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MOTIVATION Abundant single-gene biomarkers have been identified and used in clinics. However, hun-
dreds of oncogenes or tumor-suppressor genes are involved during the process of tumorigenesis, and
the efficacy of single-gene biomarkers might be hampered by the extensively variable expression levels
measured by high-throughput assays. In this study, we devised a computational method named iPath to
identify prognostic biomarker pathways, one sample at a time. To test its utility, we conducted a pan-cancer
analysis across 14 cancer types from The Cancer Genome Atlas and demonstrated that iPath is capable of
identifying highly predictive biomarkers for clinical outcomes, including overall survival, tumor subtypes,
and tumor-stage classifications. We found that pathway-based biomarkers are more robust and effective
than single genes.
SUMMARY
Identifying biomarkers to predict the clinical outcomes of individual patients is a fundamental problem in clin-
ical oncology. Multiple single-gene biomarkers have already been identified and used in clinics. However,
multiple oncogenes or tumor-suppressor genes are involved during the process of tumorigenesis. Addition-
ally, the efficacy of single-gene biomarkers is limited by the extensively variable expression levels measured
by high-throughput assays. In this study, we hypothesize that in individual tumor samples, the disruption of
transcription homeostasis in key pathways or gene sets plays an important role in tumorigenesis and has pro-
found implications for the patient’s clinical outcome. We devised a computational method named iPath to
identify, at the individual-sample level, which pathways or gene sets significantly deviate from their norms.
We conducted a pan-cancer analysis and demonstrated that iPath is capable of identifying highly predictive
biomarkers for clinical outcomes, including overall survival, tumor subtypes, and tumor-stage classifications.
INTRODUCTION

Cancer is a leading cause of morbidity and mortality worldwide,

and its prevalence is rapidly increasing, primarily due to the ag-

ing of the population. Given this, there is an urgent need for un-

derstanding the molecular mechanisms of tumorigenesis to

develop effective treatments. It has long been recognized that

dramatic transcriptome alteration is a hallmark of cancer (Hana-

han and Weinberg, 2011). Detecting gene signatures in tran-

scriptome profiling data have been an essential step for many

cancer studies (Cantini et al., 2018; Dang et al., 2019; Xu et al.,
Cell Rep
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2016; Zuo et al., 2019). Using microarray or RNA sequencing

(RNA-seq), many important discoveries have been made by us-

ing differential expression (DE) detection techniques (Rapaport

et al., 2013; Soneson and Delorenzi, 2013; Zhao et al., 2014).

For example, important biomarker genes in breast cancer have

been identified by using high-throughput technologies (van de

Vijver et al., 2002) (Joe and Nam, 2016).

Despite the successes and importance of DE gene detection,

significant challenges limit its utility. First, the expression level of

many genes is rather dynamic and is affected by many factors

that might or might not relate to the disease. Second, most
orts Methods 1, 100050, August 23, 2021 ª 2021 The Author(s). 1
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high-throughput technologies produce data with substantial un-

certainties: a long list of DE genes is usually produced, andmany

of them are potentially false positives. The low reproducibility of

high-throughput technologies has long been acknowledged (Li

et al., 2011). To overcome this challenge, scientists have devel-

oped gene set enrichment analysis (GSEA) (Subramanian et al.,

2005). Instead of individual genes, GSEA focuses on pre-defined

gene sets and uses rankings instead of actual expression levels

to determine whether a given gene set shows concordant and

statistically significant changes between two conditions. GSEA

is specifically designed to analyze inherently noisy data pro-

duced from high-throughput assays, such as microarray and

RNA-seq. Operationally, GSEA first ranks all genes in the

genome on the basis the level of expression changes between

two conditions (e.g., treatment and control). It then focuses on

whether the genes from pre-defined functional gene sets locate

toward the top or bottom of the sorted list by calculating a Kol-

mogorov-Smirnov version of enrichment score (ES). GSEA has

been shown to be a powerful method, especially for cancer

research. Besides GSEA, a dozen or so methods designed for

pathway analysis were developed around the same time, and

Butte’s group systematically reviewed these pathway analytic

approaches during the previous 10 years in 2012 (Khatri et al.,

2012). Recent studies demonstrate that alterations in multiple

genes tend to accumulate in pathways central to the control of

cell growth and cell-fate determination (Arya and White, 2015;

Schmelzle and Hall, 2000; Zhang and Liu, 2002).

However, cancer is characterized by tremendous phenotype

heterogeneity, which is also reflected at the molecular level.

The new precision-medicine philosophy advocates for a treat-

ment plan that targets the unique characteristics of the tumor.

Therefore, it is critically important that one focuses on the unique

pattern shown in the individual tumor sample in order to identify

the most promising treatment strategy for the patient. Despite its

success, GSEA is predominantly carried out as a follow-up to DE

analysis. GSEA looks for those gene sets that have gone through

significant systematic changes between two groups of samples.

Therefore, significant pathway changes that occur only in a small

number of samples will likely be missed by GSEA.

Cancer is a disease of the genome. Multiple types of genomic

or epigenomic alterations have been linked to human malig-

nancies, including mutations and translocations, and changes

in DNA copy number, gene expression, and CpG methylation

patterns. Given the vast heterogeneity among disease progno-

ses, it is of great interest to identify biomarkers that can predict

clinical progression and outcomes. In a recent study, Uhlen et al.

(2017) comprehensively and systematically correlated gene

expression differences with patient survival. Using data from

The Cancer Genome Atlas (TCGA) (The International Cancer

Genome Consortium, 2010), they identified multiple candidate

prognostic genes whose expression level strongly correlated

with the patients’ overall survival.

Despite identifying many prognostic genes, the substantial

variation and uncertainties that are ubiquitous in high-

throughput technologies might raise concerns of robustness

when using a single gene as the biomarker. Additionally, cancer

is a complex disease: tens, or even hundreds, of genes are

interactively involved and together play an important role in
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tumorigenesis and progression. Therefore, we hypothesize

that gene sets—especially pathways and pre-defined, biologi-

cally meaningful gene sets—could serve as better biomarkers

than individual genes to predict clinical outcomes for cancer

patients in terms of robustness and interpretability. We

acknowledge that a pathway is much more than just a gene

set, given that how genes interact with each other is exceed-

ingly important. However, in this work we only focus on the

gene membership part of the pathway; for simplicity consider-

ations, we use the two words interchangeably. Given that

whole-transcriptome profiling has become increasingly afford-

able in the clinic, in this study we explored the feasibility and

efficacy of using the expression profiles of pathways or pre-

defined gene sets as biomarkers and compared them with indi-

vidual-gene biomarkers.

