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SUMMARY

Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in 

skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include 

hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, 

we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 

high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. 

Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and 

GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats 

reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity 

correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and 

endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. Many 

gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of 

disease. These findings provide a framework for mechanistic and therapeutic studies of the DM 

CNS.
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Graphical Abstract

In Brief

Otero et al. characterize DM1 frontal cortex transcriptomes and observe extreme CTG repeat 

lengths even in individuals showing modest mis-splicing. Mis-splicing is enriched in ion 

channels, neurotransmitter receptors, and synaptic scaffolds, in some cases potentially altering 

synaptic trafficking. Inferred expression signatures from microglia and endothelial cells suggest 

neuroinflammation.

INTRODUCTION

Myotonic dystrophy (DM) is a multi-systemic, progressive disease caused by expanded 

CTG or CCTG repeats in the 3′ UTR of the dystrophia myotonic protein kinase (DMPK) 

gene (DM type 1 [DM1]) (Brook et al., 1992) or the first intron of the cellular nucleic acid 

binding protein (CNBP) gene (DM type 2 [DM2]) (Liquori et al., 2001), respectively. Both 

DM1 and DM2 are highly variable in age of onset, clinical features, and disease severity. 

Although DM is well studied in the context of peripheral symptoms such as myotonia 

and muscle weakness, central nervous system (CNS) symptoms are also common in DM 

and can contribute significantly to neurological impairment (Heatwole et al., 2012, 2015). 

These symptoms include hypersomnia, executive functioning deficits, memory deficits, 

and emotional disturbances (Modoni et al., 2008; Weber et al., 2010; Schneider-Gold et 

al., 2015). Imaging studies show white and gray matter abnormalities in multiple brain 
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regions, as well as ventricle enlargement (reviewed in Minnerop et al., 2018). However, the 

molecular mechanisms driving these neurobiological changes remain largely unknown.

There is strong evidence to support a pathomechanism in which the Muscleblind-like 

(MBNL) family of RNA binding proteins (RBPs) are functionally depleted in both 

peripheral nervous system and CNS tissues in DM, resulting in global splicing dysregulation 

and potentially additional alterations in RNA metabolism (Jiang et al., 2004; Miller et al., 

2000; Charizanis et al., 2012; Lee et al., 2013; Goodwin et al., 2015; Nishi et al., 2020). 

However, limited analyses have been performed to comprehensively identify transcriptome 

changes in the CNS across a broad subset of patients, assess the extent to which MBNLs 

are depleted, and address whether other RBPs are perturbed. RNA sequencing (RNA-seq) 

has not been applied to CNS tissues in DM2, and the extent to which RBFOX proteins may 

modulate CNS pathogenesis in DM2 (Sellier et al., 2018) is unexplored. Furthermore, as 

opposed to skeletal muscle, in which dysfunction is predominantly driven by myonuclei, 

the extent to which different cell types are affected in the CNS of DM-affected individuals 

is unknown. CUG foci have been observed in neurons, glia, and oligodendrocytes (Jiang 

et al., 2004), but the contribution of each cell type to pathology has not been extensively 

explored. Although transcriptome dysregulation has been extensively studied in peripheral 

DM1 tissues (Wang et al., 2019; Wagner et al., 2016; Du et al., 2010; Freyermuth et al., 

2016), the repertoire of mRNAs expressed in the CNS is distinct. Therefore, a different set 

of exons may be mis-regulated in this tissue. Finally, although there are clear examples of 

how specific splicing events in peripheral tissues cause particular DM symptoms—Clcn1 

and myotonia (Wheeler et al., 2007), Bin1 and muscle weakness (Fugier et al., 2011), and 

Scn5a and cardiac arrhythmias (Freyermuth et al., 2016)—no clear examples exist in the 

CNS. To lay the groundwork required to answer some of these questions, here we generate 

and analyze transcriptomes derived from a set of post-mortem frontal cortex (FC) samples 

(Brodmann area 10) from DM1 patients, DM2 patients, and unaffected controls. We identify 

high-confidence mis-spliced exons that show a gradient of changes across patients and study 

how a mis-splicing event in GRIP1 may alter its efficacy as a synaptic adaptor. We analyze 

DM transcriptomes, together with additional single-cell transcriptome datasets (Darmanis et 

al., 2015), to assess potential changes in cell-type composition and determine which cell 

types are potentially responsible for changes in gene expression and splicing patterns.

