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Abstract

Thousands of long intergenic noncoding RNAs (lincRNAs) have been identified in the human and mouse genomes, some of which

play important roles in fundamental biological processes. Thepig is an importantdomesticatedanimal, however, pig lincRNAs remain

poorly characterized and it is unknown if they were involved in the domestication of the pig. Here, we used available RNA-seq

resources derived from 93 samples and expressed sequence tag data sets, and identified 6,621 lincRNA transcripts from 4,515 gene

loci.Amongthe identified lincRNAs, some lincRNAgenesexhibit syntenyandsequenceconservation, including linc-sscg2561,whose

gene neighbor Dnmt3a is associated with emotional behaviors. Both linc-sscg2561 and Dnmt3a show differential expression in the

frontal cortex between domesticated pigs and wild boars, suggesting a possible role in pig domestication. This study provides the first

comprehensive genome-wide analysis of pig lincRNAs.
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Introduction

Genome-wide analyses have uncovered more than 9,000 long

intergenic noncoding RNA (lincRNA) genes in the human

genome (Khalil et al. 2009; Jia et al. 2010; Cabili et al.

2011; Derrien et al. 2012), and more than 10,000 lincRNA

transcripts in the mouse genome (Ravasi et al. 2006; Mitchell

Guttman et al. 2009; Guttman et al. 2010). Several studies

have indicated that some lincRNAs play important roles in

fundamental biological processes, such as dosage compensa-

tion (Borsani et al. 1991; Brockdorff et al. 1992; Brown et al.

1992; Payer and Lee 2008), maintenance of pluripotency

(Guttman et al. 2011), transcriptional regulation (Huarte

et al. 2010; Orom et al. 2010; Hung et al. 2011), and epige-

netic regulation (Martianov et al. 2007; Rinn et al. 2007).

The pig is an important domesticated animal and is a sig-

nificant large-animal model for medical research. Thousands

of years of selection have created considerable diversity in the

phenotypes of pigs. Many protein-coding genes with major

effects on diversity in pigs have been identified, including IGF2

(Van Laere et al. 2003), NR6A1 (Mikawa et al. 2007), MC1R

(Fang et al. 2009), and RYR1 (Fujii et al. 1991). The contribu-

tion of changes in lincRNAs to the domestication of pigs is

currently unknown. To address this question, a comprehensive

genome-wide identification of lincRNAs is required.

Here, we identified a total of 6,621 lincRNAs, encoded by

4,515 gene loci, and profiled the expression of these lincRNAs

in various tissues. Several lincRNA sequences were found to

share homology with sequences in the human and mouse
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lincRNA data sets. Finally, we profiled changes in the expres-

sion of lincRNAs using RNA sequence (RNA-seq) data sets

from the brain of domesticated pigs and wild boars, and

found one lincRNA (linc-sscg2561), and its neighboring gene

Dnmt3a, which might be associated with differences in emo-

tional behavior between the domesticated pig and the wild

boar.

Results and Discussion

Identification of lincRNAs Based on Expressed Sequence
Tag and RNA Sequencing Data Sets

Only 47 pig lincRNA transcripts are annotated in the Ensembl

database (version 73), a quantity far lower than that known

for the human or mouse. As the human genome has identi-

fied about 9,000 lincRNA genes (Derrien et al. 2012), and the

pig genome is of comparable size and contains a similar

number of protein-coding genes (Groenen et al. 2012), one

might expect that the pig will also should have similar number

of lincRNA genes. Hence, a large number of pig lincRNAs

are likely undetermined. To comprehensively identify pig

lincRNAs, we used expressed sequence tag (EST) (UniGene)

and RNA-seq data sets and performed searches using the fol-

lowing criteria that provide a strict definition for lincRNAs: 1)

Transcript must include �2 exons, 2) length should be

�200 nt, 3) must be located at least 500 bp away from any

protein-coding genes or house-keeping ncRNAs genes anno-

tated in the Ensembl Sus scrofa 10.2 gene set (GTF), and 4)

Coding Potential Calculator (CPC) score of less than �1, as

calculated using the CPC tool (Kong et al. 2007) to assess the

protein-coding potential for every transcript (fig. 1A). A total

of 1,125 lincRNA transcripts from 1,090 intergenic regions

were identified in the pig genome from the EST data set.

