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Background: Some studies have shown that the base excision repair (BER) pathway has
an effect on HIV-1 replication. APEX1 and XRCC1 as key BER genesmay affect DNA repair
capacity. However, the roles of single nucleotide polymorphisms (SNPs) in APEX1 and
XRCC1 and their impact on HIV-1 infection and AIDS progression remain unclear.

Methods: A custom-designed 48-Plex SNPscan Kit was used for detection of single
nucleotide polymorphisms. 601 HIV-1-infected men who have sex with men (MSM) and
624 age-matched healthy individuals were recruited in northern China. Four SNPs (rs1130409,
rs1760944, rs2307486 and rs3136817) in APEX1 gene and three SNPs (rs1001581, rs25487
and rs25489) in XRCC1 gene were genotyped. The generalized multifactor dimension
reduction (GMDR) method was used to identify the SNP-SNP interactions.

Results: In this study, rs1130409 G allele, rs1001581 C allele and rs25487 C allele were
associated with a higher risk of HIV-1 infection susceptibility (p = 0.020, p = 0.007 and p =
0.032, respectively). The frequencies of APEX1 haplotype TT and XRCC1 haplotype CT
showed significant differences between cases and controls (p = 0.0372 and p = 0.0189,
respectively). Interestingly, stratified analysis showed that the frequency of rs1001581 C
allele was significantly higher in AIDS patients with the CD4+ T-lymphocyte count <200
cells/μl than those with >200 cells/μl (p = 0.022). Moreover, significant gene-gene
interactions among rs1130409, rs1001581 and rs25487 were identified by GMDR (p =
0.0107). Specially, individuals with five to six risk alleles have a higher susceptibility to HIV-1
infection than those with zero to two risk alleles (p < 0.001).

Conclusion: APEX1 and XRCC1 gene polymorphisms were associated with the
susceptibility to HIV-1 infection and AIDS progression in MSM populations in northern
China.
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INTRODUCTION

The spread of HIV-1 infection around the world has become a
major global public health problem. HIV-1 virus is the pathogen
of AIDS, which can infect human immune cells, causing immune
system dysfunction and making the human body susceptible to a
variety of diseases (Bandera et al., 2019). Several reports have
shown that different heterogeneities of host genetics and host
immune response contribute to different chronic complications
and AIDS progression (O’Brien and Nelson, 2004; Speelmon
et al., 2006).

DNA damage triggers genome instability, thereby burdening
cells with dangerously disadvantageous mutations (Whitaker
et al., 2017). Activated powerful DNA damage response
(DDR) pathways through the DNA repair system, cell cycle
checkpoints and cell death pathways to minimize the harmful
effects of DNA damage. Base excision repair (BER), one of the
primary DNA repair pathways, repairs the endogenous DNA
damages including deaminations, depurinations, alkylations and
a plethora of oxidative damages, and can enhance DNA single-
strand break repair (SSBR) (Nemec et al., 2010; Hegde et al.,
2012). Based on the multiple functions of DNA glycosylase, there
are two classic BER pathways: short patch BER and long patch
BER. APEX1 and XRCC1 are two key enzymes in short
patch BER.

APEX1 is a 2.21 kb gene located on chromosome 14q11.2-q12.
It encodes an apurinic endonuclease, which recognizes and
cleaves phosphodiester bonds through a hydrolysis
mechanism, and specifically activates DNA damage repair
(Parsons et al., 2004). APEX1 polymorphism has been
reported to be associated with the efficacy of platinum-based
adjuvant chemotherapy on cervical cancer (Chung et al., 2006)
and non-small cell lung cancer (Pérez-Ramírez et al., 2019). In
addition, it may increase the risk of other cancers, such as breast
cancer (Mitra et al., 2008), colorectal cancer (Wang L. et al., 2016)
and pancreatic cancer (Chen et al., 2019).

The XRCC1 gene is located on chromosome 19q13.2-13.3 and
is about 33 kb long. In DNA damage repair, the encoded protein
functions as a scaffold protein for specific repair enzymes and
plays a role in the subsequent enzymatic steps (Caldecott, 2003;
Caldecott, 2008). Polymorphisms of XRCC1 may be involved in
the pathogenesis of many diseases, including head and neck
cancer (Nanda et al., 2018), diabetes (Wang et al., 2019) and
Alzheimer’s disease (Qian et al., 2010). It has long been speculated
that insertion of HIV-1 cDNA leads to the creation of DSBs and
leaves single-stranded gaps connecting the viral and host DNA
(Skalka and Katz, 2005). Effective repair of these lesions is critical
to host cell integrity and subsequent transcription of the viral
genome, and BER may play this role (Mbonye and Karn, 2017).
Functional SNPs in the BER gene can affect gene expression or
function, affect DNA repair ability, and eventually lead to cell
dysfunction and mutagenesis (Hung et al., 2005).

