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One of the greatest limitations in the field of EEG-based emotion recognition is the
lack of training samples, which makes it difficult to establish effective models for
emotion recognition. Inspired by the excellent achievements of generative models in
image processing, we propose a data augmentation model named VAE-D2GAN for
EEG-based emotion recognition using a generative adversarial network. EEG features
representing different emotions are extracted as topological maps of differential entropy
(DE) under five classical frequency bands. The proposed model is designed to learn
the distributions of these features for real EEG signals and generate artificial samples for
training. The variational auto-encoder (VAE) architecture can learn the spatial distribution
of the actual data through a latent vector, and is introduced into the dual discriminator
GAN to improve the diversity of the generated artificial samples. To evaluate the
performance of this model, we conduct a systematic test on two public emotion EEG
datasets, the SEED and the SEED-IV. The obtained recognition accuracy of the method
using data augmentation shows as 92.5 and 82.3%, respectively, on the SEED and
SEED-IV datasets, which is 1.5 and 3.5% higher than that of methods without using data
augmentation. The experimental results show that the artificial samples generated by our
model can effectively enhance the performance of the EEG-based emotion recognition.

Keywords: data augmentation, electroencephalography (EEG), emotion recognition, generative adversarial
network (GAN), variational auto encoder (VAE)

INTRODUCTION

Affective computing refers to calculations related to emotion, generated from emotion, or
influencing emotion (Tao and Tan, 2005). It has a wide range of applications in computer-aided
learning, perceptual information retrieval, arts and entertainment, human health and interaction,
wearable devices, and so on. Studies (Bocharov et al., 2017) have shown that mental diseases such
as depression and autism are related to changes in emotional processing. Many methods have
been devised for emotion recognition, which are mainly divided into two categories. One is the
use of emotional behavioral features, such as facial expressions (Face Recognition and Emotion
Recognition from Facial Expression Using Deep Learning Neural Network, 2020), body movements
(Garber-Barron and Si, 2012), or voice (Bänziger et al., 2009) to identify human emotions. The other
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is the application of physiological signals to identify emotions,
including ECG (Hsu et al., 2017), respiratory rate (Bloch et al.,
1991), EMG (Mithbavkar, 2020), eye movement (Wang T. et al.,
2020) and EEG. Compared with the former, physiological signals
can produce more reliable recognition results. However, EEG
signals have the advantages of high temporal resolution and
recognition accuracy, and are considered to be one of the most
reliable of physiological signals.

In recent years, an increasing number of researches have
focused on deep learning in emotion recognition based on EEG
(Ali et al., 2020; Jia et al., 2020; Li et al., 2020, 2021). However,
they all ignored a key limitation: the lack of available EEG data.
As generally known, deep neural networks, such as the classic
image processing networks ResNet18 (He et al., 2016), Vgg16
(Simonyan and Zisserman, 2014), and AlexNet (Krizhevsky et al.,
2017), require a great volume of data for training in order to
obtain models with good performance. These all need a high
data volume to train millions or even hundreds of millions of
parameters. However, compared with image data and voice data,
EEG data acquisition necessitates the use of expensive equipment,
time, and manpower. These burdens all lead to the insufficiency
of available EEG data volume. At present, the number of data in
open image datasets, such as ImageNet (Krizhevsky et al., 2017)
and CIFAR-10 (He et al., 2016), has reached tens of thousands
or even tens of millions. In contrast, the public datasets of
EEG emotion only include SEED (Zheng and Lu, 2015), DEAP
(Koelstra et al., 2012) and MAHNOB-HCI (Soleymani, 2012),
which are all much smaller. In addition, it is known that due to
the non–stationarity of EEG signals, each subject and even each
session will produce great variance (Lotte et al., 2007), resulting
in the need to match each individual experiment. The matching
process becomes difficult, as it needs to consider the differences
between individual experiments, which will further affect the
training process of the machine learning model. Moreover,
the amount of data per subject is too small, therefore it is
a great challenge to achieve the training of the applied deep
neural network model.

One of the methods to solve the issue of data scarcity is
to generate new data by transforming the original data, where
the data distribution of the new data will be similar to that
of the original data. This method is called data augmentation,
which is generally divided into traditional methods and machine
learning-based methods. Traditional data augmentation includes
geometric transformation and noise addition. Compared with
image processing, traditional methods are not friendly to EEG
signals, because they are time series that cannot be translated,
flipped, or rotated. If the EEG signal is noisy, the amplitude
and data distribution of the original signal will be changed. In
studies of emotion recognition based on EEG, some researchers
first extract the features of EEG signals, and then add Gaussian
noise to the features to generate new feature samples. The results
demonstrate that the performance of the traditional classifier is
hardly improved or even reduced by the expanded samples, while
the performance of the deep neural network model is improved
(Wang et al., 2018).