Somatic instability is well established as a major driver of age of onset in DM1 and other 

repeat expansion diseases (Thornton et al., 1994; Schmidt and Pearson, 2016; Morales et 

al., 2012), but technical challenges have precluded facile, direct assessment of full-length 

repeat-containing alleles in the DM1 CNS. Furthermore, the CTG repeat lengths required to 

sequester sufficient MBNL to elicit robust mis-splicing have not been assessed in this tissue. 

New technologies such as long read sequencing provide some advantages over Southern 

blotting and small-pool PCR (O’Rourke et al., 2015) but often still require amplification or 

sub-cloning, which can introduce some biases. Here, we apply an optical mapping approach 

to size expanded CTG repeats at single-molecule resolution in DM1; this approach allows 

unbiased, amplification-free measurement of repeat lengths from genomic DNA (Lam et al., 

2012; Barseghyan et al., 2017).

Otero et al. Page 3

Cell Rep. Author manuscript; available in PMC 2022 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, although studies of transcriptomes can identify molecular events driving disease 

features, they may also suggest potential markers of disease status. Here, we study changes 

in FC, but similar molecular changes may occur in other brain regions. The aggregate of 

these pathological processes may be reflected in the composition of cerebrospinal fluid 

(CSF), facilitating the development of accessible biomarkers to more precisely characterize 

disease severity and measure changes following therapeutic intervention. Indeed, CSF 

biomarkers have been developed for other neurological diseases such as Huntington’s 

disease (HD), C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (C9ALS/

FTD), and Alzheimer’s disease (Silajdžić and Björkqvist, 2018; Gendron et al., 2017; 

Lehmer et al., 2017; Holtzman, 2011). In parallel, investigators have used proteomics 

to broadly characterize proteins present in CSF. In DM1, splicing biomarkers correlate 

with muscle strength (Nakamori et al., 2013) and potentially reflect the concentration of 

free MBNL in skeletal muscle (Wagner et al., 2016). Subsequent approaches have been 

developed to profile RNAs present in urine (Antoury et al., 2018), potentially providing 

a non-invasive route to measure disease status. By integrating our transcriptome analyses 

with existing knowledge of proteins present in CSF, we lay critical groundwork to properly 

inform and interpret future biomarker discovery efforts.

RESULTS

Splicing dysregulation in DM1 FC exhibits a gradient of severity

We performed RNA-seq using RNA from post-mortem FC (Brodmann area 10) of 21 DM1, 

4 DM2, and 8 unaffected age- and sex-matched individuals (Figure 1A; see STAR Methods). 

All libraries satisfied typical quality metrics in FastQC (Andrews, 2010) and were sequenced 

to a depth of at least 88 million reads to provide sufficient coverage for analyses of gene 

expression and alternative splicing. The percentage spliced in (ψ) values were estimated 

by Mixture of Isoforms (MISO) (Katz et al., 2010), and using a threshold of at least 20% 

change in mean ψ (p < 0.01, rank-sum test), 130 exons were identified to be differentially 

included between DM1 and unaffected individuals (Figures 1B and 1C; Table S2). These 

consisted of exons in genes encoding key synaptic scaffolding proteins, cytoskeletal 

organization components, ion channels, and neurotransmitter receptors, including some 

previously identified (MBNL2 exon 5, KCNMA1 exon 34, MAPT exon 3, and CSNK1D 

exon 9) plus additional candidates (GRIP1 exon 21, GABRG2 exon 10, DLGAP1 exon 

20, and PALM exon 8). Some of these exons showed greater variability in ψ among DM1 

patients relative to unaffected individuals. A similar observation in muscle likely reflects 

differences in disease severity across patients, partly determined by the extent of MBNL 

sequestration (Wagner et al., 2016). To assess whether a similar phenomenon might exist in 

the CNS, we correlated ψ between pairs of exons across all unaffected and DM1 individuals 