In addition, it has been reported that BER may influence the
sequence preference of HIV-1 integration site (Bennett et al.,
2014). However, the association between BER gene
polymorphisms and risk of HIV-1 infection has not been fully
evaluated. Our previous works have confirmed that

polymorphisms in mismatch repair gene MSH6 and
homologous recombination gene MRE11 may play an
important role in the development of AIDS (Liu C. et al.,
2019; Wang C. et al., 2016). In this study, we investigated
whether seven potentially functional SNPs in the XRCC1 and
APEX1 genes are associated with susceptibility to HIV-1 infection
and the AIDS progression in men who have sex with men (MSM)
populations in northern China.

METHODS

Subjects
In this case-control study, 601 HIV-1 positive males were
recruited from the Center for Disease Control and Prevention
of Heilongjiang Province in northern China. All patients had
acquired HIV-1 infection through male and male homosexual
transmission. We recruited 624 healthy men diagnosed as HIV-1
seronegative by comprehensive medical examination at the
Second Affiliated Hospital of Harbin Medical University, as a
control group. Based on age, 1:1 frequency matching was
performed at 10-year intervals. The detailed characteristics of
samples are shown in Table 1. The study was approved by the
local ethics review committee, and all subjects signed written
consent prior to the study.

SNPs Selection and Genotyping
Potential functional polymorphisms in the XRCC1 and APEX1
were identified through the dbSNP database (http://www.ncbi.
nlm.nih.gov/) and HaploReg v4.1 (http://pubs.broadinstitute.org/
mammals/haploreg/haploreg.php). With minor allele frequency
(MAF) > 0.1 in CHB (Han Chinese in Beijing), four SNPs
(rs1130409 T > G, rs1760944 T > G, rs2307486A > G and
rs3136817 T > C) in APEX1 gene and three SNPs
(rs1001581 C > T, rs25487 T > C, rs25489 C > T) in XRCC1
gene were finally selected. The candidate SNPs are located in the
untranslated regions (5′-UTR, intron) and exon of genes, and
there is no significant linkage disequilibrium (R2 < 0.8) among
these SNPs.

TABLE 1 | Characteristics of HIV-infected individuals and healthy controls.

Characteristics Cases Controls P Value

(n = 601) (n = 624)

Age range, years 16–75 16–75
Mean age ±SD, years 33.81 ± 11.30 34.62 ± 11.89 0.2246a

Clinical stages, n (%)
I 236 (0.393) — —

II 175 (0.292) — —

III 128 (0.213) — —

IV 60 (0.100) — —

CD4+ T cell counts (cells/μl), n (%)
<200 90 (0.150) — —

200–500 298 (0.495) — —

>500 213 (0.355) — —

aStudent’s t-test.
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Following the manufacturer’s instructions, genomic DNA was
extracted from 200 μl whole blood of each sample using the
QIAamp blood kit (Qiagen, Hilden, Germany). Genotyping was
performed using a customized 48-plex SNPscan kit (Genesky
Biotechnologies Inc., Shanghai, China), which used double
ligation and multiplex fluorescent PCR. For quality control,

5% of random control samples were genotyped twice to verify
that the accuracy and repeatability of genotyping was 100%.

Statistical Analysis
The Hardy-Weinberg equilibrium (HWE) of the control group
was confirmed for each polymorphism by χ2 goodness-of-fit test.

TABLE 2 | Associations between APEX1 and XRCC1 gene polymorphisms and susceptibility to HIV-1 infection.