Data augmentation methods based on machine learning have
become highly popular in recent years (Pascual et al., 2017;

Wang et al., 2018; Gao et al., 2020), and include the generative
adversarial network (GAN) (Goodfellow et al., 2014) and the
variational auto-encoder (VAE) (Kingma and Welling, 2014).
Since GAN can generate artificial data similar to the original
data, many researchers use it to generate artificial images to
expand the data and improve the recognition rate and stability
of the image. Compared with the traditional methods, the data
augmentation method based on GAN can generate more similar
and more diverse data. Luo and Lu (2018) have done a lot of work
on data augmentation for EEG-based emotion recognition. They
proposed a method of generating EEG emotion samples based on
conditional Wasserstein GAN (CWGAN) using the maximum
mean discrepancy (MMD) to calculate the distribution distance
between real samples and generated samples. In addition, the
team also introduced conditional balanced GAN (cBEGAN)
to generate EEG and eye movement feature samples for
multimodal emotion recognition. Compared with Wasserstein
GAN (WGAN), cBEGAN exhibits the advantages of stable
training and fast convergence. The combination of EEG data
and eye movement data can effectively improve the accuracy
of emotion recognition (Luo et al., 2019). Considering that the
quality of the generated samples will have great impact on the
training of the model, they proposed a strategy of selecting
samples using the SVM classifier to classify the generated
samples. The samples with high classification confidence are
considered as high-quality samples, and the samples with low
classification confidence are excluded. The classification accuracy
of data augmentation with a selection strategy is higher than that
without a selection strategy.

The VAE is composed of an encoder and a decoder, whose
purpose is to reconstruct the given data to generate new data.
The encoder infers the variation of the original data and generates
the variation probability distribution of the hidden variables; the
decoder reconstructs the variation probability distribution of the
hidden variables into the approximate probability distribution of
the original data. The VAE is widely used in various fields. Yun
et al. (2020) used conditional VAE (CVAE) to generate sufficient
training data to solve the problem of metal surface defect
classification. Wang Q. et al. (2020) proposed the norm-VAE to
generate comprehensive features of the target domain and solve
the unsupervised domain adaptation (UDA) problem in image
classification. Aznan et al. (2019) used VAE to generate EEG
signals to solve the problem of insufficient data, and utilized the
generated data to train the SSVEP classifier; the results showed
that the synthetic data can effectively improve the classification
performance. The VAE has received extensive attention in image
generation, however, it has a serious disadvantage in that the
generated image is often very fuzzy, and its expression ability is
poor for complex images. Moreover, the data generated based
on the traditional GAN will present the phenomenon of pattern
collapse. This phenomenon entails that the data generated in
the generator is highly similar to the real data, but its diversity
is insufficient. There are many patterns in real data, and the
generator can only generate several of them but not all, which
causes the lack of diversity.

The VAE can establish the relationship between latent vector
and real data through a decoder, thus its ability to analyze
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complex data is limited, resulting in a blurred image (Bao et al.,
2017). The GAN can capture the global information of the data,
but the training is unstable and prone to pattern collapse, leading
to the insufficient diversity of the generated data. To date, many
studies have attempted to overcome the above shortcomings by
combining VAE and GAN. Bao et al. (2017) proposed the image
generative model CVAE-GAN, which combines CVAE and GAN
to model the natural image as a probability model composed of
labels and latent vectors. The results showed that, compared with
CVAE and GAN alone, the image generated by CVAE-GAN is
more fine-grained and has better diversity. Ye and Bors (2020)
proposed the Lifelong VAEGAN (L-VAEGAN) data generative
model, which can learn the information of latent variables over
time and generate higher-quality samples. At the same time, it
can autonomously learn the shared latent variables in different
fields and realize cross domain reasoning.

Inspired by VAE and GAN, we propose a novel model named
VAE-D2GAN, which can give full play to the advantages of
both VAE and GAN. The encoder of a VAE maps the actual
data to the latent space of specific distribution, and inputs the
latent vector with specific distribution into the generator to learn
the distribution of actual data more accurately and efficiently.
In addition, we add an extra discriminator to GAN, namely, a
double discriminator. Its components are all composed of neural
networks and have the same structure but they do not share
the same parameters. The functions of these two discriminators
are different; they are opposite. The first discriminator tends to
give high scores to samples that match the real data distribution,
and the other discriminator tends to give high scores to samples
generated by the generator. As a result of the game between
the generator and the two discriminators, the distribution of the
artificial samples generated by the generator will be infinitely
close to the distribution of real data, so as to effectively avoid the
excessive concentration of the distribution of artificial samples,
which would lead to pattern collapse.

In addition, we use a variety of evaluation algorithms to assess
the quality of the generated feature samples, such as Inception
Score (IS; Salimans et al., 2016), Fréchet Inception Distance (FID;
Heusel et al., 2017) and MMD (Borgwardt et al., 2006), so that the
robust evaluation of the performance of the data augmentation
model can be performed.

The main contributions of this paper are as follows:

1) Aimed at the problem of data scarcity in EEG emotion
recognition, we propose a novel data augmentation model
called VAE-D2GAN, which consists of an encoder, a shared
decoder or generator, and two opposing discriminators.
The first two networks aim to learn the spatial relationship
of topological graph. The effect of the two discriminators
is opposite: the first discriminator tends to the real data
distribution, and the other discriminator tends to the
generated data distribution. The samples generated by
the generator deceive the two discriminators, so as to
effectively avoid the problem of mode collapse. Once
trained, the combined VAE-D2GAN can generate diverse
artificial samples to enhance the classification model.

