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The treatment of common steroids: estrone, estradiol, cortisol, and pregnenolone with
tributylsulfoammonium betaine (TBSAB) provides a convenient chemoselective
conversion of the steroids alcohol/phenol moiety to the corresponding steroidal
organosulfate. An important feature of the disclosed methodology is the millimolar
scale of the reaction, and the isolation of the corresponding steroid sulfates as their
biologically relevant sodium salts without the need for ion-exchange chromatography. The
scope of the method was further explored in the estradiol and pregnanediol steroid
systems with the bis-sulfated derivatives. Ultimately, a method to install an isotopic label,
deuterium (2H) combined with estrone sulfation is a valuable tool for its mass-spectrometric
quantification in biological studies.
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INTRODUCTION

The preparation of authentic reference samples of sulfated steroids with either regioselective mono or di-
sulfation patterns, (Lightning et al., 2021) combined with methods to isotopically label the resulting
sulfated steroids is an ongoing challenge to their biological study. The resulting authentic sulfated steroids
are key reference standards of paramount importance to the understanding of sulfatases (Mueller et al.,
2015), (Günal et al., 2019), (Foster and Mueller, 2018), the role of steroid sulfation in diseases (Mueller
et al., 2021) and the fields of detection of steroids, whether in abuse (Waller andMcLeod, 2014) or in the
environment, (Petrie et al., 2013) using spectroscopic techniques (Hill et al., 2019). Furthermore, the
development of improved sulfation methods can be applied to both sulfated steroid containing natural
products synthesis and structural elucidation studies (Hoye et al., 2007).

Current methods to sulfate steroids fall into two main categories (Chart 1). The use of a protected
sulfate group (e.g., isobutyl protected sulfate esters) with subsequent deprotection (Simpson and
Widlanski, 2006), or the use of a sulfur trioxide equivalent (e.g., chlorosulfonic acid or pyridine-
sulfur trioxide complex) (Waller and McLeod, 2014), (Hungerford et al., 2006). Although these methods
are effective, they suffer from the additional steps of deprotection and/or purification cascades. Issues with
toxicity regarding pyridine contamination from the use of pyridine-sulfur trioxide complex in related
carbohydrate scaffolds (Gabriel et al., 2020), (Vo et al., 2021) requires either an exceptionally vigilant
isolation and analysis; or an improved overall method for steroid sulfation.

Our own current interest in the sulfation field derives from the development of
tributylsulfoammonium betaine (TBSAB) (Gill et al., 2019a), (Jones, 2021) as a convenient one-
pot method for the sulfation of heteroatom containing bioactive molecules. (Benedetti et al., 2020),
(Alshehri et al., 2020) This was inititated due to challenges encountered with the purification of
sulfated small molecule heparin sulfate glycomimetics (Gill et al., 2021), (Gill et al., 2019b),
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(Mahmoud et al., 2019), (Langford-Smith et al., 2019),
(Mahmoud et al., 2017) with conventional, pre-existing
sulfation methods. A key advantage of TBSAB over similar
amine containing-sulfur trioxide complexes (e.g.,
triethylamine-sulfur trioxide) is the lipophilic nature of the
counterion avoiding the need for ion-exchange
chromatography. Herein we report our findings on the use of
TBSAB as a general, scalable and regioselective sulfating reagent
for steroids, and the application of TBSAB in conjugation with
isotopic labelling for steroidal-organosulfate reference standards.

RESULTS AND DISCUSSION

Our initial exploration of the method builds upon early screening
results of TBSAB, including a single example on β-estradiol (1) (Gill

et al., 2019a). We firstly sought to demonstrate the reproducibility of
this method on a 1.0 mmol scale, thus taking commercially available
β-estradiol (1) and treating it with TBSAB resulted in exclusive C
(17), secondary alcohol, sulfation (2). Furthermore the same
conditions using an excess of TBSAB resulted in both C (17)
sulfation and C (3), phenol, sulfation of (4) presumably occurs
via initial C (17) alcohol sulfation in a stepwise installation. In both
cases, a work-up using sodium iodide isolated the mono (3) and
double (5) sulfated steroids as their sodium salts, in good yields
without the risk of pyridinium ion contamination (Scheme 1).