Genetic models SNP alleles and genotypes N (frequency) P Value OR (95% CI)

Cases (n = 601) Controls (n = 624)

APEX1-rs1130409 (HWE = 0.098)
Risk allele, G (%) 548 (0.456) 509 (0.409) 0.020 1.210 (1.031–1.420)

Codominant model (GG vs TT) GG 121 (0.201) 94 (0.151) 0.012 1.539 (1.100–2.152)
Codominant model (TG vs TT) TG 306 (0.509) 321 (0.515) 0.315 1.140 (0.883–1.471)

TT 174 (0.290) 208 (0.334) — —

Dominant model (GG + TG vs TT) GG + TG 427 (0.710) 415 (0.666) 0.094 1.230 (0.965–1.567)
Recessive model (GG vs TT + TG) TT + TG 480 (0.799) 529 (0.849) 0.020 1.419 (1.056–1.907)

APEX1-rs1760944 (HWE = 0.975)
Risk allele, G (%) 565 (0.470) 555 (0.446) 0.258 1.096 (0.934–1.285)

Codominant model (GG vs TT) GG 139 (0.231) 124 (0.199) 0.213 1.223 (0.891–1.680)
Codominant model (TG vs TT) TG 287 (0.478) 307 (0.494) 0.880 1.020 (0.786–1.324)

TT 175 (0.291) 191 (0.307) — —

Dominant model (GG + TG vs TT) GG + TG 426 (0.709) 431 (0.693) 0.544 1.079 (0.844–1.378)
Recessive model (GG vs TT + TG) TT + TG 462 (0.769) 498 (0.801) 0.174 1.208 (0.920–1.588)

APEX1-rs2307486 (HWE = 0.887)
Risk allele, A (%) 1140 (0.950) 1172 (0.941) 0.308 1.200 (0.846–1.702)

Codominant model (AA vs GG) AA 541 (0.902) 551 (0.884) 0.986a 1.964 (0.186–20.772)
Codominant model (AG vs GG) AG 58 (0.097) 70 (0.112) 0.861a 1.657 (0.15–18.296)

GG 1 (0.002) 2 (0.003) — —

Dominant model (AA + AG vs GG) AA + AG 599 (0.998) 621 (0.997) 0.974a 1.929 (0.182–20.446)
Recessive model (AA vs GG + AG) GG + AG 59 (0.098) 72 (0.116) 0.330 1.198 (0.833–1.724)

APEX1-rs3136817 (HWE = 0.914)
Risk allele, C (%) 136 (0.113) 114 (0.092) 0.079 1.265 (0.973–1.644)

Codominant model (CC vs TT) CC 9 (0.015) 5 (0.008) 0.225 1.952 (0.662–5.754)
Codominant model (TC vs TT) TC 118 (0.197) 104 (0.167) 0.163 1.231 (0.919-1.647)

TT 473 (0.788) 513 (0.825) — —

Dominant model (CC + TC vs TT) CC + TC 127 (0.212) 109 (0.175) 0.107 1.264 (0.951-1.679)
Recessive model (CC vs TT + TC) TT + TC 591 (0.985) 617 (0.992) 0.253 1.879 (0.637–5.542)

XRCC1-rs1001581 (HWE = 0.895)
Risk allele, C (%) 756 (0.629) 715 (0.576) 0.007b 1.249 (1.062–1.469)

Codominant model (CC vs TT) CC 228 (0.379) 205 (0.330) 0.003 1.691 (1.193–2.397)
Codominant model (CT vs TT) CT 300 (0.499) 305 (0.491) 0.018 1.496 (1.070–2.090)

TT 73 (0.121) 111 (0.179) — —

Dominant model (CC + CT vs TT) CC + CT 528 (0.879) 510 (0.821) 0.005 1.574 (1.146–2.163)
Recessive model (CC vs TT + CT) TT + CT 373 (0.621) 416 (0.670) 0.072 1.240 (0.981–1.568)

XRCC1-rs25487 (HWE = 0.176)
Risk allele, C (%) 910 (0.757) 887 (0.719) 0.032 1.219 (1.017–1.461)

Codominant model (CC vs TT) CC 341 (0.567) 312 (0.506) 0.143 1.434 (0.885–2.325)
Codominant model (TC vs TT) TC 228 (0.379) 263 (0.426) 0.607 1.138 (0.695–1.862)

TT 32 (0.053) 42 (0.068) — —

Dominant model (CC + TC vs TT) CC + TC 569 (0.947) 575 (0.932) 0.279 1.299 (0.809–2.085)
Recessive model (CC vs TT + TC) TT + TC 260 (0.433) 305 (0.494) 0.031 1.282 (1.023–1.607)

XRCC1-rs25489 (HWE = 0.302)
Risk allele, T (%) 136 (0.113) 113 (0.091) 0.066 1.279 (0.984–1.663)