(Figure 1D). ψ for MBNL2 exon 5 correlated strongly with ψ for GABRG2 exon 10 

(Pearson R = −0.89), and ψ for GRIP1 exon 21 correlated strongly with ψ for DLGAP1 

exon 20 (Pearson R = 0.72). The distribution of R values for all pairwise comparisons of 

all 130 mis-spliced exons was strongly shifted to the right compared with a null distribution 

computed following shuffling of sample labels (Figure 1E). These observations suggest that 

similar to peripheral tissues, mis-splicing in the CNS may exhibit a spectrum of disease 

severity driven by a common upstream factor.
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By visualizing a panel of 47 DM1-affected exons showing minimal variability among 

unaffected individuals, we observed that some events showed moderate dysregulation among 

some individuals, whereas others showed more widespread dysregulation, suggesting that 

some exons are more responsive to disease state than others (Figure 1F). To more precisely 

quantitate overall mis-splicing, we computed a splicing dysregulation score (mean |Δψ|) (see 

STAR Methods), as performed similarly in peripheral tissues (Figure 1F) (Wagner et al., 

2016). This score did not correlate with age or sex (Figure S1) and may be considered a 

proxy for overall molecular perturbation. It remains to be seen in future studies whether this 

score correlates with disease symptoms.

Mis-spliced exons in DM1 show MBNL motif signatures and suggest intermediate MBNL 
depletion

To identify cis-elements that may be associated with aberrant mis-splicing, we enumerated 

5-mers in the regions flanking and within all mis-spliced skipped exons and compared with 

a set of CNS-expressed control skipped exons (see STAR Methods). We observed a strong 

signature for MBNL motif (YGCY) enrichment, including TGCTT and GCTGC (Figure 

1G) (Lambert et al., 2014; Wang et al., 2012). The pattern of enrichment also reflected 

expected functional binding patterns of MBNL; i.e., aberrantly included exons showed 

enriched binding sites within the upstream intron and aberrantly excluded exons showed 

enriched binding sites within the downstream intron. These observations suggest that similar 

to the periphery, MBNL sequestration is a major driver of mis-splicing in the DM1 CNS.

Several mouse models have been developed to study loss of MBNL function, including 

mice globally lacking MBNL2 (MBNL2 knockouts [KOs]) (Charizanis et al., 2012) and 

mice lacking MBNL1 constitutively and MBNL2 in neurons (MBNL double knockouts 

[DKOs]) (Lee et al., 2013; Goodwin et al., 2015). To estimate the extent to which MBNL 

proteins are functionally depleted by expanded CUG repeats in these post-mortem samples, 

we calculated splicing dysregulation scores for wild-type (WT) mice, MBNL KO mice, 

and our post-mortem samples using a set of orthologous exons significantly mis-spliced in 

MBNL1/2 DKO mice and patients (Table S3; see STAR Methods). All patients except for 

one mild case showed splicing dysregulation between that observed in MBNL2 KO and 

MBNL1/2 DKO (Figure 1H). In FC, at the RNA level, MBNL2 is ~2-fold more highly 

expressed than MBNL1, and if one assumed similar protein translation for each MBNL, 

most individuals studied in this cohort showed at least 66% depletion of MBNL.

All assessed patients show CNS alleles with >1,000 CTGs, and repeat lengths correlate 
with splicing dysregulation

To precisely measure repeat lengths at single-molecule resolution, we used an optical 

mapping technique in which specific restriction sites are fluorescently labeled across the 

genome and imaged within DNA nanochannels (Barseghyan et al., 2017). We used specific 

labels near the DMPK locus to estimate CTG repeat lengths, in which 1 micron spans 

approximately 2 kilobases (Figure 2A; see STAR Methods). We applied this approach to one 

unaffected control and 7 DM1 FC samples. Although the number of CTG repeat units in 

the unaffected control was estimated to be ~23 ± 142 SD, a typical DM1 patient showed 

estimated repeat lengths reaching ~5,000 CTGs. The distribution of lengths in the DM1 
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patients shifted rightward such that the 50th, 75th, and 90th percentiles of repeat lengths 

were 84, 2,306, and 3,910 CTGs, respectively (Figure 2B; Figure S1B). Every DM1 sample 

analyzed showed repeat lengths greater than 1,000 CTGs, and 86% of them showed alleles 

>4,400 CTGs. The 50th, 75th, and 90th percentiles of repeat lengths were correlated to the 

previously computed splicing dysregulation scores (Figure 2C). The strongest correlation 

was observed with the 90th percentile of repeat lengths, or the minimum length of the 

longest ~20% of all expansion-carrying alleles.