High-throughput RNA sequencing has been used to iden-

tify lincRNAs in diverse species (Cabili et al. 2011; Ulitsky et al.

2011; Liu et al. 2012). To identify novel pig lincRNA, we used

ten RNA sequencing data sets derived from various tissues of

the pig. RNA sequencing reads were aligned to the Sus scrofa

10.2 genome (Groenen et al. 2012) using TopHat (Trapnell

et al. 2009). Mapped reads were assembled into transcripts

using Cufflinks and Cuffcompare (Trapnell et al. 2010, 2012).

The number of transcripts identified in the intergenic regions

from these ten studies ranged from 2,999 to 48,272 (supple-

mentary table S1, Supplementary Material online). Using our

criteria, the number of lincRNAs for each of the ten studies

ranged from 222 to 3,010 (supplementary table S1,

Supplementary Material online), and could be merged into a

single data set of 5,594 lincRNAs encoded by 3,753 gene loci.

Of these lincRNAs, 328 genes were detected from both the

RNA-seq and EST data sets, with a final total of 6,621 unique

lincRNA transcripts being identified.

To determine the basic features of pig lincRNAs, we com-

pared our identified lincRNAs with mRNAs identified by

Ensembl. LincRNAs are shorter in length than protein-coding

transcripts (supplementary fig. S1A, Supplementary Material

online), and their genes tend to contain fewer exons (supple-

mentary fig. S1B, Supplementary Material online). The length

and number of exons for lincRNAs might have been overesti-

mated in our study as transcripts with only a single exon were

excluded as lincRNAs. Despite having shorter transcript

lengths, exons for pig lincRNAs were on average larger (aver-

age 451 nt) than those for protein-coding genes (average

221 nt). The distance between lincRNA genes and their closest

protein-coding genes was greater than the median distance

between adjacent protein-coding genes (median 80,818 nt

for mRNA–lincRNA intervals, compared with 36,072 nt for

mRNA–mRNA intervals; Mann–Whitney P< 2.2�10�16;

fig. 1B); 1,354 of the lincRNA genes are located within

10 kb of a protein-coding gene. Gene ontology (GO) enrich-

ment analyses were conducted for the set of protein-coding

genes proximal (�10 kb) to these lincRNAs. These closest

neighbors of pig lincRNAs are enriched for GO terms associ-

ated with transcriptional regulation processes (supplementary

table S2, Supplementary Material online), which is consistent

with a previous report in other species (Ulitsky et al. 2011). The

distances between lincRNA genes and their closest protein-

coding genes were larger than the lengths of the introns in

the protein-coding genes (Mann–Whitney P< 2.2�10�16;

fig. 1B), indicating that these lincRNAs are independent tran-

scripts, rather than being unannotated exons of these protein-

coding genes.

Tissue Expression Profile of Pig lincRNAs

We used RNA-seq data sets from ten tissues (ERA178851)

(Farajzadeh et al. 2013) of wild boars to characterize the ex-

pression pattern of the lincRNA genes. The expression level of

lincRNA genes is lower than that of protein-coding genes

(Kolmogorov–Smirnov test, P< 2.2� 10�16; fig. 1C), which

has also been observed in other mammalian species (Ravasi

et al. 2006; Cabili et al. 2011). This feature implies that

lincRNAs and mRNAs have a number of differences in their

biogenesis, processing, stability, and spatial–temporal expres-

sion patterns.

Protein-coding genes proximal to lincRNAs are enriched in

specific gene functions. Previous studies have indicated that in

some mammalian species, lincRNAs may act in cis to regulate

the expression of their neighboring protein-coding genes

(Mercer et al. 2009; Orom et al. 2010; Wang et al. 2011).