Here, we introduce iPath, or individual-level pathway analysis,

to quantify the magnitude of alteration occurring for a particular

pathway at the individual-sample level. Our goal is to understand

cancer one tumor sample at a time. Given that tens or hundreds

of genes are required to work together harmoniously to achieve

even a simple biological function, and because high-throughput

assays are known to produce data with a substantial amount of

noise and artifacts, we believe it is more effective and robust to

study genes in a pathway or gene set collectively, as a group,

rather than one by one. To achieve this, for each pathway we

calculate a pathway-based individual-level enrichment score

(iES) (see STAR Methods) to classify tumor samples into two

groups—normal-like or perturbed—and then conduct a formal

statistical test (reporting a log-rank p value) to check whether

such grouping has any implication on clinical outcomes such

as overall survival.

The idea of conducting individual-level pathway analysis has

appeared in the literature. For example, Barbie et al. (2009)

introduced single-sample GSEA (ssGSEA), which internally in-

tegrates the calculation of GSEA with a modified weighting fac-

tor. Gundem and Lopez-Bigas (2012) introduced sample-level

enrichment analysis (SLEA). Drier et al. (2013) developed a

state-of-the-art representation method named Pathifier. These

methods are all capable of producing a score for every

pathway/sample combination. However, in ssGSEA, genes

are ranked by their expression values and the ESs are based

on their ranks. In SLEA, genes are randomly permuted, and a

pathway is scored by comparing the expression levels of its

member genes before and after permutation. The Pathifier al-

gorithm computes the pathway deregulation score (PDS) over

all pathways one by one, and hence is computationally inten-

sive. Other sophisticated tools have also been developed for

calculating the individual-level pathway scores. For example,

gene set variation analysis (GSVA) (Hänzelmann et al., 2013)

obtains the gene ranks by fitting the gene-specific kernel func-

tions and computes a Kolmogorov-Smirnov statistic, similar to

ES. Individual-level pathway score (iPS) (Fang et al., 2020)

computes the perturbation of a pathway at the individual-sam-

ple level with reference to normal samples. In contrast, iPath

ranks genes on the basis of the magnitude of their departure

from the overall expression levels across the tumor and normal

samples, which improves quantification of the changes induced

by experimental condition or disease status. As a result, iPath



Figure 1. Overview of the iPath method

(A) The 14 cancer types analyzed in this pan-cancer study and the iPath workflow.

(B) Calculation of individual-level enrichment score (iES). iPath creates a full-ranked gene list for each sample. Given one pathway, it then projects the ranked gene

list to the core of GSEA computation.

(C) t-SNE data visualization of the iES scores from all samples of the 14 cancer types. Abbreviations are as follows: KIRP, kidney renal papillary cell carcinoma;

KIRC, kidney renal clear cell carcinoma; KICH, kidney chromophobe; HNSC, head and neck squamous cell carcinoma; STAD, stomach adenocarcinoma; THCA,

thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma; LIHC, liver hepatocellular carcinoma; LUSC, lung squamous cell carcinoma; LUAD, lung

adenocarcinoma; COAD, colon adenocarcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; PRAD, prostate adenocarcinoma.

(D) Workflow of iPath, as demonstrated in the table with rows representing patients and columns representing pathways, iPath first calculates an iES score for

each pathway and each sample (normal samples are indicated by blue circles and tumor samples by red circles). Then, for each pathway, iPath divides tumor

samples as either normal-like or perturbed based on the iES scores. Finally, iPath performs survival analysis for the two tumor groups and identifies prognostic

biomarker pathways based on survival analysis results.

Article
ll

OPEN ACCESS
is better at identifying disrupted pathways as prognostic bio-

markers, which we demonstrate in the present study.

We applied iPath to perform a pan-cancer analysis by using

well-established pathways and gene sets cataloged in the Mo-

lecular Signature Database (MSigDB) (Liberzon et al., 2011).

Our results suggest that pathways are better options than sin-

gle genes in terms of predicting clinical outcomes. Thus, we

believe that prognostic pathways are promising and reliable

biomarkers for precision oncology. Additional analyses further

reveal that many of these prognostic biomarker pathways can

be linked to frequently mutated cancer driver genes in a can-

cer-specific manner, illustrating the intricate interactions be-

tween somatic mutations, abnormal gene expression, and

tumorigenesis.
RESULTS

Overview
We systematically explored the relationships between biological

pathways or gene sets (referred simply as ‘‘pathways’’ hereafter

for the sake of simplicity) and clinical outcomes in 14 solid cancer

types (Figure 1A), usingdata available fromTCGA (TableS1). These

cancer types were selected because we require at least 20match-

ing normal samples in eachcancer type. Thesenormal samples are

either normal or adjacent-normal tissues in the tumor patients.

We studied two major collections of pathways: C2 curated

gene sets from MSigDB and Gene Ontology (GO) (Ashburner

et al., 2000) (Table S1). There are 4,762, and 5,917 gene sets in

these categories, respectively. Unlike most of the existing
Cell Reports Methods 1, 100050, August 23, 2021 3



Figure 2. Survey of the proportions of perturbed pathways in the 14 cancer types

(A) Violin plots of parentage of perturbed pathways per tumor sample across 14 cancer types. The average proportions of the perturbed C2 category pathways

among all tumor samples in the 14 cancer types are ranked from high to low.

(B) Violin plots of percentage of perturbed samples per pathway across 14 cancer types. The average proportions of perturbed tumor samples across all C2

category pathways in the 14 cancer types are ranked from high to low.

(C) Breakdown of favorable/unfavorable prognostic biomarker pathways in these 14 cancer types. Note that all analyses are performed by using the C2 category

pathways, which includes 4,729 gene sets.
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pathway-based studies (Li et al., 2019; Sanchez-Vega et al.,

2018; Schubert et al., 2018; Wagle et al., 2018) that identify path-

ways with significant differences between the group of tumor

samples and the group of normal samples, we intended to

develop a method that focuses on pathway behavior at the indi-

vidual patient level and to identify pathways in which departure

from its norm has significant implication for patients’ clinical out-

comes. To achieve this, we developed a new computational

approach named iPath. There are three major steps in iPath:

First, for each individual patient and pathway, we calculate an in-

dividual-level ES (iES), analogous to the ES used in GSEA. Then,

based on the iES, we dichotomize all tumor samples into two

groups: normal-like and perturbed. Finally, we conduct survival

analyses to compare whether the two groups of patients show

differences in terms of their overall survival. Figure 1D illustrates

themain workflow of iPath. We demonstrate that pathways iden-

tified by iPath have intimate connections with other biological

and clinical properties, including somaticmutations, cancer sub-

types, and pathology imaging features.

Furthermore, we investigated whether the expression pattern

reflected in the pathway’s iES values could illuminate the het-

erogeneity among different cancer types. Using the 4,762

gene sets from the C2 category, we plotted t-distributed sto-

chastic neighbor embedding (t-SNE [Maaten and Hinton,

2008]) for all samples across 14 cancer types (Figure 1C).