2) We conduct emotion classification experiments on two
public datasets (SEED and SEED-IV). The results show
that the artificial samples generated by our model can
effectively augment the deep classification network, and the
augmentation is enhanced in comparison to the current
popular models, such as VAE, WGAN, and DCGAN.

METHODS

In this section, we propose a data augmentation model for
EEG-based emotion recognition using Variational Auto Encoder
and Generative Adversarial Network, which is called VAE-
D2GAN. In this model, the spatial distribution of actual
data is learnt from latent vectors through VAE, and the
generator and the dual discriminator in GAN are then used
to generate high-quality artificial samples that are similar to
real samples but show an extent of diversity. Since GAN
and VAE are both sensitive to image generation, emotion
features are extracted from EEG signals as images to act as the
input of the model.

VAE-D2GAN Model
The framework of our proposed VAE-D2GAN model is shown
in Figure 1. It consists of four parts: encoder (E); decoder or
generator (G); discriminator 1 (D1); discriminator 2 (D2). The
encoder E and generator G constitute the VAE. The real samples
are mapped to latent vectors by the encoder E, and the latent
vectors then generate the artificial samples by the decoder G.
Generator G and discriminators D1 and D2 constitute the GAN.
Generator G learns the real data distribution through the gradient
calculated by the discriminators D1 and D2. D1 and D2 are
dedicated to distinguishing real samples from generated samples.

Feature Extraction
Since Differential Entropy (DE) is the most widely used feature
in the field of EEG-based emotion recognition (Wang et al., 2019;
Zhang et al., 2019; Zhong et al., 2020; Cao et al., 2021; Liang
et al., 2021) and our proposed model is more efficient at handling
images, DE topological maps were extracted from the EEG signals
as emotion features to act as the real sample input for the data
augmentation model VAE-D2GAN.

Short-time Fourier transform was used to transform each
segment of data. The DE feature can be expressed by the following
formula:

h(X) = −
∫
∞

∞

1
√

2π σ 2 e−
(x−µ)2

2σ2 log
(

1
√

2π σ 2 e−
(x−µ)2

2σ2

)
dx

=
1
2 log

(
2π eσ 2) (1)

where X follows a Gaussian distribution N(µ, σ2), x is a variable,
and e and π are constants.

We calculated the DE feature of five bands for each channel,
Delta band (1–4 Hz), Theta band (4–8 Hz), Alpha (8–14 Hz),
Beta band (14–31 Hz), and Gamma band (31–50 Hz). The
linear dynamic system method was used to filter the noises and
artifacts that were unrelated to EEG features (Shi and Lu, 2010).
Next, the DE features were transformed into 32∗32∗5 (length
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FIGURE 1 | The framework of VAE-D2GAN. The model consists of an encoder, a decoder/generator, and two discriminators.

FIGURE 2 | TP-DE images of five frequency bands for a certain participant. The length and width are 32; the channel is 5.

and width = 32, channel = 5) topology images according to the
method in the literature (Bao et al., 2021), namely TP-DE, as
shown in Figure 2.

The strategy of transforming the traditional DE features into
topological maps with image characteristics and using them to
be the real sample input can better match the network structure
of the proposed augmentation model. Moreover, the topological
map features are more explanatory and convenient for judging
the quality of the artificial samples.

VAE
In this section, we introduce the structure and function of VAE
(Kingma and Welling, 2014). In the proposed VAE-D2GAN
model, VAE learns the latent information from real samples
through the encoder and the decoder.

The TP-DE topological maps extracted from real EEG data
were extended into one-dimensional feature vectors xreal as input
for VAE. Input xreal into encoder E to return the estimation of
posterior data distribution q(z |x real), input the low dimensional
latent vector z into decoder G, and reconstruct conditional
distribution p(xreal |z ) of data under the constraint of prior
distribution p(z), where q(z |xreal ) and p(xreal |z ) are usually

represented as follows:

z ∼ E(xreal) = q(z |xreal ), x′real ∼ G(z) = p(xreal |z ) (2)

where E(·) represents the encoder, G(·) represents the decoder (or
generator), and x′real represents the reconstruction samples.

The latent vector z is a combination of the mean value µ

and the standard deviation σ output by the encoder E, and is
expressed as follows:

z = µ+ γ � exp(σ ) (3)

where γ ∼ N(0, I) is a random vector which obeys Gaussian
distribution, � denotes multiplication by elements, therefore
we assume that the latent vector z approximately confirms to
Gaussian distribution z ∼ N(µ, exp(σ)2).

The Kullback-Leibler (KL) divergence is introduced to
optimize the parameters of the encoder, and the KL divergence
loss formula is as follows:

LKL = KL(q(z
∣∣xreal) || p(z)) (4)

where KL(·) represents the calculation of KL divergence distance.
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Besides the KL divergence loss, VAE also uses reconstruction
loss to optimize the decoder, and the formula of reconstruction
loss is as follows:

LRec = −Eq(z|x real)

[
log p(xreal |z )

]
(5)

Formula 5 calculates the square of Euclidean distance between
the real data and the synthetic data.