Alternative splicing of the kinesin binding domain in GRIP1 is perturbed in DM1 and 
modulates association with KIF5A

As shown in Figure 1, multiple synaptic scaffolding proteins contain exons dysregulated in 

DM1. We focused on exon 21 of GRIP1 (Figure 3A), a gene that plays important roles in 

localizing AMPA receptors to the synapse and regulating synaptic scaffolding through its 

7 post-synaptic density (PDZ) domains. Exon 21 lies within the kinesin binding domain 

(KBD), which was previously shown to mediate interactions with KIF5A, KIF5B, and 

KIF5C (Setou et al., 2002). We therefore hypothesized that this exon might modulate the 

behavior of the KBD. To measure the association of GRIP1 isoforms with KIF5A in cell 

culture, we generated fluorescent protein fusion constructs to study the behavior of the 

GRIP1 KBD with and without exon 21. We modified a previously developed centrosome 

recruitment assay (Bentley and Banker, 2015) and co-transfected these constructs with a 

BicD2-KIF5A tail, FLAG-tagged construct into Neuro2A cells; BicD2 is a dynein adaptor 

that directs the KIF5A C-terminal tail to the centrosome, along with its putative cargoes 

(Figure 3B; see STAR Methods). Association of FP-GRIP1 KBD with the KIF5A tail was 

quantified by measuring mean intensity at the centrosome relative to mean cytoplasmic 

intensity. GRIP1 KBD containing exon 21 exhibited stronger centrosome recruitment 

compared with GRIP1 KBD lacking exon 21 (Figure 3C; see STAR Methods). This 

increased association with KIF5A was quantitated in experiments in which GFP constructs 

with and without exon 21 were tested separately (Figure 3D) or competitively, in which 

mCherry and GFP fusions for each isoform were co-transfected (Figure 3E). In both cases, 

the GRIP1 KBD with exon 21 was more strongly recruited to the centrosome (p < 1e–25 for 

single transfections and p < 1e–26 for co-transfections), suggesting an important role for this 

exon in regulating KIF associations and synaptic recruitment of cargoes.

Splicing dysregulation in DM1 is largely tissue specific

To explore potential overlaps in DM1 splicing dysregulation between FC and peripheral 

tissues, we analyzed previously published RNA-seq data from tibialis anterior (TA) and 

heart (Wang et al., 2019). We identified exons mis-spliced in each tissue (|Δψ| ≥ 0.1, 

rank-sum p ≤ 0.01) and assessed 2- and 3-way overlaps. We chose a slightly looser threshold 

for this analysis compared with what was performed in Figure 1, because the goal was 

to identify as many exons as possible whose dysregulation might be shared across tissues. 

Interestingly, at this threshold, only ~10% of the exons dysregulated in FC were also 

dysregulated in peripheral tissues; ~20% are simply not expressed in peripheral tissues, 

whereas ~70% are expressed in peripheral tissues but do not show the same dysregulation 

(Figure 4A). At a more stringent threshold of |Δψ| ≥ 0.2, ~18% of exons dysregulated 

in FC were also dysregulated in peripheral tissues (Figure S2A). Overlaps between any 
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given pair of tissues revealed many dozens of shared dysregulated exons. Some examples 

include NDUFV3 exon 3 (significantly regulated only in TA and FC) and DGKH exon 29 

(significantly regulated only in heart and FC). The overlap in shared dysregulated exons 

among all three tissues was 25 shared exons, including MBNL1 exon 5, MBNL2 exon 5, 

and MAPT exon 3. Although the number of total patients considered within each tissue can 

influence the total number of exons identified to be significantly dysregulated in any given 

tissue, we performed sub-sampling analyses to match patient group sizes and found similar 

proportions of overlap (Figures S2B–S2F).