From the t-SNE plot, we observed that samples from the

same tumor type (dots with the same color) tend to cluster
4 Cell Reports Methods 1, 100050, August 23, 2021
together, indicating that iES values are highly informative in

terms of the distinct pattern in their expression profiles. As ex-

pected, we found that three clusters of kidney cancer types—

kidney renal papillary cell carcinoma (KIRP), kidney renal clear

cell carcinoma (KIRC), and kidney chromophobe (KICH)—are

located together, and two clusters of lung cancer types—lung

squamous cell carcinoma (LUSC) and lung adenocarcinoma

(LUAD)—are located next to each other. Breast invasive carci-

noma (BRCA) shows the greatest spread, and prostate adeno-

carcinoma (PRAD) shows multiple cluster formations indicating

potential subtypes.

Identifying perturbed pathways
For a specific cancer type and a specific pathway, we classify

each tumor sample as either normal-like or perturbed. The latter

means the gene expression pattern of this pathway significantly

deviates from that of a healthy, normal sample. We hypothesized

that in any given tumor sample, multiple key pathways were per-

turbed. An important consideration is how many pathways are

perturbed in a tumor sample and whether these numbers vary

by tumor types. From our comprehensive survey on pathways

belonging to the C2 category of MSigDB, we found that there

was remarkable diversity among the 14 tumor types in terms of

the average percentage of perturbed pathways per patient (Fig-

ure 2A). LUSC shows the highest proportions (32%) of perturbed

pathways whereas PRAD shows the lowest proportions (9.6%).

Interestingly, for the 14 tumor types, the proportions of tumor
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samples showing perturbation averaged across pathways follow

a similar order, but with much less variation among different tu-

mor types (Figure 2B).

The MSigDB Hallmark gene set is a collection of 50 ‘‘refined’’

gene sets, curated from numerous ‘‘founder’’ sets, each repre-

senting a specific biological process or state and demonstrating

coherent expression (Liberzon et al., 2015). The Hallmark set

contains numerous well-known signaling pathways that have

long been implicated in tumorigenesis and tumor progression,

including the p53 pathway, Wnt, Notch, and PI3K pathways. It

is of great interest to examine the expression pattern of these

pathways at the individual tumor sample level. To achieve this,

we applied iPath to the 50 pathways in the Hallmark category.

For each of the 14 cancer types, we calculated the percentage

of tumor samples that are perturbed for each Hallmark pathway

(Figure S1A). As expected, we found that some pathways such

as apoptosis and myogenesis are perturbed in more than half

of the samples across multiple cancer types, whereas some

other pathways, including PI3K, KRAS, and MTORC1, are per-

turbed in more than half of the samples in selected cancer types.

Identifying prognostic biomarker pathways
In this study, we applied iPath by using 10,679 gene sets to 6,198

tumor samples across 14 different cancer types. A pathway is

named a prognostic biomarker pathway for a given cancer type

if the Kaplan-Meier survival analysis yields a significant log-rank

p value of less than 0.05. Here we used the same significance

threshold used by Uhlen et al. (2017) to identify candidate prog-

nostic genes. We later applied more stringent criteria to focus

on the most promising prognostic biomarker pathways. Out of

these 149,506 gene-set/cancer type combinations, 10,592

(7.1%) are deemed prognostic: 4,898 (7.3%) in the C2 category

and 5,694 (6.9%) in the GO category. Tables S3 and S4 list the

number of prognostic biomarker pathways by cancer type.

Among all the identified prognostic biomarker pathways, we

further classified them by clinical outcomes into two subclasses:

favorable prognostic biomarker pathways and unfavorable prog-

nostic biomarker pathways. Favorable prognostic biomarker

pathways imply that higher iES values than normal samples are

correlated with better patient survival outcomes and vice versa.

Unfavorable prognostic biomarker pathways designate the

opposite. Among the 4,898 C2 pathway-cancer type combina-

tions deemed significant in predicting patient outcome. 1,734

(35.4%) are favorable prognostic biomarker pathways and

3,164 (64.6%) are unfavorable prognostic biomarker pathways,

respectively. The ratios of favorable to unfavorable prognostic

biomarker pathways varied among the 14 different types of can-

cer. Figure 2C illustrates the number of prognostic biomarker

pathways and the two subtypes for the 14 cancer types. The

investigation of prognostic biomarkers for GO categories is sum-

marized in Table S2.

To concentrate on the most promising results from this long

list, we here present the most significant gene sets identified

by iPath, using a combination of stringent criteria, including the

q value (false discovery rate [FDR]) being less than 0.15 and

the number of genes in the gene set being less than 100, in order

to focus on more specific pathways. The breakdown of 1,473

(2.2%) and 1,541 (1.9%) significant prognostic biomarker path-
ways fromC2 andGOcategories in the 14 cancer types are sum-

marized in Table S3. Excluding KIRC, which showed much more

prognostic biomarker pathways than others, on average about

70 prognostic biomarker pathways (out of the total of 10,679

pathways, less than 1%) were found for each cancer type.

Given the diversity of clinical perspectives of various cancer

types, in this pan-cancer study we choose not to use a

very stringent threshold to ensure that we can select at least one

prognostic pathway for every cancer type. To put this in perspec-

tive, in 6 out of the 14 cancer types we studied here, the p values

corresponding to the 0.15 q value threshold are less than 0.001

(Table S3), which is the p-value threshold adopted in the study of

prognostic marker genes by Uhlen et al. (2017).

Pan-cancer view on prognostic biomarker pathways
identified
We examined the number of significant prognostic biomarker

pathways identified among different cancer types (Table S3).

We found that there was remarkable imbalance among these

cancer types in terms of the number of such pathways identified.

Most of the significant pathways were found in three kidney can-

cer types: KIRC, KIRP, and KICH. A few occurred for LUAD,

PRAD, thyroid carcinoma, bladder urothelial carcinoma, and

BRCA. Almost nonewere found in other cancer types. This could

be because the clinical outcomes of different cancer types are

quite diverse. It is also of interest to discover what proportions

of the prognostic biomarker pathways overlap across cancer

types. To this end, we calculated the Jaccard similarity between

two lists of prognostic biomarker pathways for every pair of can-

cer types.We found that the similarity level is very low, except for

the three kidney cancer types (KICH, KIRC, and KIRP), meaning

that most cancer types have very few shared pathways (Fig-

ure S1B). In other words, the majority of prognostic biomarker

pathways are cancer type specific. Our findings are consistent

with the results presented in Uhlen et al. (2017) and highlight

the extensive diversity in different types of human malignancy.