Codominant model (TT vs CC) TT 7 (0.012) 3 (0.005) 0.284a 2.536 (0.683–9.416)
Codominant model (CT vs CC) CT 122 (0.203) 107 (0.172) 0.144 1.239 (0.929–1.653)

CC 472 (0.785) 513 (0.823) — —

Dominant model (TT + CT vs CC) TT + CT 129 (0.215) 110 (0.177) 0.093 1.275 (0.960–1.692)
Recessive model (TT vs CC + CT) CC + CT 594 (0.988) 620 (0.995) 0.313a 2.435 (0.654–9.066)

Bold type indicates statistical significance (p < 0.05). OR: odds ratio; CI: confidence interval; HWE: Hardy-Weinberg equilibrium; SNP: single nucleotide polymorphism.
aAdjusted chi-square test, yates.
bP value remained significant after Bonferroni correction for multiple testing, in which p < 0.0071 (0.05/7).
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Two-sided chi-square test (adjusted chi-square test, yates for 1 ≤
T < 5) was used to compare allele and genotype frequencies
between HIV-1 infected individuals and healthy controls. In
association tests, odds ratios (ORs) and 95% confidence
intervals (95% CI) were estimated as the relative risk
associated with SNPs. The linkage disequilibrium (LD) and
haplotype analysis was constructed by Haploview v.4.2 (http://
sourceforge.net/projects/haploview/). Comparison of the CD4+

T-lymphocyte count in different genetic models was performed
using Wilcoxon rank–sum test. Generalized multifactor
dimensionality reduction (GMDR) (http://www.ssg.uab.edu/
gmdr/) was used to analyze the gene-gene interaction models,
and the best model was selected based on the consistency and
accuracy test results of cross-validation. Association between the
number of risk alleles and AIDS was calculated using logistic
regression. Bonferroni correction was implemented to correct for
multiple testing. Statistical analyses were performed using SPSS v.
22.0 (IBM-SPSS, Inc., Chicago, IL, United States) and R statistical
software (v3.6.3). P value <0.05 was considered statistically
significant.

RESULTS

Characteristics of Participants
A total of 601 AIDS patients and 624 healthy controls living in
Heilongjiang Province were recruited in this study. Table 1 shows
the basic characteristics of participants based on the CD4+

T-lymphocyte count and clinical staging. The mean ages of
the patients and control subjects were 33.81 ± 11.30 and
34.62 ± 11.89 years, respectively. There was no significant
difference in the distribution of age and gender between the
two groups. The genotype distributions of candidate SNPs in
control samples were in agreement with HWE (p > 0.05)
(Table 2).

Association Between APEX1 and XRCC1
Gene Polymorphisms and Susceptibility to
HIV-1 Infection
As shown in Table 2, the allele frequencies of APEX1 rs1130409
and XRCC1 rs1001581 and rs25487 were significantly different
between the case and control groups (p < 0.05). Specially, the
rs1130409 G (OR = 1.210, 95% CI = 1.031-1.420, p = 0.020),
rs1001581 C (OR = 1.249, 95% CI = 1.062-1.469, p = 0.007) and
rs25487 C (OR = 1.219, 95% CI = 1.017–1.461, p = 0.032) were
associated with a higher risk of susceptibility to HIV-1 infection.
In addition, the distribution of rs1001581 allele still showed
significant differences between cases and controls after
Bonferroni correction for multiple testing, in which p < 0.0071
(0.05/7) was set as statistically significant.

For the rs1130409, rs1001581 and rs25487 polymorphisms,
there were significant differences in genotype distribution
between HIV-1 infected group and control group under
multiple genetic models (Table 2). In the analysis of APEX1
rs1130409, genotype GG was associated with increased
susceptibility to HIV-1 infection (recessive model: GG vs TT +

TG: OR = 1.419, 95% CI = 1.056–1.907, p = 0.020; codominant
model: GG vs TT: OR = 1.539, 95% CI = 1.100–2.152, p = 0.012).
Additionally, XRCC1 rs1001581 genotypes (CC + CT) were
associated with increased susceptibility to HIV-1 infection
(dominant model: CC + CT vs TT: OR = 1.574, 95% CI =
1.146-2.163, p = 0.005; codominant model: CC vs TT: OR =
1.691, 95% CI = 1.193–2.397, p = 0.003; CT vs TT: OR = 1.496,
95% CI = 1.070–2.090, p = 0.018). Moreover, the rs25487 CC
genotype was also associated with increased susceptibility to
HIV-1 infection (recessive model: CC vs TT + TC: OR =
1.282, 95% CI = 1.023–1.607, p = 0.031). However, after
Bonferroni correction for multiple tests with p < 0.0018 (0.05/
28), all these associations were no longer statistically significant.