Next, we considered sulfation of a more challenging
biologically active substrate, pregnenolone (6). (Harteneck,
2013). Under analogous conditions to the β-estradiol
examples, and on a 0.3 mmol scale, steroidal sulfate 8 was
afforded after sodium exchange in an excellent 98% isolated
yield (Scheme 2). Diastereoselective reduction of the ketone

CHART 1 | Current approaches to steroid sulfation and this work using TBSAB.

SCHEME 1 | TBSAB mediated regioselective sulfation of β-estradiol (1) affords the mono- or double sulfated estradiols as their sodium salts.
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SCHEME 2 | Sulfation of the pregnenolone (6) and pregnandiol (9) steroids.

SCHEME 3 | Regioselective C (21) sulfate ester formation on cortisol (12).

SCHEME 4 | Estrone and estrone-d2 sulfation using TBSAB.
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moiety of pregnenolone using sodium borohydride afforded
pregnanediol in 31% yield (9). Crystallographic data of the
bulk material from d6-DMSO crystallisation supports the
assignment of the major diastereomer as R at the newly set
stereocentre (Supplementary Figure S3) (2120263 contain,
2120). As 9 contains two secondary alcohol motifs, treatment
with TBSAB afforded the double sulfated pregnanediol (11) in a
modest 40% isolated yield on a 0.6 mmol scale.

The ultimate test of the TBSAB method, in relation to
regioselective sulfation, is the complex triol, cortisol (12) (Scheme
3). Cortisol contains three potentially reactive hydroxyl motifs at the
C (11), C (17) and C (21) positions. It was anticipated that a
regioselective sulfation of the primary C (21) alcohol would result
over the C (11), secondary, or C (17), tertiary, alcohol moieties,
despite the presence of the α-ketone affecting the reactivity of the C
(21)-OH. To our delight, a microscale (8 mg) treatment of cortisol
with TBSAB afforded the C (21) organosulfate in a modest 17%
overall yield (23% based on recovered starting material) as the
sodium salt (14). Furthermore, no unwanted C (11) or indeed C
(17) sulfate ester formation was observed.

Finally, we sought to develop a proof-of-concept isotopic
labelling-chemoselective sulfation method for the estrone
scaffold (15) (Scheme 4). Prior to developing a deuterium
labelling method at the C (16) methylene position, a model
non-deuterated estrone was sulfated at the C (3) phenolic
position in good 72% isolated yield as the sodium salt (17). A
higher equivalence of TBSAB (2.0 eq) was used to ensure
complete sulfation at the sole reactive C (3) phenolic centre.
This provided confidence that sulfation should occur readily at

the C (3) position using TBSAB on the deuterium labeled
substrate.

Firstly, we adapted the method of Rudqvist for C (19)
deuteration (Rudqvist, 1983). Treatment of the estrone with
NaOD in MeOD resulted in estrone-d2 formation (18). The C
(16)-H2 protons were selectively deuterated by enolate
formation with sodium deutroxide and resultant deuterium
incorporation by quenching the enolate with methanol-D
(CH3OD). This was confirmed via comparative 2D-NMR
spectroscopic studies (see Supporting Information) but the
key disappearance of the C (16) protons can be clearly
observed in the 1H-NMR spectral overlay (Figure 1). It
should be noted that deuteration next to a carbonyl group
is not usually recommended for applied quantification studies
as the deuterium label could readily back exchange through a
keto-enol tautomerisation leading to a loss of the label (Wudy,
1990). In our system we observed, a decline of deuterium label
in solution based mass-spectrometry studies (Supplementary
Figures S1, S2).

Finally, the treatment of estrone-d2 with TBSAB afforded the
sulfated and isotopically labelled estrone-d2 sulfate in 78%
isolated yield and 67% incorportation of the deuterium label (20).

CONCLUSION

In summary, we have demonstrated a general method for the
synthesis of mono- or di-sulfated steroidal skeletons of importance
to the fields of biology and spectroscopmetric detection. We have

FIGURE 1 | Overlay of 1H NMR spectra of estrone (blue, 15) and estrone-d2 (red, 18) shows the diagnostic reduction of the diastereotopic C (16) protons.

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 7769004

Alshehri et al. Sulfated Sterorids

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


showcased chemo-selective sulfation within a variety of complex
structures, such as cortisol, and developed a simplified deuterium
labeling-sulfation strategy for estrone. Overall, these approaches
provide tractable routes on preparative scales to multiple sulfated
steroid classes as reference compounds for detection of substances
of abuse through to cancer diagnosis applications.
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