Compared with other cancer types, very few prognostic

biomarker pathways were identified with breast cancer. This is

somewhat surprising, given that multiple well-established path-

ways are known to play critical roles in the tumorigenesis and pro-

gressionofbreastcancer (Al-Hussaini et al., 2011;Criscitielloetal.,

2015; Gasco et al., 2002; Johnson et al., 2016; King et al., 2012;

Nagaraj and Ma, 2015; Witkiewicz and Knudsen, 2014). One

possible reason for this is the substantial pathological differences

among the fourmajor subtypesof breast cancer: luminal A, luminal

B, HER2+, and basal-like. Supporting this hypothesis is the fact

that the proportion of patients with such pathway alterations in

these four breast cancer subtypes varies greatly (third column in

Figures 3E and 3F). Given this observation, we were prompted to

explore whether the disruption of a particular pathway preferen-

tially occurs in a particular subtype of breast cancer. We then

applied iPath to the four BRCA subtypes separately and identified

8, 10, 3, and 16 significant biomarker pathways (using FDR cutoff

q < 0.15) in the four respective subtypes (Table S3).

Selected prognostic biomarker pathways identified
There were many interesting prognostic biomarker pathways

identified by iPath. For example, in various kidney cancer types,
Cell Reports Methods 1, 100050, August 23, 2021 5



Figure 3. Demonstration of an example prognostic biomarker pathway (FARMER BREAST CANCER APOCRINE VS LUMINAL) in BRCA

(A) Enrichment plots of the pathway and corresponding pathology images of three samples labeled ‘‘normal-like.’’

(B) Enrichment plots and corresponding pathology images of three samples labeled ‘‘perturbed.’’

(C) Enrichment plot of the pathway of a normal sample.

(D) Breakdown of the ICD-O-3 categories for the top ten perturbed (highest iES value) and bottom ten normal-like (lowest iES values) patient samples.

(E and F) Visual summary of two example pathways. The waterfall plot shows the iES in tumor samples marked in red and normal samples marked in blue; the

density plot shows that overall tumor samples are upregulated, because the mean of the tumor sample GSEA scores is higher than normal sample iES. The

distribution of perturbed and normal-like tumors across the four subtypes of breast cancer is listed in the third column. The Kaplan-Meier plot indicates a

significant survival difference for the perturbed and normal-like tumor samples.
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including KIRP, KIRC, and KICH, many prognostic biomarker

pathways from the GO collection in MSigDB were found to be

related to the cell cycle (Figure S2A). Recent studies have shown

that cell cycle progression gene signatures are significant, inde-

pendent predictors of long-term outcomes for patients with renal

clear cell carcinoma (Morgan et al., 2018) or related biomarkers

(Chen et al., 2018). Smaller studies on TCGAKIRC datasets have

substantiated this (Askeland et al., 2015; Gu et al., 2017). Our

findings are also consistent with reports of cell-cycle-related bio-

markers for KIRP (He et al., 2017) and KICH (Yin et al., 2018).
6 Cell Reports Methods 1, 100050, August 23, 2021
In BRCA, multiple REACTOME pathways were identified by

iPath as prognostic biomarker pathways. For the REACTO-

ME_P38MAPK_EVENTS pathway (Figure S2B and Table S3),

our results are consistent with studies showing that p38 MAPK

signaling drives resistance to key breast cancer drugs including

trastuzumab resistance in HER2+ breast cancer (Donnelly et al.,

2014) and tamoxifen resistance in luminal breast cancer (Jia

et al., 2018). Identification of the REACTOME_RAF_MAP_KINA-

SE_CASCADE pathway (Figure S2C and Table S3) as a

biomarker is supported by a recent study that found that a
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transcriptional signature called theMAPK pathway activity score

(MPAS) is associated with patient outcome in ERBB2-positive

breast cancer (Wagle et al., 2018). The prognostic nature of the

gene set FARMER_BREAST_CANCER_APOCRINE_VS_LUMI-

NAL (Figure 3E and Table S3) is logical, given the fact that this

signature discriminates between AR+ basal breast cancers

with poor outcomes and AR+ luminal breast cancers with

much better outcomes (Farmer et al., 2005).

Besides the C2 category gene set database, we also identified

GO termGO_CELLULAR_RESPONSE_TO_THYROID_HORMO-

NE_STIMULUS (Figure S2D and Table S3), which contains 13

genes, as a prognostic biomarker pathway for KIRP. Thyroid hor-

mone has long been linked to the pathophysiology of various

cancer types (Krashin et al., 2019). Although this pathway is

not one of the top enriched pathways according to classical

GSEA analysis (p = 0.2112), iPath determined that a small subset

of 22 KIRP patients with much reduced expression in this

pathway led to significantly poor clinical prognosis, suggesting

that any intervention that increases the impression of this

pathway might benefit this group of patients. Another GO term

that has been identified as a prognostic biomarker pathway is

GO_ATP_DEPENDENT_MICROTUBULE_MOTOR_ACTIVITY

(in KICH, Figure S2E and Table S3). Cell proliferation is a hallmark

of almost all tumors, and it is well known that microtubules play

an important role (Chandrasekaran et al., 2015) in mitosis. Inter-

estingly, for this pathway we found that individuals with reduced

expression levels have much better clinical prognoses, thus it is

an unfavorable prognostic biomarker pathway. Given this, it is

likely that antimitotic therapies that impede mitosis-specific

microtubule functions through inhibiting motor proteins (Salmela

and Kallio, 2013) might benefit patients with high expression of

this gene set.

Links to distinct patterns shown in pathology imaging
Pathology imaging has long been regarded as the gold-standard

diagnostic tool in clinical oncology. We conjectured that individ-

ual-level expression profiles of a pathway could help to distin-

guish subtle tumor characteristics hidden in pathology imaging.

To investigate this, we used the gene set FARMER_BREAST_-

CANCER_APOCRINE_VS_LUMINAL, one of themost significant

prognostic biomarker pathways identified in BRCA, as an

example. We selected three tumor samples from the far end of

both the normal-like group and the perturbed group and ob-

tained their corresponding pathology images from the cancer

digital slide archive (Gutman et al., 2013). The image of the three

normal-like samples and three perturbed samples are shown in

the second column in Figures 3A and 3B, respectively. Among

the six pathology images, the luminal type tumor shows well-

differentiated morphology with well-formed tumor lumen, low

to intermediate nuclear grade, and low mitotic features. The

androgen type shows higher grade, with poorly formed tumor

lumen, intermediate to high nuclear grade, and focal tumoral ne-

crosis. To confirm this observation, we obtained the ICD-O-3 co-

des (8500/3 Infiltrating duct adenocarcinoma; 8520/3 Lobular

carcinoma) of the top ten and bottom ten samples patients quan-

tified by their iESs. The breakdown of these codes shows a

distinct distribution between normal-like and perturbed samples

(Figure 3D).
Comparison with GSEA
The core function of iPath is to identify perturbed pathways in

every individual tumor sample. In contrast, the classical GSEA

method identifies pathways that show differences when

comparing two groups of samples, hence only one ES is calcu-

lated for each pathway no matter how many samples there are.