Therefore, the total loss of VAE is expressed as:

LVAE = LKL + LRec (6)

D2GAN
The D2GAN model (Nguyen et al., 2017) is introduced into
the proposed VAE-D2GAN model to ensure the diversity of the
generated samples.

Differently from the traditional GAN, D2GAN consists of
a generator G and two discriminators D1 and D2. D1 gives
preference to the samples from real data and attributes them a
high score. On the contrary, D2 prefers the samples generated by
the generator and scores them high. The input of generator G is
the random variable zp, which obeys the Gaussian distribution
zp ∼ N(0, I). Moreover, the output is the generated sample xgen .

The expression of output xgen is the following:

xgen = G(zp) (7)

where G(·) represents the generator network.
In D2GAN, G, D1 and D2 play the following three-player

game:

min
G

max
D1,D2

αE
[
log D1(xreal)

]
+ E

[
−D1(G(zp))

]
+E [−D2(xreal)]+ βE

[
log D2(G(zp))

] (8)

where D1(·) and D2(·) represent discriminator 1 and
discriminator 2, respectively. Their network structures are
the same, but their parameters are not shared. The parameters α

and β are hyperparameters, which follow 0 < α, β ≤ 1.

VAE-D2GAN
Since the image generated by the traditional VAE is fuzzy (Bao
et al., 2017), the representation ability of the generated images is
weak. The D2GAN is introduced into the model to try to learn
complementary information while avoiding the pattern collapse
problem caused by GAN.

With VAE combined into the model, the loss for generator G
in D2GAN is expressed as:

LG = −LGD1 + βLGD2 (9)

LGD1 = E [D1(G(z))]+ E
[
D1(G(zp))

]
(10)

LGD2 = E
[
log D2(G(z))

]
+ E

[
log D2(G(zp))

]
(11)

where β is the hyperparameter, which is the same as that in
Formulas 8. D1(·) and D2(·) represent discriminator 1 and
discriminator 2, respectively. Their network structures are the

same, but their parameters are not shared. We optimize the
generator by minimizing its loss.

Since there are two independent discriminators in D2GAN,
two different loss optimization discriminators are also needed:

LD1 = αE
[
log D1(xreal)

]
+ E [−D1(G(z))]+ E

[
−D1(G(zp))

]
(12)

LD2 = βE
[
log D2(G(zp))

]
+βE

[
log D2(G(z))

]
+ E [−D2(xreal)] (13)

where α and β are hyperparameters, which are the
same as those in Formulas 8. The reason for the
introduction of hyperparameters α and β is to make
the training more stable by adjusting the penalty of
D1 and D2.

Subsequently, VAE-D2GAN becomes a four-player game
optimized by E, G, D1 and D2:

min
E,G

max
D1,D2

L(E,G,D1,D2) = LKL + LRec + LG + LD1 + LD2

(14)
LKL is only related to the encoder. Similarly, LD1 and LD2
correspond to the target losses of D1 and D2, respectively. Since
VAE and D2GAN share the generator, the loss of generator
consists of two parts: LG and LRec, where LG is the loss of D2GAN
and LRec is the loss of VAE. The specific training process is
shown in Algorithm 1.

After training the whole model, the Gaussian noise is
passed through the trained generator to generate high-
quality samples.

Algorithm 1 | The training process of VAE-D2GAN.

Input: Training samples; the maximum number of training epochs T; the

mini-batch size is 16.

Output: The learned parameters θE ,θG ,θD1 and θD2 are used for encoder E,

generator G, discriminator 1 D1, and discriminator 2 D2,

respectively.

Step1: Initialize parameters θE ,θG ,θD1 and θD2 . Set iteration unit iter = 1;

Step2: while iter < T do;

Step3: Randomly extract the number of batch training samples and Gaussian

noise z ∼ N(0, I);

Step4: Calculate latent representation z = E(xreal), generated features

x′real = G(z) and xgen = G(zp);

Step5: Calculate various losses LKL ,LRec ,LG ,LD1 and LD2 ;

Step6: Use Adam optimizer to optimize parameters θE ,θG ,θD1 and θD2 :

θE = arg minθ(LKL + LRec + LG)

θG = arg minθ(LRec + LG)

θD1 = arg maxθ LD1

θD2 = arg maxθ LD2

Step7: iter = iter+1;

Step8: end while.
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Classifier Based on Deep Neural
Network
In our previous work (Bao et al., 2021), we proposed a deep neural
network (DNN) classification model that can effectively extract
the features of the topological graph; its structure is shown in
Figure 3. We add the AdaBN layer (Li et al., 2018) after each
convolution layer and full connection layer, which standardizes
the distribution between the real samples and the generated
samples in each batch. In order to compare the performance of
different classification models, we compare the classical networks
in the field of image processing, such as RestNet18, VGG16
and AlexNet, etc.