To determine whether lincRNAs in the pig had a similar effect

on expression, we focused on pig lincRNAs that are located

within 10 kb of a protein-coding gene and tested to see

whether there was a correlation in the expression patterns

between the lincRNAs and their neighboring protein-coding

genes. Across ten tissues, expression of the closely linked

lincRNAs tended to correlate with that of their protein-

coding neighbors (average Spearman correlation r2¼0.31).
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A similar magnitude of correlation was observed for adjacent

protein-coding genes (r2¼0.28). The correlated expression of

the lincRNAs and their adjacent protein-coding genes suggests

that they may share cis-regulatory modules or chromatin

domains.

Based on the hierarchically clustering of the gene expres-

sion profiles, many lincRNA genes exhibit a tissue preferential

expression pattern, which is similar to that of the protein-

coding genes (supplementary fig. S2, Supplementary

Material online). The differential expression patterns of the

lincRNAs were further analyzed using Deseq2 with a cutoff

of 2-fold change and padj<0.1 (Anders and Huber 2010).

This analysis identified 581 tissue preferential lincRNAs

based on the RNA-seq data set (supplementary fig. S3,

Supplementary Material online). Interestingly, 261 lincRNAs

are preferentially expressed in the frontal cortex and occipi-

tal cortex (supplementary fig. S3, Supplementary Material

online).

Identification of Sequence Homology with Human and
Mouse lincRNAs

To identify homologs of the pig lincRNAs in humans and mice,

we aligned the pig lincRNAs with human and mouse lincRNAs

using BLASTn and identified 2,630 (40%) of the pig lincRNAs

that had detectable homology with human lincRNAs, and

2,598 (39%) with mouse lincRNAs, of which 1,660 were

shared between human and mouse. In comparison, 3,672

(31%) human lincRNAs had detectable homology with

mouse lincRNAs when compared using the same approach.

Among the pig lincRNA transcripts that align to the human

lincRNAs, 187 have one-side or two-side synteny that extends

to at least one neighboring protein-coding gene. Similarly,

244 of the pig lincRNAs have one-side or two-side synteny

to a protein-coding neighbor in the mouse. These results imply

that the pig may be an excellent model for research on

lincRNA function.

Differential Expression of lincRNAs in Domesticated Pigs
and Wild Boars

Domesticated pigs differ from wild boars in several behavioral

traits, such as lower levels of aggressive behavior and reduced

fear of humans (Price 1999). Therefore, we considered

whether changes in the level of lincRNAs expression in the

brain occurred during pig domestication. We analyzed the

expression profile of lincRNAs in the published RNA-seq data

set derived from the brains of five domesticated pigs and five

wild boars (ERA209456) (Albert et al. 2012) and found 30

lincRNAs that show significant differential expression between

pigs and wild boars (padj<0.1) (fig. 2A). Of these 30 differ-

entially expressed lincRNA genes, 18 have higher expression in

the domesticated pig, and 12 in the wild boar.
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FIG. 1.—Identification and characterization of lincRNA genes in the pig. (A) Pipeline for the identification of lincRNAs. (B) Comparison of the mRNA–

lincRNA intervals, mRNA–mRNA intervals, and sizes of mRNA introns. (C) Expression levels of lincRNA and protein-coding genes detected using RNA-seq data

from ten tissues (ERA178851).

Genome-Wide Identification of lincRNAs GBE

Genome Biol. Evol. 6(6):1387–1392. doi:10.1093/gbe/evu113 Advance Access publication June 2, 2014 1389

S
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu113/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu113/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu113/-/DC1
as
two
S
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu113/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu113/-/DC1
S
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu113/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu113/-/DC1


Interestingly, two lincRNA genes (linc-sscg1409 and linc-

sscg2561) that have two-sided synteny extending to protein-

coding neighbors in humans were found to show differential

expression between the domesticated pigs and boars. Linc-

sscg1409 is a 1,200-nt transcript encoded by four exons and

neighbors the VWA2 and FAM160B1 protein-coding genes.