Given their differences, a pathway identified by iPath might not

have been picked up by GSEA and vice versa. This is possibly

because a pathway is perturbed only in one individual sample,

and is thus unlikely to display a significant differencewhen tested

by GSEA. In other words, iPath is good at identifying perturbed

pathways for a small minority of cancer patients. To illustrate

the point, we used breast cancer (BRCA) as an example. We first

calculated iES for each pathway in each individual. Using iESs,

we applied a Wilcoxon signed-rank test (Wilcoxon, 1945) to

each pathway, compared iES values between tumor and normal

samples, and used the p values of the test to rank all pathways.

For comparison, we also ran GSEA to obtain a different list of

ranked pathways. The top ten pathways that differentiate the

iES values of tumor and normal samples are listed in Table S4

along with their significance levels. The top ten differentiated

pathways identified by GSEA are listed in Table S4 along with

the corresponding ranking in the Wilcoxon signed-rank test

comparing iES values. We found that two pathways (bold) in

the two top ten lists are identical; for the remaining eight path-

ways, four pathways in the GSEA list are not cancer related

(red), whereas only two pathways in the iPath list seem not

immediately cancer related (red).

Comparison with other sample-level gene set analysis
methods
We compared iPath against existingmethods that are capable of

measuring expression of a pathway at individual level, namely

ssGSEA (Barbie et al., 2009), SLEA (Gundem and Lopez-Bigas,

2012), Pathifier (Drier et al., 2013), and GSVA (Hänzelmann

et al., 2013). We adopted the performance comparison study

design used in the GSVA study wherein the effectiveness of clus-

tering a mixture of tumor and normal samples is compared. In

such a study, sample-level ES scores were used to select the

most differentiated pathways, which in turn were used in the

clustering. The details of the performance comparison proced-

ure are presented in STAR Methods.

The performance comparison results are shown in Figure 4A.

We use adjusted Rand index (ARI) to measure the clustering per-

formance. Higher ARI indicates better clustering, which can be

attributed to better pathways selected by each individual

method that calculates sample-level ES scores. Figure 4A indi-

cates that the iPath approach results in the highest ARI among

all methods tested. Pairwise comparison between iPath and

the four competing methods by using a t test indicates that all

the differences are statistically significant.

We then compared these methods in terms of their ability to

consistently detect prognostic biomarker pathways. In brief,

for each method we selected the most significant pathway in

the training data and tested its ability to predict survival in the

test data by reporting the c-index. Higher c-index indicates bet-

ter correlation with the survival outcomes. The results demon-

strate the consistency of iPath for identifying the most
Cell Reports Methods 1, 100050, August 23, 2021 7



Figure 4. Comparisons between iPath and other sample-level gene set analysis methods including ssGSEA, SLEA, Pathifier, and GSVA, and

comparisons between pathway biomarkers and individual-gene biomarkers

(A) Comparison of hierarchical clustering results in terms of separating tumor and normal samples from the ES matrix. The hierarchical clustering accuracy is

measured by adjusted Rand index (ARI) value. As demonstrated in the violin plot, the clustering accuracy from iPath is significantly higher than that of the other

methods.

(B) Comparison of survival analysis results using concordance index, showing that iPath can identify the most significant pathways that lead to the highest

concordance in the violin plot.

(C) Volcano plots for the prognostic biomarker pathways. The significance threshold is set at a p value of 0.05 (log10(p value) = 1.4). The prognostic and non-

prognostic biomarkers are marked by red and green dots, respectively.

(D) Volcano plots for the prognostic biomarker genes. The significance threshold is set at a p value of 0.05 (log10(p value) = 1.4).

(E) Volcano plots for the prognostic biomarker pathways. The significance threshold is set at a q value of 0.05 (log10(q value) = 1.4).

(F) Volcano plots for the prognostic biomarker genes. The significance threshold is set at a q value of 0.05 (log10(q value) = 1.4).

(G) Kaplan-Meier plot of prognostic biomarker pathway REACTOME_RAF_MAP_KINASE_CASCADE in BRCA.

(H) Kaplan-Meier plots of the member genes of the REACTOME_RAF_MAP_KINASE_CASCADE pathway in BRCA.
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informative prognostic biomarker pathway across the training

and test data. The details of the performance comparison pro-

cedures are presented in STAR Methods. The side-by-side

box plots shown in Figure 4B again demonstrate the consistently

good performance of iPath. Pairwise tests show that iPath pro-

duces significantly higher mean and median c-index values

than competing methods.

Comparison with Pathifier
Among all the methods developed to calculate individual-level

pathway scores, Pathifier is unique and has been widely applied

to real studies, showing promising results (Liu et al., 2016; Mejı́a-

Pedroza et al., 2018). Therefore, we conducted a direct compar-

ison between iPath andPathifier on amicroarray dataset (Livshits

et al., 2015) that had been previously analyzed by Pathifier. In this
8 Cell Reports Methods 1, 100050, August 23, 2021
study, we analyzed 997 breast cancer tumor samples and 144

normal samples from the discovery set in the original study to

determine which pathways were altered in the tumor samples.

We first obtained iES scores from iPath and PDS scores fromPa-

thifier for all samples and all 186 Kyoto Encyclopedia of Genes

andGenomes (KEGG) pathways.Given that these aremicroarray

data, when calculating iESwe only use normal samples to estab-

lish transcriptomic homeostasis. For each KEGG pathway, we

then calculated a Wilcoxon signed-rank test comparing tumor

samples with normal samples and ranked the pathways based

on their p values. More details can be found in STAR Methods.

We next manually curated the 186 KEGG pathways to select 52

of them (28.0%) that are considered breast cancer related (Table

S5). Among these 52 pathways, we found 30 and 26 such path-

ways ranked among the top 50 by Pathifier and iPath,
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respectively. Both enrichment results are statistically significant

based on a binomial test (p values 2.2 3 10�6 and 2.8 3 10�4,

respectively). Pathifier identified four more cancer-related path-

ways than iPath but the difference is not statistically significant

(Chi-squared test p value 0.546). From this result, we observed

that on this microarray dataset, both methods successfully pick

up breast cancer-related pathways and Pathifier performs

moderately better than iPath.

Comparison with the Human Pathology Atlas
In a recent study, Uhlen et al. (2017) developed theHumanPathol-

ogy Atlas (HPA), in which they adopted a system-level strategy to

analyze 17 major cancer types with a focus on mining character-

istic geneswith respect toclinical outcomes. Thismethod isbased

on genome-wide transcriptomic data and searches for prognostic

genes whose top 20% or bottom 20% expression values,

measured in fragments per kilobase of transcript per million map-

ped reads (FPKM), can stratify patient cohorts with significant sur-

vival differences (p < 0.001). Both HPA and iPath aim to identify

prognostic biomarkers from transcriptome data. However, HPA

relies on individual genes whereas iPath focuses on pathways.