In addition, we propose a sample data augmentation strategy
that, according to each type of emotion training their own data
augmentation model, can better learn the characteristics of the

same emotion. The overall flow of data augmentation is shown
in Figure 4. We transform the EEG signal into feature image
as the input of the data augmentation model. There is one data
augmentation model for each kind of emotion training, and there
are N data augmentation models for N kinds of emotion. The
structure of each model is consistent but the parameters are
independent. Finally, the generated samples and real samples are
used as the training set to train the deep neural network in order
to classify the testing set.

Evaluate the Quality of Generated
Samples
Evaluating the quality of generated samples is one of the methods
to verify the effectiveness of the data enhancement model. In
the field of image processing, IS and FID are two common

FIGURE 3 | Structural diagram of deep neural network (DNN).

FIGURE 4 | Flowchart of data augmentation based on emotion recognition.
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indicators to evaluate the quality of generated images. The
samples generated in this paper are topology images, so we also
use IS and FID to evaluate them. In addition, MMD algorithm
is used to calculate the distribution distance between real
samples and generated samples to understand the distribution of
generated samples.

Inception Score is a common method to evaluate the
performance of a data augmentation model. It uses a fixed
classifier to predict the generated image, and obtains the
conditional entropy of the prediction label. The larger the
conditional entropy, the higher the quality of the generated image
will be. At the same time, the edge probability is used to judge the
diversity of the generated image. The higher the edge probability,
the greater the diversity will be. The IS combines conditional
entropy and edge probability; the larger it is, the better quality
and diversity of samples will be generated. Nonetheless, it has
a fatal flaw in that when the pattern collapses, the IS value will
be fairly high. In this paper, we employ the DNN network as
the initial classification model. We use all data in each dataset
to train a general basic model, and replace Inception v3 with
this trained model.

Fréchet Inception Distance is a further improved method to
evaluate the performance of the data augmentation model. Like
IS, FID needs a fixed classifier to classify samples. As opposed to
IS, however, FID introduces real samples, extracts the features
of real samples and generated samples in the middle layer of
the classification model, and calculates the Wassertein-2 distance
between the real samples and the generated samples. The smaller
the FID, the higher sample quality and diversity can be attained.
Compared with IS, FID is more sensitive to pattern collapse and
is more stable against noise.

Maximum mean discrepancy is often used to measure the
distance between two distributions. Firstly, two distributions are
mapped to the regenerative kernel Hilbert space (RKHS), and
the distance after mapping is calculated. By calculating the MMD
distance between the real samples and the generated samples, we
can verify whether the samples generated by the generator and
the real samples have the same distribution, that is, we can check
the quality of the generated samples.

EXPERIMENTAL SETTINGS

Datasets
In this section, we introduce the datasets used in this paper:
SEED and SEED-IV.

At present, in the field of EEG emotion recognition, the SEED
dataset (Zheng and Lu, 2015) constructed by the SJTU is one
of the most widely used datasets. In this dataset, 15 healthy
subjects (8 females and 7 males, mean: 23.27, SD: 2.37) were
collected by the ESI Neuroscan System. The sampling rate was
1000 Hz and there are 62 electrode channels, which meets the
international 10–20 standard. Scores (1–5) and keywords were
used to evaluate the subjects’ three kinds of emotions (positive,
neutral, and negative) while they were watching video clips. Each
of 15 video clips lasted for about 4 min. Herein, the original
EEG data are processed by a series of pretreatment, such as
downsampling to 200 Hz, removing the signal seriously polluted

by EOG and EMG, and then passing the selected signal through a
0.3–50 Hz band-pass filter. Finally, data are divided into 1 s data
segments without overlapping, and each segment of data is taken
as a sample. Therefore, each subject has a total of 3,394 samples,
and the sample size of the three types of emotions is basically
the same. Each subject participated in the experiment three times
with an interval of 1 week. In this study, we use the EEG data of
each subject for the first time.

The SEED-IV dataset (Zheng et al., 2018) selects 72 video
clips to induce four different emotions (happy, neutral, sad, and
fear), and each video clip lasts for about 2 min. Twenty-four
trials (6 trials for each kind of emotion) were conducted in
each experiment. Each subject participated in three experiments
at different times. A total of 15 healthy subjects (8 females
and 7 males) were recruited by the ESI Neuroscan System,
62 channels EEG data of the international 10–20 system were
recorded with a sampling rate of 1000 Hz, and the eye movement
signals were collected simultaneously. For the preprocessing
of EEG signal, the original EEG signal is downsampled to
200 Hz, and the noise and artifact are eliminated by using a
band-pass filter of 1–75 Hz. Each trial is divided into 4s data
segments without overlapping, and each segment of data is
taken as a sample. This operation results in 851 samples for
each subject, and the sample size of four emotions is basically
the same. In this study, we use the EEG data of each subject
for the first time.

Training Settings
Firstly, the structure details of encoder (E), generator (G) and two
discriminators (D1, D2) in VAE-D2GAN proposed in this paper
are introduced, as shown in Table 1. An Adam optimizer was
used, and the learning rate was 0.0001. The batch size was 16. All
the methods in this paper were implemented in Python, and the
deep neural network was implemented in Tensorflow.

TABLE 1 | VAE-D2GAN architecture.