Haplotype Analysis
Haploview software was used for linkage disequilibrium (LD)
analysis. Two haplotype blocks were detected in APEX1 and
XRCC1. APEX1 haplotype block1 is composed of rs3136817 and
rs1130409 (Figure 1A), and XRCC1 haplotype block1 is
composed of rs25489 and rs1001581 (Figure 1B). After the P
value calculated by multiple tests of 10,000 permutations, the
frequencies of APEX1 haplotype TT and XRCC1 haplotype CT
showed significant differences between cases and controls (p =
0.0372 and p = 0.0189, respectively) (Supplementary Table S1).

Association Between APEX1 and XRCC1
Polymorphisms and AIDS Progressions
As the number of CD4+ T lymphocytes decreases, the immunity
of HIV-1 infected patients will be severely impaired, leading to
complications such as pneumonia and tumors. The CD4+

T-lymphocyte count was used as a surrogate marker for AIDS
progression in our study. The frequency of rs1001581 C was
significantly higher in the cases with the CD4+ T-lymphocyte
count <200 cells/μl than those with >200 cells/μl (OR = 1.458,
95% CI = 1.056–2.012, p = 0.022) (Table 3). However, after
Bonferroni correction for multiple tests with p < 0.0071 (0.05/7),
all these associations were no longer statistically significant. We
further found that patients with rs25487 CC and TC genotypes
have a lower CD4+ T-lymphocyte count than those with TT
genotype in the dominant model (p = 0.027) (Figure 2A), while
there was no difference in CD4+ T-lymphocyte count in the
recessive genetic model (Figure 2B).

Gene-gene Interactions Analysis
The GMDR model was employed to find the best SNP-SNP
interaction combination among seven SNPs in APEX1 and
XRCC1 genes. The results showed a significant two-locus
model involving rs1130409 and rs1001581 (p = 0.0107) and a
significant three-locus model involving rs1130409, rs1001581 and
rs25487 (p = 0.0107) (Supplementary Table S2). The
susceptibility to HIV-1 infection may be altered by the three
genetic variants. We further assessed the association between the
sum of risk alleles of rs1130409 G, rs1001581 C and rs25487 C
and susceptibility to HIV-1 infection. Figure 3 A shows the
numbers of patients and healthy individuals with each risk allele
in cases and controls, and we observed an additive effect of risk
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alleles on the presence of AIDS (Figure 3B). The OR for AIDS
was 1.10 (95% CI = 0.835–1.462) in patients with three to four
risk alleles, and the corresponding OR in those with five to six risk
alleles was 1.703 (95% CI = 1.242–2.335, p < 0.001).

DISCUSSION

It has been reported that the genetic background of the host
will affect the susceptibility to HIV-1 infection and disease

progression (Juno et al., 2012; Vidyant et al., 2017; de Silva
et al., 2018). The interruption or dysregulation of SSBR can
lead to genome instability, thereby promoting the integration
of viral cDNA into the host genome (Sancar et al., 2004). One
study also showed that the BER pathway is essential for
effective lentiviral integration (Yoder et al., 2011). These
findings suggest that the BER pathway may play a role in
regulating HIV infection and integration. APEX1 and XRCC1
play a critical role in maintaining the integrity of the BER
system. During the short patch BER process, APEX1

FIGURE 1 | The results of LD analysis. (A) Haplotype block map for 4 SNPs of the APEX1 gene, (B) Haplotype block map for 3 SNPs of the XRCC1 gene. The
haplotypes were constructed according to the prevalence of SNPs and LD among them. Numbers in squares indicate D’ values. The white cell indicates D’ < 1 and LOD
(log of the likelihood odds ratio) < 2; The blue cell indicates D’ = 1 and LOD <2; the pink or red cell indicates D’ < 1 and LOD ≥2; The bright red cell indicates D’ = 1 and
LOD ≥2.

TABLE 3 | Association between the 7 SNPs and the clinical features of AIDS.