Linc-sscg2561 is a 3,067-nt transcript encoded by two exons

and shows tissue-specific expression in the pig brain (frontal

cortex and occipital cortex). Our BLASTn search identified a

conserved 367-nt match between linc-sscg2561 and a

human lincRNA (ENSG00000272048.1). The PhastCons plot

from the UCSC 99 vertebrate whole-genome alignment to

human showed a conserved region within the terminal exon,

which includes the approximately 300-nt region that is con-

served between pigs and humans (fig. 3). Linc-sscg2561 dis-

plays 1.4-fold higher expression in domesticated pigs

compared with boars. As lincRNAs are known to interact

with chromatin proteins to positively and negatively regulate

expression of neighboring genes (Wang et al. 2011), we con-

ducted an analysis of the protein and lincRNA genes in the

500-kb window surrounding this lincRNA gene. Dnmt3a is

the only gene adjacent to this lincRNA gene that displays

differential expression, with 1.4-fold higher expression in the

domesticated pig (fig. 2B). This observation implies that the

linc-sscg2561 may be a regulation element for Dnmt3a gene.

Dnmt3a is an important protein with functions in DNA

methylation, and a previous study had shown that Dnmt3a

regulates behavioral plasticity to emotional stimuli (LaPlant

et al. 2010), indicating that linc-sscg2561 and Dnmt3a may

influence the methylation of genes in the pig nervous system,

and thus contribute to changes in emotional behavior during

the domestication of the pig. In addition, experimental studies

are needed to unravel the functions of lincRNA genes to un-

derstand the domestication of the pig.

Materials and Methods

We used two types of data sets from the pig for the identifi-

cation of pig lincRNAs. The first data set included 50,136

UniGene transcripts, which was downloaded from the

National Center for Biotechnology Information (NCBI)

UniGene database build 42. Blat was used to align the

UniGene transcripts against the Sus scrofa 10.2 genome se-

quence (Groenen et al. 2012) and pslCDnaFilter was used to

filter the blat results. A total of 43,942 UniGene transcripts

that had unique matches to the genome were retained. The

second set of data included ten RNA-seq data sets was down-

loaded from the NCBI SRA database. RNA-seq reads were

mapped to the Sus scrofa 10.2 genome using TopHat version

2.0.8 (Trapnell et al. 2009). Aligned reads for each sample

were assembled using Cufflinks version 2.0.2. We then used

Cuffcompare to generate intergenic transcripts for each

A B

FIG. 2.—Expression differences between domesticated pigs and wild boars. (A) Heatmap showing expression abundance of lincRNA genes showing

significant differences in expression. Expression levels (FPKM) were measured by RNA-seq. Genes were clustered by hierarchical clustering. (B) Expression

differences of linc-sscg2561 and genes in the surrounding 500kb of genomic DNA. The x axis shows the genomic positions of these genes. A threshold of

Padj¼ 0.1 is indicated by the dashed line.
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sample assembly. To obtain high confidence transcripts, we

used two criteria to filter the transcripts: RNA-seq reads must

cover at least 80% of the predicted exon nucleotides for a

transcript, and there must be at least three RNA-seq reads

mapping to the predicted splice structure in at least one

sample. We used strict criteria to identify lincRNAs as figure

1A. Tophat and Cufflinks were used to obtain FPKM (frag-

ments per kilobase of exon per million fragments mapped)

value. For each pairwise comparison of the samples, differen-

tially expressed genes were identified based on the integer

count data using Deseq2 version 1.2.8. (Anders and Huber

2010). SummarizeOverlaps was used to calculate counts of

reads for each gene with the default mode of “Union.” We

downloaded human lincRNAs from the Gencode database

(v19) (Harrow et al. 2012) and mouse lincRNAs from the

NONCODE database (v4) (Xie et al. 2014). NCBI BLASTn

was used to identify lincRNA sequence homology.

Supplementary Material

Supplementary tables S1 and S2 and figure S1–S3 are avail-

able at Genome Biology and Evolution online (http://www.

gbe.oxfordjournals.org/).
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