Hence, it is of great interest to compare their performance. Given

the substantial noise that is ubiquitous in high-throughput technol-

ogies,wehypothesized that a pathway-based approachwould be

more robust and effective. To test our hypothesis, we applied both

HPAand iPath toKIRP. First,weused thep-value thresholdof0.05

to determine whether a pathway or a gene would be considered

prognosticbyeitherapproach (Figures4Cand4D). Then,whenus-

ing a more stringent threshold (q = 0.05), we found no significant

prognostic biomarker genes (Figure 4F) butmany significant prog-

nostic biomarker pathways (Figure 4E). Tests conducted on KIRC

gave similar results (Figure S3). These data indicate that the

pathway-level biomarkers are more sensitive than the gene-level

biomarkers.

A related question is whether member genes of a prognostic

biomarker pathway are also prognostic biomarker genes. We

found that this is not true in most cases. For some significant

prognostic biomarker pathways identified by iPath, none of their

member genes are prognostic genes according to HPA. In other

words, at the individual-gene level, many genes are not prog-

nostic biomarkers themselves, but their expression pattern as

a whole can accurately predict a patient’s clinical outcome. RE-

ACTOME_RAF_MAP_KINASE_CASCADE, for instance, is one

of the significant biomarker pathways identified in BRCA (Fig-

ure 4G), but no gene inside this pathway correlates well with sur-

vival outcome (Figure 4H). This is reminiscent of the scenario in

which a pathway is identified by GSEA as significant but none

of its member genes show DE. Taking all of this together, we

believe that pathway-based biomarkers are more robust and

effective than single-gene-based biomarkers.

Connection with the mutations in cancer driver genes
Progressive accumulation of somatic mutations over time in

crucial oncogenes or tumor-suppressor genes has been impli-

cated in many cancer types (Martincorena and Campbell,

2015) (Kandoth et al., 2013; Leiserson et al., 2015; Zhang

et al., 2018). Recently, the somatic mutation statuses of 127

genes have been shown to have significant effects on patient
survival (Kandoth et al., 2013). With the identification of prog-

nostic biomarker pathways using iPath, a natural question is

whether the perturbed state of prognostic biomarker pathways

is linked to somatic mutations occurring in cancer driver genes.

To answer this, given a pathway and a cancer driver gene, we

first constructed a contingency table dividing samples according

to their normal-like/perturbed status for the pathway, and the

mutation profile (present or absent) in the cancer gene. We

then conducted a Fisher’s exact test to identify the incidence

of co-occurrence of the two events. A binary heatmap indicating

whether a significant (p < 0.05, marked in the red block) connec-

tion between the top selected pathways and topmutated gene is

shown in Figure 5. We found that indeed somatic mutation in key

cancer driver genes and perturbed prognostic biomarker path-

ways are often co-occurring events. In breast cancer (BRCA),

we observed that NOTCH1 and E-cadherin (CDH1) are associ-

ated with metastasis-related gene sets (Figure 5A), which is

consistent with findings reported in the literature on NOTCH1

signaling (Leong et al., 2007) and CDH1 (Derksen et al., 2006;

Ross et al., 2013). In LUAD (Figure 5B), we identified a couple

of histone-lysine N-methyltransferase genes (MLL2 and MLL4)

that are related to the top significant pathways found by iPath,

and these genes are reportedly clustered in LUAD (Kandoth

et al., 2013). We showed that PIK3CA is correlated with one early

cell-cycle pathway, which demonstrates that PIK3CA deregula-

tion serving as an early event precedes genome doubling in

BRCA (Berenjeno et al., 2017) and colorectal adenocarcinoma

(Carter et al., 2012).

Validation of top prognostic biomarker pathways
To verify that the prognostic biomarker pathways identified by

iPath are indeed reliable biomarkers across studies, we use Sur-

vExpress (Aguirre-Gamboa et al., 2013), an online biomarker

validation tool, to check our top findings in multiple cancer types

by using independent datasets (we used non-TCGA data when-

ever possible). SurvExpress employs the Cox model to estimate

the prognostic index and draw Kaplan-Meier curves. Although

using a different method and different datasets, we were able

to confirm that all the top prognostic biomarker pathways are

significant. The Kaplan-Meier curves, alongwith summary statis-

tics of selected prognostic biomarker pathways, are presented

in Figure S4.

Negative control experiments
To put the iPath results in context, we conducted negative con-

trol experiments to characterize whether and how often a

random gene set demonstrates significant association between

its status (normal-like or perturbed) and the patient’s survival.We

first randomly selected genes from the gene pool to form a hypo-

thetical gene set. We then applied iPath to obtain an iES for each

individual patient in this gene set, and test whether these scores

can predict the patient’s survival by using the same TCGA data-

set. To ensure fair comparison, we let the sizes of the hypothet-

ical gene sets match those of the established pathways. We

repeated this process 1,000 times and reported the p values

for the survival analysis. The reported p values are drawn on a

histogram for each biomarker gene set in BRCA, KIRP, and

KIRC in Figure S5. The results confirm that biomarker gene
Cell Reports Methods 1, 100050, August 23, 2021 9



Figure 5. Association between prognostic

biomarker pathways and somatic mutations

of key cancer genes

(A) Matrix of gene/pathway association in BRCA.

Red color indicates significant association.

(B) Matrix of gene/pathway association in LUAD. For

each pathway, we classified each tumor sample as

either normal-like or perturbed. For each gene, we

classified each tumor sample as either mutated or

notmutated. A Fisher’s exact test of association was

then carried out on the two-by-two contingency ta-

ble.
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sets are more significantly related to survival outcomes than

random gene sets with the same sizes.

The iPath R package and iPath explorer Shiny app
To make iPath readily accessible for researchers and clinicians

so that they can identify prognostic biomarker pathways for

other types of cancer, we implemented the iPath pipeline into

an easy-to-use R package named iPath. It is freely available at

https://github.com/suke18/iPath.

In this study, more than 450,000 plots (waterfall plots, distribu-

tion plots, Kaplan-Meier plots) have been produced, correspond-

ing to all 10,724 pathways across 14 cancer types. To

assist researchers in better visualizing and exploring pathways

of interest, we developed a web-based interface using Shiny

app toorganize andpresentall iPath results andmake themeasily

browsable through the interface. All plots and summary statistics

are publicly accessible and available at https://suke18.

shinyapps.io/iPath. On the left-hand panel, a researcher can

select cancer types and pathways of interest, after which iPath

will run on-the-fly and the results of the survival analysis will be

displayedacross fourmainpanels (waterfall plot, density plot, Ka-

plan-Meier plot, and a table of detailed summary statistics).

DISCUSSION

Here, we describe iPath, a computational tool to identify per-

turbed pathways found in individual tumor samples.

Unlike individual genes, the collection of functionally related

genes in a pre-defined pathway provides a more robust assess-

ment of the changes that affect key biological functions in tumor

samples. The advantages of using pathways over individual

genes have been well documented in the analysis of noisy
10 Cell Reports Methods 1, 100050, August 23, 2021
high-throughput data (Reimand et al.,

2019; Vaske et al., 2010) and as biomarkers

(Zheng et al., 2020). What makes iPath

unique is its ability to provide such an

assessment one sample at a time. This is

significant, because substantial heteroge-

neity among tumor genomes suggests

that it is common for a critical pathway to

be perturbed in only a few tumor samples.