SNPs Allele CD4+ T-lymphocyte count,
n (%)

P OR (95% CI) Clinical phase, n (%) P OR (95% CI)

<200 cells/μl >200 cells/μl I + II + III IV

rs1130409 G 76 (0.432) 472 (0.461) 0.474 0.889 (0.644–1.227) 487 (0.450) 61 (0.508) 0.224 0.792 (0.543–1.154)
T 100 (0.568) 552 (0.539) 595 (0.550) 59 (0.492)

rs1760944 G 78 (0.443) 486 (0.475) 0.440 0.881 (0.639–1.215) 511 (0.472) 54 (0.450) 0.643 1.094 (0.749–1.598)
T 98 (0.557) 538 (0.525) 571 (0.528) 66 (0.550)

rs2307486 A 171 (0.972) 967 (0.946) 0.153 1.945 (0.780–4.849) 1023 (0.947) 117 (0.975) 0.185 0.460 (0.146–1.451)
G 5 (0.028) 55 (0.054) 57 (0.053) 3 (0.025)

rs3136817 C 25 (0.142) 111 (0.109) 0.197 1.359 (0.853–2.165) 120 (0.111) 16 (0.133) 0.466 0.813 (0.465–1.420)
T 151 (0.858) 911 (0.891) 960 (0.889) 104 (0.867)

rs1001581 C 79 (0.449) 367 (0.358) 0.022 1.458 (1.056–2.012) 686 (0.634) 70 (0.583) 0.276 1.237 (0.844–1.815)
T 97 (0.551) 657 (0.642) 396 (0.366) 50 (0.417)

rs25487 C 132 (0.75) 776 (0.758) 0.823 0.959 (0.664–1.385) 816 (0.754) 94 (0.783) 0.480 0.849 (0.538–1.338)
T 44 (0.25) 248 (0.242) 266 (0.246) 26 (0.217)

rs25489 C 157 (0.892) 907 (0.886) 0.807 1.066 (0.638–1.782) 963 (0.890) 103 (0.858) 0.299 1.336 (0.774–2.305)
T 19 (0.108) 117 (0.114) 119 (0.110) 17 (0.142)

Bold type indicates statistical significance (p < 0.05). OR: odds ratio; CI: confidence interval.
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endonuclease cuts the 5′phosphodiester bond into an
abasic site and recruits Polβ to fill the single nucleoside gap
linked by the enzyme complex including LIG3 and XRCC1
(Izumi et al., 2000; Chatterjee and Walker, 2017). Therefore,
this study aims to investigate the role of functional
polymorphisms of XRCC1 and APEX1 genes in the
susceptibility and clinical progression of HIV-1 infection,
and to provide a theoretical basis for the prevention and
treatment of the disease.

In our study, homozygous genotype GG and G allele of
APEX1 rs1130409 were found to be significantly associated
with increased susceptibility to HIV-1 infection. The
rs1130409 G allele has been reported to increase the risk of
other diseases. Mitra et al. confirmed a statistical association
between the rs1130409 G allele and breast cancer risk in north
Indian women (Mitra et al., 2008). Recently, a study
conducted by Usategui-Martín et al. showed a statistically
significant association between Paget’s disease of bone and the
rs1130409 G allele in Spanish (Usategui-Martín et al., 2018).
rs1130409 in the APEX1 exon 5 leads to the conversion of the
residues at the carboxyl end of Asp148Glu, which may affect
the endonuclease activity of APEX1. In addition, it has been
reported that HIV-1 Rev protein interacts with APEX1
confirmed by in vitro binding experiments in HeLa cells
(Naji et al., 2012). Yan et al. also demonstrated that
siRNA-mediated knockdown of APEX1 significantly
reduced the level of HIV-1 cDNA integration and virus
production in HeLa-CD4 cells, thereby inhibiting HIV-1
infection (Yan et al., 2009). The above functional studies
on APEX1 and rs1130409 can explain, to a certain extent,
that individuals carrying rs1130409 G allele and GG genotype
are more likely to be infected with HIV-1.

We also observed that homozygous genotype CC and C
allele of XRCC1 rs25487 were significantly associated with

FIGURE 2 | Differential analysis of CD4+ T-lymphocyte count in the different genetic models of rs25487, rs1001581 and rs1130409. (A) Dominant model, (B)
Recessive model.

