposition in systemic organs such as kid-
ney, spleen and liver, most remarkably in the high dose (DFP100) group. DFP may chelate iron
from hepatocytes and the reticuloendothelial system in significant quantities, suggesting that
chelators may be useful to treat systemic accumulation of ferritin in HF; however, increasing
the dose of DFP to improve iron removal runs the risk of increasing the toxicity of the chelator.
Although no animals were lost during the treatment, we observed some signs of toxicity in the
DFP100 group, as it has been previously reported for DFP at high doses, with atrophy of the
thymus, lymphoid tissues, and testis, and hypertrophy of the adrenals at doses of 100 mg/kg/
day or greater in non-iron-loaded animals [16, 17]. Unfortunately, systemic ferritin deposits
may not be useful to monitor therapeutic approaches since systemic deposits may be modified
independently from brain ferritin deposits. While we observed significant systemic changes in
iron metabolism and ferritin deposition, treatment with DFP (low and high dose) did not lead
to noteworthy histological, biochemical, or gene expression changes in the brain of iron-che-
lated FTL-Tg mice. Our data is in agreement with previous observations indicating lack of
effectivity of DFP in individuals affected by HF [2. 9]. Chinnery and col. [2] treated three
patients with monthly venesection for 6 months. Two of the patients also were treated with
intravenous desferrioxamine (4,000 mg weekly subcutaneously for up to 14 months), and one
had oral DFP (2 g, three times a day for 2 months). These treatments caused profound and
refractory iron depletion without significant benefits for the patients. Kubota and col. [9]
treated a patient with monthly venesections (400 mL/mo) for 2 months without any changes in
the clinical condition of the patient. In contrast, a recent study using a new mouse model of
HF, expressing the same mutant form of FTL as the FTL-Tg mouse model, reported that oral
treatment with DFP for 3 weeks reduced serum iron and the number and sizes of the iron posi-
tive granules in the brain [27]. The difference between this study and the present work may be
due to i) the use of different promoters (the phosphoglycerate kinase (PGK) promoter [27] vs
the mouse prion protein promoter [10] in this study) driving expression of the transgene, ii)
the different ages of the mice (12 months vs 5–6 months in this study, to allow the detection of
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small changes in ferritin accumulation by changes in iron levels), iii) the number of mice used
for the study (3 mice vs 11–14 mice per group in the present study to decrease the intrinsic var-
iability between mice), and iv) the different approach to quantification.

In summary, our studies suggest that increases in systemic iron levels in patients with HF
should not be expected to be markedly detrimental to the CNS pathology but may have a pro-
found effect in systemic ferritin deposition, leading to a more significant manifestation of the
systemic aspect(s) of the disease. We also demonstrated the usefulness of DFP to remove and
redistribute iron and to resolubilize or prevent ferritin aggregation in systemic deposits. Fur-
ther studies are needed to identify chelators with better BBB penetration or that may be deliv-
ered locally in the brain. The later may lead to lower toxicity by not significantly affecting
systemic iron homeostasis.

Supporting Information
S1 Fig. Multiplex RT-PCR expression analysis of iron metabolism related genes in the liver
of iron-loaded FTL-Tg mice. Bar graphs depict differential gene expression levels between
controls and iron-loaded mice. Analysis was performed in triplicate and normalized to the β-
actin gene. The group averages are reported as relativemRNA levels mean ± SD. Differences in
gene expression were determined by two-tailed t-test.
(EPS)

S2 Fig. Testicular atrophy in FTL-Tg mice treated with DFP at high dose (DFP100). Atrophy
of the testes was noted at necropsy in the DFP100-treated group (A). A significant difference in
weight of the testes was observed between control and DFP100-treated mice (p = 0.0013) (B).
(EPS)

S3 Fig. Multiplex RT-PCR expression analysis of iron metabolism related genes in the liver
of DFP-treated mice. Bar graphs depict differential gene expression levels between controls
and DFP-treated FTL-Tg mice. Analysis was performed in triplicate and normalized to the β-
actin gene. The group averages are reported as relative mRNA levels mean ± SD. Differences in
gene expression were determined by two-tailed t-test.
(EPS)

S4 Fig. Multiplex RT-PCR expression analysis of iron metabolism related genes in the cere-
bral cortex of DFP-treated mice. Bar graphs depict differential gene expression levels between
control and DFP-treated FTL-Tg mice. Analysis was performed in triplicate and normalized to
the Polr2a gene. The group averages are reported as relative mRNA levels mean ± SD. Differ-
ences in gene expression were determined by two-tailed t-test.
(EPS)
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