As a result, it is highly unlikely that these

pathways will be identified by traditional

GSEA. On the other hand, iPath can iden-
tify perturbed pathways, even if such disruption only occurs in

a small subset of tumor samples. In short, iPath promises to

improve patient care by enabling oncologists to develop more

effective personalized treatment strategies with fewer side

effects.

To demonstrate the effectiveness of iPath, we conducted a

comprehensive pan-cancer study across 14 different cancer

types with more than 6,000 tumor samples. For each cancer

type, iPath identified about 70 prognostic biomarker pathways

on average,many of them showing promising biological interpre-

tations. We also validated the top prognostic biomarker path-

ways by using SurvExpress, an online biomarker validation

tool. There are two types of prognostic biomarker pathways:

favorable and unfavorable. Favorable pathways account for

one-third of all the biomarker pathways. These pathways can

be used to identify patients with better prognostics so that

they can be spared unnecessary adjuvant therapies.

Ourpan-cancer studyusing iPath yields two interesting results.

First, we found that quite a few pathways or gene sets are poten-

tial prognostic biomarkers for most of the cancer types we stud-

ied. However, for the vast majority of these biomarker pathways,

they are perturbed in only a small fraction of all the patients. Sec-

ond, for any given pair of cancer types, there is little overlap

among the two lists of prognostic biomarker pathways. Our find-

ings highlight the fact that cancer is a highly heterogeneous dis-

ease and, therefore, a personalized treatment strategy is the key

toeffective care for cancer patients. Although thepresent study is

conducted on RNA-seq gene expression profiles, iPath can be

applied to other omics data such as microarray data.

The core of iPath is the iES, a single continuous value between

�1 and 1, calculated for every pathway and every individual

sample, which evaluates the spread of the member genes

https://github.com/suke18/iPath
https://suke18.shinyapps.io/iPath
https://suke18.shinyapps.io/iPath
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belonging to a pathway among all genes in the genome ranked

by its level of deviation from the norm. We believe this to be a

powerful way to summarize the status of a pathway or provide

a big-picture view of pathway changes at single-sample resolu-

tion. Our analysis has shown that iES is informative and some-

times predictive of patients’ clinical features and prospects

because it measures the level of the pathway’s deviation from

the norm in a holistic manner. When testing on TCGA RNA-seq

data, we find iPath to be more sensitive than other methods

including ssGSEA (Barbie et al., 2009), Pathifier (Drier et al.,

2013), SLEA (Gundem and Lopez-Bigas, 2012), and GSVA (Hän-

zelmann et al., 2013). Although iPath is originally developed to

analyze RNA-seq data, it can be applied to microarray data as

well. Even though iPath performs slightly worse than Pathifier

when tested on a microarray dataset (Livshits et al., 2015), the

fact that it performs competitively with a state-of-the-art method

on microarray datasets is still encouraging.

Given that scientists have already identified many biomarker

genes for various cancer types—for example, thousands of

prognostic genes have been identified in a recent study by Uhlen

et al. (2017)—why it is important to identify prognostic biomarker

pathways? In the present study, we found that compared with

single-gene biomarkers, pathway-based biomarkers are more

robust with better separation power, which gives clinicians

more confidence in separating patients into different risk groups

and to assign treatment strategies accordingly. Furthermore,

given that they represent well-curated biological pathways

they are easier to interpret, and hence more likely to be informa-

tive and meaningful to clinicians. Another key advantage of

pathway-based biomarkers is that there are drugs that espe-

cially target specific pathways. For example, it is likely that

MAPK perturbed patients will benefit more from MAPK inhibitor

drugs. As this is beyond the scope of our current study, we plan

to pursue this in future works.

iPath can be applied broadly to other types of cancer, for any

given individual sample, as long as there are corresponding

normal samples that can be used as controls. Thus, iPath might

be a powerful resource for unraveling the paradigm shift that oc-

curs in a small minority of samples. Therefore, it is an ideal tool

for precision oncology. By way of illustrating its potential, some

drugs have been developed to specifically target a kinase and

its downstream genes (Cabanillas et al., 2019; Pal et al., 2010).

Using iPath, we can group the drug target and its downstream

genes together and identify patients with elevated expression

in this gene set; such patients might benefit the most from this

targeted therapy. We believe iPath can potentially provide fresh

perspectives on patient selection and prognostic prediction.

Limitations of the study
In this study, we only examined individual pathways to try to

establish whether a given pathway is predictive of a clinical

outcome. For prediction purposes, we could consider multiple

pathways jointly, which might produce better prediction perfor-

mance. This represents one potential future research direction

for the continuous development of iPath. Moreover, iPath has

been developed for analysis of RNA-seq data. Although it can

be applied to other types of data such as microarray data, other

state-of-the-art methods such as Pathifier might be preferable.
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Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and

Tamayo, P. (2015). The molecular signatures database hallmark gene set

collection. Cell Syst. 1, 417–425.

Liu, C., Srihari, S., Lal, S., Gautier, B., Simpson, P.T., Khanna, K.K., Ragan,
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Clinical data TCGA data maintained by Broad Institute

GDAC Firehose.

https://gdac.broadinstitute.org/

C2 collection of pathways MSigDB https://www.gsea-msigdb.org/gsea/

msigdb/

GO collection of pathways MSigDB https://www.gsea-msigdb.org/gsea/

msigdb/

Analytical results This paper https://suke18.shinyapps.io/iPath

Software and algorithms

RTCGA Kosinski et al. (2016)

Bioconductor package

https://www.bioconductor.org/packages/

release/bioc/html/RTCGA.html

Mclust CRAN R package https://CRAN.R-project.org/

package=mclust

iPath pipeline This paper https://github.com/suke18/iPath
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Zhaohui S.

Qin (zhaohui.qin@emory.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Code and shiny app

The iPath pipeline implemented in an R package is freely available at https://github.com/suke18/iPath. All the analytical results about

the MSigDB C2 collection and GO terms corresponding to 14 cancer types are publicly accessible and available at https://suke18.

shinyapps.io/iPath.

METHOD DETAILS

Overview of the iPath approach
The goal of iPath is to identify pathways that show unusual patterns at single sample-level. To achieve this, we defined a novel sta-

tistics, namely iES. For each pathway and each given patient, iPath first computes iES, a single value that reflect the overall expres-

sion behavior of this pathway in this sample relative to the population. Such amethod allows us to quantify the level of irregularity for a

set of genes in a single sample. Next, for each pathway, using normal samples’ distribution of the iESs (Figure 1D), we come up with

an iES threshold which we use to classify all tumor samples into either the category of normal-like or perturbed. Last, we compare the

survival difference between these two groups, and designate a pathway as a prognostic biomarker pathway if the two groups of pa-

tients show significant difference in overall survival (Figure 1D).