FIGURE 3 | Association between the number of risk alleles in
rs1130409, rs1001581 and rs25487 and AIDS. (A) the numbers of patients
and healthy individuals with each risk allele in cases and controls, (B) The risk
of AIDS by the number of risk allele categories. Data are crude ORs and
95% CIs. The 0–2 group was the reference. OR = odds ratio.
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susceptibility to HIV-1 infection. Several studies found that the
T allele or TT genotype were associated with the risk of a
variety of cancers. For example, Liu et al. observed that
rs25487 T allele significantly increased the risk of cervical
cancer in the female population of southwest China (Liu G.
C. et al., 2019). A study also showed that T allele of rs25487 was
associated with poor prognosis of HBV-related hepatocellular
carcinoma patients after hepatectomy (Yu et al., 2016).
Mahmoud et al. suggested that rs25487 TT genotype could
be regarded as possible genotypic risk factor for the
development of HCV-related hepatocellular carcinoma
(Mahmoud et al., 2019). Another study pointed out that
patients with rs25487 genotype TT + CT had a higher risk
of endometrial cancer in northern China (Chen et al., 2016).
The results of the above association studies are inconsistent,
which may be caused by the different disease types and
populations used in the different studies. Moreover, we
further found that patients with rs25487 CC and TC
genotypes have a lower CD4+ T-lymphocyte count than
those with TT genotype. rs25487 is a non-synonymous SNP,
which changes the glutamine of XRCC1 exon 10 into arginine,
thereby reducing the affinity between XRCC1 protein and
DNA repair complex and affecting the ability of DNA repair.

In addition, our results showed that homozygous genotype
CC, heterozygous genotype CT and allele C of XRCC1
rs1001581 were significantly associated with increased
susceptibility to HIV-1 infection. The rs1001581 allele C
still showed a significant association with susceptibility to
HIV-1 infection, even after Bonferroni correction for multiple
testing. Interestingly, there was a significant association
between rs1001581 and CD4+ T-lymphocyte count, and the
C allele could significantly accelerate the disease progression
of AIDS. Gu et al. proved that rs1001581 C to T variation was
significantly related to the protective effect of the Han
population against HAV infection (Gu et al., 2018).
Another study showed that rs1001581 heterozygous
genotype CT was associated with the risk of advanced non-
small cell lung cancer in Koreans (Kim et al., 2010). These
results indicated that XRCC1 rs1001581 may serve as an
important biomarker for a variety of diseases and be
beneficial for future evaluation of individual prognosis of
AIDS. Although rs1001581 is located in XRCC1 intron, it
may affect the function of XRCC1 encoding protein by
altering its transcriptional activity. A functional study also
reported that siRNA-mediated knockdown of APEX1 and
XRCC1 can inhibit HIV infection in HeLa P4/ R5 cells
(Espeseth et al., 2011).

AIDS is a consequence of the interaction between the
individual’s genetic background and the environmental
factors faced by the individual, in which gene-gene
interaction may play a significant role. According to our
GMDR model analysis, there was a significant SNP-SNP
interaction between rs1130409, rs1001581 and rs25487. We
observed a trend toward increased AIDS risk as the number of
rs1130409 G, rs1001581 C and rs25487 C alleles increased,
suggesting a cumulative effect of genetic variants on AIDS

risk. Moreover, the association of haplotypes were analyzed to
evaluate the synergy of SNPs. The frequencies of TT haplotype
of APEX1 and CT haplotype of XRCC1 differed between cases
and controls, and these associations were statistically
significant. These results indicated that the interaction of
rs1130409, rs1001581 and rs25487 significantly increased
the risk of susceptibility to HIV-1 infection.

In the current study, we applied the Bonferroni correction
to reduce the number of false positives in multiple significance
testing. Although only the rs1001581 allele passed the
calibration criteria after P-value was adjusted, the positive
results of other SNPs should not be ignored. Undoubtedly,
there are still some limitations in this study. First, there is a
lack of information about critical factors in cases, including
history of injection drug use, clinical data of viral loads and
other clinical manifestations. Second, cases and controls were
not exposed to the same conditions, and we did not collect
blood samples from healthy MSM controls due to privacy
regulations.

CONCLUSION

In conclusion, the present study suggests that the
polymorphisms of APEX1 and XRCC1 may increase the
risk of HIV-1 susceptibility and the clinical progression of
AIDS in MSM populations in northern China. In order to
further understand the effect of BER gene polymorphism on
AIDS, it is necessary to carry out functional studies and
genetic association studies in different ethnic groups with
larger samples.
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