Module Layer Kernel
size

Stride Input Output Activation

Encoder Input – – – (n, 5,32,32) –

Conv1 (5,5) 2 (n, 5,32,32) (n, 64,16,16) ReLU

Conv2 (5,5) 2 (n, 64,16,16) (n, 128,8,8) ReLU

Conv3 (5,5) 2 (n, 128,8,8) (n, 256,4,4) ReLU

FC1 – – (n, 256*4*4) (n, 128) –

Generator Input – – 64 (n, 128) –

FC1 – – (n, 128) (n, 256*4*4) ReLU

Deconv1 (5,5) 2 (n, 256,4,4) (n, 128,8,8) ReLU

Deconv2 (5,5) 2 (n, 128,8,8) (n, 64,16,16) ReLU

Deconv3 (5,5) 2 (n, 64,16,16) (n, 5,32,32) ReLU

Discriminator Input – – – (n, 5,32,32) –

Conv1 (5,5) 2 (n, 5,32,32) (n, 64,16,16) ReLU

Conv2 (5,5) 2 (n, 64,16,16) (n, 128,8,8) ReLU

Conv3 (5,5) 2 (n, 128,8,8) (n, 256,4,4) ReLU

FC1 – – (n, 256*4*4) (n, 1) –

The * represents the multiplication symbol.
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Then, we utilize the experience of previous researchers on the
training set and testing set of SEED and SEED-IV datasets. For
the SEED data set, we take the data of the first nine sessions as the
training set, and the last six sessions as the testing set, in which
the last six sessions contain two sessions of positive, neutral,
and negative emotions. In the same manner, for the SEED-IV
data set, we take the data of the first 16 sessions as the training
data, and the last 8 sessions as the testing set. Among them,
the last 8 sessions include two sessions of happy, neutral, sad,
and fear emotions.

In addition, we added extended experiments on the SEED
dataset to explore the impact of different numbers of training
samples on the performance of data enhancement model. The
specific training settings are as follows:

Experiment 1: We select the first three sessions (positive,
neutral and negative, each with one session) of each subject as
the training set, and the last six sessions as the testing set.

Experiment 2: We select the first six sessions (positive, neutral
and negative, each with two sessions) of each subject as the
training set, and the last six sessions as the testing set.

TABLE 2 | On the SEED dataset, TP-DE images are generated based on different models, and the number of different generated images samples is added in
the training set.

Generated samples

Model 0 1000 2000 5000 8000 10000 15000 20000 24000

VAE 91.0/7.2 88.7/8.5 89.4/7.8 90.7/7.5 89.6/6.6 88.5/7.6 89.0/7.9 90.4/6.8 88.9/7.9

WGAN 91.0/7.2 89.2/7.3 89.1/7.0 88.6/7.2 87.4/8.6 88.3/6.9 89.7/7.2 87.0/7.9 88.6/6.9

DCGAN 91.0/7.2 90.1/7.7 90.0/8.4 88.8/7.4 88.4/7.2 89.9/7.1 91.6/7.7 91.0/7.4 90.3/7.1

D2GAN 91.0/7.2 91.4/7.3 90.9/6.4 90.1/7.0 90.4/6.8 89.4/8.3 89.3/6.6 91.6/6.3 90.3/7.2

VAE-GAN 91.0/7.2 89.7/7.3 90.9/7.1 90.9/7.5 91.6/7.2 91.1/8.0 89.4/8.0 90.8/7.4 89.5/7.5

VAE-D2GAN 91.0/7.2 90.9/7.0 92.5/7.1 91.0/7.4 90.4/7.4 91.2/7.3 90.0/7.8 91.7/6.9 91.7/6.1

The average accuracy and standard deviation of classification are obtained by using DNN. 0 means no generated samples are added in the training set.

TABLE 3 | On the SEED-IV dataset, TP-DE images are generated based on different models, and the number of different generated image samples is added in
the training set.

Generated samples

Model 0 1000 2000 5000 8000 10000 15000 20000 25000 30000 32000

VAE 78.8/14.2 78.6/13.5 77.2/12.7 76.9/12.6 74.5/14.1 72.0/15.6 69.2/17.8 64.9/12.7 59.9/15.6 59.9/15.6 61.3/17.3

WGAN 78.8/14.2 76.1/13.5 78.0/10.3 71.5/11.3 73.7/13.7 71.2/14.1 68.6/13.9 69.4/14.2 65.6/14.4 67.7/13.6 70.4/14.3

DCGAN 78.8/14.2 76.8/12.2 72.2/12.4 78.1/11.6 76.9/13.8 75.6/10.8 76.5/10.1 77.4/11.8 77.5/11.6 79.1/13.8 79.1/11.7

D2GAN 78.8/14.2 78.3/11.9 80.0/12.6 73.8/14.0 76.2/13.5 75.0/12.4 75.4/14.3 76.3/13.5 75.1/11.3 74.3/12.6 75.1/12.7

VAE-GAN 78.8/14.2 78.8/11.2 80.8/10.3 77.7/89.2 78.9/9.6 81.1/11.5 80.7/11.0 80.8/11.8 81.5/12.8 81.1/12.9 80.5/12.5

VAE-D2GAN 78.8/14.2 78.8/11.4 80.4/10.6 80.8/12.3 81.4/11.4 82.3/11.0 79.9/13.0 79.0/10.5 80.2/11.6 80.5/11.8 80.8/10.1

The average accuracy and standard deviation of classification are obtained by using DNN. 0 means no generated samples are added in the training set.