Among the events that are shared between any pair of tissues, the direction of dysregulation 

was found to be conserved (Figure 4C), as reflected by the strong correlations in Δψ 
between TA versus FC (Pearson R = 0.85) and heart versus FC (Pearson R = 0.82). These 

observations suggest similar mechanisms for splicing dysregulation across all tissues.

Splicing alterations in DM2 are largely distinct but implicate secondary binding motifs for 
MBNL and RBFOX

DM1 and DM2 are caused by related repeat expansions (CTG and CCTG, respectively). 

They exhibit elements of shared CNS pathology, including problems with executive function 

and hypersomnolence, and potential elements of shared molecular pathology. Both diseases 

are thought to be driven by MBNL sequestration, but RBFOX may also play a role in 

DM2 (Sellier et al., 2018). We profiled four DM2 FC samples, because there was limited 

availability of post-mortem tissue. Consistent with previous observations in muscle and 

blood cells, intron 1 of CNBP was retained in all DM2 samples but was efficiently spliced 

in all DM1 and unaffected samples (Figure S3A) (Sznajder et al., 2018; Wang et al., 

2019). We compared mis-splicing in DM2 to that observed in DM1 and identified exons 

exclusively regulated in one disease or shared by both (|Δψ| ≥ 0.1, rank-sum p ≤ 0.01) 

(Table S4). Approximately ~28% of exons dysregulated in DM2 were also dysregulated in 

DM1 (Figure 5A) and generally changed in the same direction (Figure 5B, shown in teal). 

At a threshold of |Δψ| ≥ 0.1, ~22% of exons dysregulated in DM2 were also dysregulated 

in DM1 (Figure S2B). Many exons unique to DM2 (Figure 5B, shown in purple) trended 

toward regulation in DM1 but did not reach significance. To estimate the extent to which 

our sample size for DM2 might limit the power to detect dysregulated exons in DM2, 

we repeatedly sub-sampled 4 of 21 DM1 samples and re-estimated the overlap between 

DM2-and DM1-regulated events (Figures S3C–S3G). We estimate that with the 4 DM2 

samples analyzed, we capture 25%–50% of the repertoire of altered splicing that may exist 

in DM2 (see STAR Methods).

To identify cis-elements that may play a role in regulating DM2-specific mis-splicing 

events, we enumerated 5-mers in regions flanking and within all significantly regulated 

skipped exons and compared these with a set of CNS-expressed control skipped exons 

(see STAR Methods). In contrast to analyses of exons differentially regulated in DM1, 

enrichment of canonical MBNL and RBFOX motifs was not readily apparent (Figure 5C, 

left panel). The absence of canonical YGCY and UGCAU/GCAUG motifs for MBNL and 

RBFOX, respectively, motivated us to examine the expression levels of MBNL, RBFOX, 

and CNBP genes in TA and FC to assess whether the stoichiometry of each player might 
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provide additional insights (Figure 5D). In all comparisons, we found that the ratio of gene 

expression for MBNL (1, 2, and 3) and/or RBFOX (1, 2, and 3) versus CNBP was higher 

in FC relative to TA, suggesting a greater buffering capacity (i.e., resistance to depletion) 

in FC. In contrast, the ratio of DMPK to MBNL is more similar in FC relative to TA 

(Figure S3H), consistent with similar signatures of MBNL motif enrichment around exons 

mis-spliced in DM1 FC and TA (Wang et al., 2019).

Analyses of in vitro binding preferences for RBPs indicate that the concentration of the RBP 

can influence the extent to which optimal versus sub-optimal motifs are bound (Lambert et 

al., 2014; Begg et al., 2020). That is, the best motifs are bound when the RBP concentration 

is limiting, but sub-optimal motifs are also bound when the RBP concentration is high. 

Indeed, upon analyzing Bind-N-Seq data for MBNL1 and RBFOX2 at elevated protein 

concentrations (1,080 nM MBNL1 and 1,100 nM RBFOX2) (Lambert et al., 2014), we 

observed positive binding enrichments for both MBNL and RBFOX among DM2-enriched 

motifs (Figure 5C, right panel). We also assessed whether exons exclusively regulated in 

DM2, but not in DM1, showed enrichment for sub-optimal RBFOX binding sites, but we 

could not detect effects reaching statistical significance (data not shown).