Calculation of iES
For each cancer type, we denote the RNA-seq expression matrix as Y = fyijg, with rows corresponding to the samples and columns

corresponding to the genes, and i = 1;.;M, and j = 1;.;N,M is the total number of samples andN is the total number of genes in the

genome. Here we consider both tumor and normal samples. For the TCGA data used in this study, there are matched tumor, normal

sample pairs. Because such normal samples are scarce, we do not take the pairing information into consideration.
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The expression levels Y are assumed to have already been normalized, for example, measured by FPKM or RPKM values (Mor-

tazavi et al., 2008; Trapnell et al., 2010). We first use all the samples of this cancer type to construct a transcriptomic homeostasis,

calculate themean (yj) and standard deviation (sj) of the expression level for every gene in the genome. Because the number of normal

samples in TCGA is very limited and there are many zeros in RNA-seq data, so we decide against using just normal samples to define

transcriptomic homeostasis in order to avoid numerical instability. For microarray data, or if the number of normal samples is abun-

dant, we recommend using just the normal sample to construct the transcriptomic homeostasis.

Next, for each sample, for sample i, we calculate iES for every pathway (Figure 1B) as follows.

1. Calculate z-score zij =
Yij�yj
sj

for every gene, here zij represents the level of deviation from the norm for gene j in the ith sample, i =

1;.;M, and j = 1;.;N.

2. Next, sort the absolute value of zij, denoted as
��zij

��; in descending order to obtain the ranks of all genes in the genome, denoted

as fgi1; gi2; .; giNg such that
��zigi1

��R
��zigi2

��R.R
��zigiN

��.
3. Subject the sorted gene list fgi1; gi2; .; giNgto the GSEA analysis: given one pathway (S) including R genes, iPath loops

through the sorted gene list fgi1; gi2; .; giNgand calculates a running sum (Kolmogorov–Smirnov) statistics iESi for i
th sample

in the following manner: if the gj is not in S, then subtract a penalty score 1
N�R ; If the gj is in S, then add a n incremental score

jZijjP
j˛SjZijj. By aggregating the scores from each position, it computes the iESip value at the pth position in Li as:
PincrementsðS; pÞ =
X

gj˛S
j%p

��Zij

��
SR

; where SR =
X

gj˛S

��Zij

��

X

Ppenalities ðS; p
Þ =

gj;S
j%p

1

N� R

The iES score for ith sample acquires the maximum deviation from zero of Pincrements � Ppenalities. It is worth noting that utilizing
��Zij

��
for the ith sample allows for the estimation of the leading contribution of the most perturbed genes.

Definition of perturbed tumor samples
For each pathway, we classified each tumor sample as either normal-like or perturbed. Perturbedmeans a significant departure from

the expression homeostasis observed for this group of genes in normal samples. To achieve this classification, we used the distri-

bution of the normal samples’ iESs as the benchmark (obtained their mean and standard deviation). Specifically, we labeled a tumor

sample as ‘‘perturbed’’ if its iES was more than two standard deviations away from the normal samples’ mean, in the direction along

the normal samples’ mean towards the tumor samples’ mean. Otherwise, the sample is labeled ‘‘normal-like’’.

In cancer studies, especially for solid tumors, ‘‘normal’’ samples typically refer to tissues adjacent to the tumor site, hence the level

of heterogeneity in the normal samples is usually quite high. This is evidenced by frequently observing more than one mode in the

distribution of the iES values among the normal samples. In order to best estimate the mean and standard deviation of the bona

fide normal samples, we fit a Gaussian mixture model for these iES values to account for heterogeneity, and selected the mean

and the standard deviation for the subgroup of samples with the highest posterior probability. This can be achieved by specifying

the modelName parameter to ‘‘V’’ inside the Mclust function (mclust R package, Scrucca et al., 2016), which is able to automatically

determine the number of the modes and assign samples to clusters.

Using pathway ‘‘FARMER BREAST CANCER APOCRINE VS_LUMINAL’’ in BRCA as an example. In Figure 3E, from the density

plots, we observed that the overall iESs for tumor samples were higher than the normal samples (first column: waterfall plot, and sec-

ond column: density plot), so we used the mean + 2sd as the cutoff to determine whether a tumor sample was perturbed. Figure 3A

shows enrichment plots of three normal-like samples in the first column. Figure 3B shows that of three perturbed samples. Figure 3C

shows a random normal sample. After classifying all tumor samples into either normal-like or perturbed, survival analysis indicated

that this was a prognostic biomarker pathway (see the Kaplan-Meier plot in the fourth column of Figure 3E). The same trend is found in

another biomarker pathway PEDERSEN METASTASIS BY ERBB2 ISOFORM 3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Performance comparison among sample-level gene set analysis methods
Clustering

We adopt the following steps: (1) randomly choose 50 normal and 50 tumor samples from the TCGA BRCA cohort; (2) for each

method, using RNA-seq data of these samples, we calculate an ES matrix with rows corresponding to pathway/gene sets and col-

umns corresponding to samples. (3) conduct DE analysis on the ES using limma (67). (4) select the top 10 gene sets according to the
Cell Reports Methods 1, 100050, August 23, 2021 e2
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adjusted p values and perform the hierarchical clustering. (5) bipartition the hierarchical tree into two classes and compare the clus-

tering results with sample labels using ARI. (6) repeat the above process 1,000 times and summarize the average ARI for each

method.

Survival analysis

We randomly select 70% of BRCA samples in TCGA as the training set and use the remaining 30% of BRCA samples as the test set.

Using training data, we fit individual Cox proportional hazards model for each BIOCARTA pathway and select the pathway that best

correlates with the survival. Then using the test data, we assess the predictive ability of the selected pathway by computing the

concordance index (c-index). We repeat the random samplings for training and test data 1000 times. The distributions of c-indices

are summarized using boxplots.

Microarray data analysis
We analyzed the METABRIC dataset which is under the accession number EGAS00000000083 at the European Genome-Phenome

Archive (http://www.ebi.ac.uk/ega/). We downloaded the gene expression matrix for 144 normal samples (EGAF00000102978) and

997 tumor samples (EGAF00000102986) from the discovery set. The 48,803 Illumina probes in the gene expression data were map-

ped to 30,492 known gene symbols using Bioconductor package illuminaHumanv4.db. Next, we applied the iPath and Pathifier on

these 1141 samples and all 186 KEGG pathways (Kanehisa and Goto, 2000) for calculating the iES and PDS individual-level enrich-

ment matrices respectively. Next, we appliedWilcoxon signed-rank test (Wilcoxon, 1945) to rank the KEGG pathways based on their

significance.
e3 Cell Reports Methods 1, 100050, August 23, 2021
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