FIGURE 5 | Significance test of different data enhancement models.
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Experiment 3: We select the first nine sessions (positive,
neutral and negative, each with three sessions) of each
subject as the training set, and the last six sessions as
the testing set.

We use generative methods to generate artificial samples of
all kinds of emotions. The SEED dataset includes three kinds
of emotions (positive, neutral, and negative), and the SEED-IV
dataset has four kinds of emotions (happy, neutral, sad, and
fear). Each emotion type generates 8,000 samples. Therefore, on
the SEED data, each subject generates 24,000 samples; on the
SEED-IV data, each subject generates 32,000 samples.

RESULTS

The Impact of Different Data
Augmentation Models
In order to evaluate the performance of our proposed model in
improving the accuracy of emotion recognition, we compare it
with the current related data augmentation models. The results
on the SEED and SEED-IV datasets are shown in Tables 2, 3,
respectively. From Table 2, we can infer that the recognition
accuracy of VAE and WGAN is not improved after using data
augmentation, but is decreased. The DCGAN reaches its best

mean accuracy of 91.6% when 15,000 artificial samples are added,
the D2GAN reaches its best mean accuracy of 91.6% when 20,000
artificial samples are added, and the VAE-D2GAN reaches its
best mean accuracy of 92.5% when 2,000 artificial samples are
added. The accuracy of DCGAN, D2GAN, VAE-GAN, and VAE-
D2GAN is 0.6, 0.6, 0.6, and 1.5% higher, respectively, than that
without data augmentation. The VAE-D2GAN exhibits the best
performance among all methods.

Table 3 demonstrates that neither VAE nor WGAN improves
the accuracy. The DCGAN reaches its best mean accuracy of
79.1% when 30,000 artificial samples are added, the D2GAN
reaches its best mean accuracy of 80.0% when 2,000 artificial
samples are added, and the VAE-D2GAN reaches its best
mean accuracy of 82.3% when 10,000 artificial samples are
added. The accuracy of DCGAN, D2GAN, VAE-GAN and VAE-
D2GAN is 0.3, 1.2, 2.7, and 3.5% higher than that without
data augmentation. The VAE-D2GAN has the best performance
among all the methods. The extent of accuracy improvement of
the SEED-IV dataset is higher than that of the SEED dataset.
The reason for this phenomenon is that the number of samples
in SEED-IV is far less than that in SEED. Therefore, the data
augmentation effect for small volume sample data will be better.

In order to further prove the effectiveness of our proposed
model, we conducted a t-test to test the significance between

FIGURE 6 | The influence of data augmentation on the recognition accuracy of different classifiers. (A) Result for the SEED dataset; (B) result for the SEED-IV
dataset.

TABLE 4 | Several algorithms are used to evaluate the performance of the data augmentation models.

Evaluation method

Model SEED SEED-IV

IS FID MMD IS FID MMD

VAE 1.371 29.257 0.628 1.390 409.52 0.907

WGAN 2.445 17.511 0.175 2.206 67.906 0.347

DCGAN 1.874 30.108 0.171 1.566 40.122 0.508

D2GAN 1.951 20.745 0.111 1.845 13.762 0.241

VAE-GAN 2.256 17.557 0.241 1.995 30.542 0.276

VAE-D2GAN 2.041 12.060 0.106 1.865 11.016 0.229

Bold represents the best performance in the corresponding evaluation algorithm.
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FIGURE 7 | Two-dimensional visualizations of real and generated TP-DE images by different models at different iterations in the SEED dataset. Data points with red,
blue and green represent real samples of positive, neutral and negative emotions, respectively, and the lighter color represents generated samples.

different models. We randomly selected a certain number of
synthetic samples for significance test. The results are shown
in Figure 5. The samples synthesized from D2GAN, VAE-
GAN and VAE-D2GAN were not significantly different from the
actual samples (P > 0.05), which shows that these models can
effectively learn the distribution of actual data. The synthetic data
generated by VAE-D2GAN has the greatest correlation with the
real data particularly (P = 0.9334). In addition, VAE-D2GAN was
significantly different from D2GAN (P = 0.0139) and VAE-GAN
(P = 0.0060), respectively.

The Impact of Different Classifiers
In this section, we use the proposed augmentation model
for different classifiers (including various deep networks
and traditional machine learning) to analyze the impact of
recognition accuracy. From the deep network models, we choose
the classic VGG16, ResNet18 and AlexNet; from the traditional
machine learning models, we choose the classic support vector
machine (SVM). At the same time, we use our data augmentation
model VAE-D2GAN; the results are shown in Figure 6. The
classification results obtained by different classifiers are different
from those without data augmentation. On the SEED dataset,
the accuracy of classification obtained by using Vgg16, ResNet18,
AlexNet, SVM, and DNN classifiers is 83.64, 84.85, 84.89, 76.24
and 90.97%, respectively. On the SEED-IV dataset, the accuracy
of classification obtained by using Vgg16, ResNet18, AlexNet,
SVM, and DNN classifiers is 68.67, 64.23, 72.62, 63.13 and

78.83%, respectively. In general, deep networks are better than
traditional machine learning methods. According to the results
for the SEED and SEED-IV datasets, as shown in Figures 6A,B,
respectively, DNN has the highest classification accuracy. In
addition, data augmentation has little effect on traditional
machine learning in EEG-based emotion recognition. Moreover,
for deep networks, the effect of using data augmentation is
enhanced, especially for small data sets.