Gene expression changes suggest neuroinflammation, are cell-type specific, correlate with 
splicing dysregulation, and reveal potential biomarkers

Using Kallisto (Bray et al., 2016) and Sleuth (Pimentel et al., 2017), we estimated gene 

expression changes (Table S5 and Table S6) for all DM1, DM2, and unaffected FC samples. 

We found that 235 genes were significantly upregulated (q < 0.01 and |fold-change| ≥ 1) in 

DM1 FC and 145 genes were significantly downregulated relative to unaffected FC. Gene 

Ontology analyses (Figure 6A) showed that upregulated genes were enriched in adaptive 

immune response, cell regulation of leukocyte proliferation, and inflammatory response. 

Downregulated genes were enriched in actin cytoskeleton organization, regulation of cation 

transmembrane transport, and regulation of synaptic plasticity. Because FC contains various 

cell types, we investigated whether there might be changes in cell-type composition between 

patients and unaffected controls. Using published single-cell RNA-seq data (Darmanis et 

al., 2015), we built a Bayesian inference approach to estimate the proportion of neurons, 

endothelial cells, astrocytes, oligodendrocytes, microglia, and oligodendrocyte precursor 

cells within each sample. This model was able to detect frank neuronal cell loss in the 

context of Alzheimer’s disease (van Rooij et al., 2019) (Figure S4) but did not show 

neuronal cell loss in DM1 (Figure 6B). However, we did observe a signature for increased 

microglial composition among patients, consistent with an inflammatory response (Figure 

6B) and gliosis that has been previously observed (Itoh et al., 2010). We classified up- 

and downregulated genes by their cell type of origin (genes expressed similarly across 

multiple cell types were omitted from this analysis; see STAR Methods) and observed a 

strong signature for neuronal genes being downregulated, as well as a strong signature 

for endothelial and microglial genes being upregulated (Figure 6C, left panel). In contrast, 

splicing changes were inferred to be present in all cell types studied (Figure 6C, right panel). 

The ratio of DMPK to MBNL (1, 2, and 3) was highest in endothelial cells, astrocytes, 

and neurons, perhaps providing conditions most conducive to strong MBNL sequestration in 

those cell types (Figure 6D).
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We next investigated whether gene expression changes correlate with splicing dysregulation 

across DM1 and unaffected controls. We developed a gene expression dysregulation score, 

which summarized the total change in gene expression among up- and downregulated genes 

(see STAR Methods). These scores were then correlated with previously calculated splicing 

dysregulation scores, revealing a strong correlation (Pearson R = 0.88) (Figure 6E). To 

investigate whether a smaller subset of genes could be as informative as assessment of 

all dysregulated genes, we correlated individual and pairs of gene expression changes to 

splicing (Figure 6F) and compared these with correlations of shuffled data. Many gene 

expression changes showed correlations >0.8 and may be strong candidates for markers of 

pathology. For purposes of clinical studies or trials, however, a marker would ideally be 

accessible via CSF. We overlapped our FC gene expression changes with proteomics studies 

of CSF (Macron et al., 2018) and identified genes that (1) encode proteins detectable in 

CSF, with or without canonical signal sequences, determined by SignalP (Nielsen et al., 

1997); (2) show strong correlations with splicing dysregulation; and (3) are expressed at 

reasonable levels in the CNS to maximize sensitivity of detection (Figure 6G). Several 

candidates are highlighted; WDR1 is upregulated in DM1 FC, and ANXA6 and RPH3A 

are downregulated. WDR1 is involved in disassembly of actin filaments and cell migration 

(Kato et al., 2008), ANXA6 is involved in vesicle fusion (Lin et al., 1992), and RPH3A 

plays essential roles in synaptic vesicle release (Burns et al., 1998). These gene expression 

changes may also be reflected at the RNA or protein level in DM CSF, providing an 

accessible route by which to measure CNS disease status in future studies. Their utility as 

biomarkers remains to be validated.