In comparison with the more complex deep networks Vgg16,
ResNet18, and AlexNet, DNN has a simple network structure
but the best performance in identifying the topology images.
Therefore, the higher complexity of network structure does
not necessarily mean good classification performance. For the
simple image classification of the topology, a simple network

TABLE 5 | Three groups of experiments were set to explore the performance of
the data augmentation model while varying the number of training samples for
each experiment.

Data augmentation

Experiment No Yes

Experiment 1 68.17/11.89 79.46/12.24

Experiment 2 75.46/14.04 83.76/10.64

Experiment 3 90.97/7.20 92.46/7.05

The average accuracy and standard deviation of classification were
obtained by using DNN.
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can get satisfactory classification performance. However, for
more complex classification tasks, such as 4-classification on the
SEED-IV data set (Figure 6B), the classification performances of
ResNet18 and AlexNet are fairly close to that of DNN. Therefore,
for a more complex classification task, a more complex network
may have a better classification effect.

The Quality of Samples Generated by
Different Data Augmentation Models
In this section, we apply the IS, FID, and MMD algorithms in
two datasets to evaluate the performance of our proposed model.
The results are shown in Table 4, where the bold representation
indicates the best results. Since the values of IS and FID in WGAN
are higher than that of VAE-D2GAN, WGAN shows pattern
collapse compared with VAE-D2GAN. The samples generated by
VAE are of poor quality, leading to higher MMD and FID values.
The samples generated by VAE-D2GAN are of high quality and
good in diversity, since FID and MMD have the lowest values.

In order to better illustrate the advantages of VAE-D2GAN,
we map the real samples and the samples generated by
different models at different iterations to the two-dimensional
visualizations through t-SNE, as shown in Figure 7. From the
results we can observe that: (1) The model training effect of
combining VAE and GAN is better than that of independent
VAE and GAN, such as VAE-GAN and VAE-D2GAN. Because
the encoder of VAE maps the actual data to the latent space
of specific distribution, the generator can learn the distribution
of actual data more accurately and quickly. (2) Compared with
VAE-GAN, the sample distribution generated by VAE-D2GAN is
more restrictive to prevent the distribution of synthetic data from
being too scattered and affecting the recognition performance. It
can also be seen from the results of FID and MMD algorithms
that the performance of VAE-D2GAN is better than VAE-GAN.

The Impact of Training Sample Quantity
In the previous section, we established that VAE-D2GAN is
more friendly to small sample data volumes. Therefore, we carry
out experiments on the recognition performance of different
numbers of samples as the training set on the SEED data set.

The results are shown in Table 5. The recognition accuracy of
Experiment 1, 2, and 3 using data augmentation is 79.46, 83.76
and 92.46%, respectively. Compared with no data augmentation
applied, the accuracy is improved by 11.29, 8.3 and 1.49%,
respectively. As the number of training samples from Experiment
1 to Experiment 3 are gradually increased, the recognition
performance also gradually improves. However, the smaller the
number of training samples, the higher the improvement of
recognition performance.

CONCLUSION

In this paper, we propose a data augmentation model named
VAE-D2GAN for EEG-based emotion recognition. Through this
model, we can better analyze the EEG emotion features, learn
relevant specific spatial distribution from latent vectors, and
combine two discriminators to generate more diverse samples.
The proposed model is more stable in training on small sample

dataset. Since the deep network is sensitive to images, we
transformed the DE features of EEG signals into topological
images by mapping and interpolation, and called this operation
TP-DE. Not only it can convert an EEG signal into image
form, but also retain the spatial information of the signal.
We further conducted classification verification on two public
emotional data sets, SEED and SEED-IV, with an accuracy rate
of 92.5 and 82.3%, respectively. The accuracy of using the
proposed data augmentation model was 1.5 and 3.5% higher
than that without using one. Findings show that our data
augmentation model can effectively enhance EEG signals for
emotion recognition, and its performance is superior to that of
VAE, WGAN, DCGAN, D2GAN, and VAE-GAN. Moreover, we
explored the impact of the classification network compared with
the classical deep networks Vgg16, ResNet18, AlexNet, and the
traditional machine learning method SVM. The results show that
the shallow network used to extract the features of simple images
(such as TP-DE) exhibits superior performance. Hence, these
results demonstrated that our model can effectively enhance the
performance of the EEG-based emotion recognition. However,
there are some low-quality samples in the data synthesized by
the data augmentation model, which will reduce the recognition
performance of classifier. Therefore, how to select high-quality
samples from synthetic data is a direction worthy of research. In
the future, we will further study this aspect.
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