DISCUSSION

In this study, we have generated and characterized transcriptomes derived from DM1 and 

DM2 FC and associated controls. We identified a high-confidence set of splicing events 

whose dysregulation correlates with CTG repeat length as measured by optical mapping, 

an amplification-free approach to sizing repeats at a single-molecule level. Although 

previous analyses of progenitor allele lengths have observed correlations to age of onset 

and disease severity (Cumming et al., 2019), a correlation between actual repeat lengths 

and extent of mis-splicing in the same tissue has never been measured. Although we 

did not have phenotypic information about individuals, these observations suggest that 

the extent of mis-splicing and repeat length may also underlie the severity of disease 

symptoms. Alterations in the splicing patterns of many neurotransmitter receptors and 

synaptic scaffolding proteins were identified, revealing candidates that may play important 

roles in the neurobiology of DM1 symptoms. Notably, mis-splicing of some exons tended 

to enhance the activity of inhibitory machinery and dampen the excitatory machinery. For 

example, skipping of GABRG2 exon 9 is associated with increased sleep times in mice 

treated with benzodiazepines (Homanics et al., 1997), and skipping of exon 8 of PALM, a 

developmentally regulated exon, is associated with reduced filopodia formation, dendritic 

spine maturation, and AMPA receptor recruitment (Arstikaitis et al., 2008). Exon skipping 

within the KBD of GRIP1 (Setou et al., 2002), an important synaptic adaptor for AMPA 

receptors, may decrease the efficiency by which AMPA receptors are recruited and stabilized 

at synapses.
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Analyses of cis-elements flanking dysregulated exons revealed that MBNL-bound motifs 

were the predominant signature, suggesting that functional depletion of MBNL is a major 

driver of splicing changes in DM1 FC. Consistent with these observations, orthologous 

alternative exons in MBNL2 KO and MBNL1/2 DKO mice showed changes in splicing 

similar to DM1, with the severity of mis-splicing in virtually all DM1 patients showing 

intermediate depletion, e.g., between MBNL2 KO and MBNL1/2 DKO. When considered 

with estimates of repeat lengths we obtained using optical mapping, these observations 

suggest that CTG tracts of more than 1,000 repeat units, and perhaps up to 4,000, are 

required to achieve this level of sequestration. This could explain why some animal- and 

cell-based DM1 models do not recapitulate the full extent of mis-splicing observed in 

human tissue. Correlations between mis-splicing and repeat lengths were strongest when 

considering the longest 20% of disease alleles (the longest 10% of all alleles), suggesting 

that somatic instability plays a critical role in disease onset and severity and that potentially, 

a subset of cells is responsible for the severest molecular signatures observed. The expansion 

process may take decades, consistent with some DM1 symptoms only manifesting in adult 

or late-adult life. Given that full depletion of MBNL leads to nuclear export of expanded 

DMPK (Zu et al., 2017), it is possible that cells with extreme repeat lengths contain CUG-

derived repeat-associated non-AUG translation peptides, invoking additional pathological 

mechanisms. Future work should focus on which cell types harbor these extremely large 

alleles and the extent to which those cells contribute to the bulk transcriptome signatures we 

observe here. Although we have focused on FC in this study, the clinical presentation of DM 

and imaging studies indicate abnormalities in multiple brain regions. Future studies should 

similarly examine transcriptome changes and repeat length distributions in those regions so 

that molecular features can be better linked to particular symptoms. Of particular interest 

may be the hippocampus and amygdala, because these regions show anatomical differences 

in DM1 and are known to play roles in memory processing and emotional experiences (van 

der Plas et al., 2019).

Surprisingly few transcripts showed mis-splicing across DM1 TA, heart, and FC. Even 

when exons are expressed in all 3 tissues, many show mis-splicing in only 2 of 3 tissues. 

Tissue-specific regulation of RBPs or trans-factor environments may be responsible for 

these differences. Although a greater number of DM2 FC samples will be needed to 

fully characterize transcriptome changes in DM2, we found limited overlap in mis-splicing 

between DM1 and DM2. Although shared events were generally dysregulated in the same 

direction in both DM1 and DM2, there was also a substantial subset of events dysregulated 

in only DM1 or only DM2. These observations may differ from those in peripheral tissues, 

but gene expression levels of RBFOX family members relative to MBNL or CNBP are 

greater in the CNS compared with skeletal muscle. RBFOX proteins have been proposed 

to buffer MBNL sequestration (Sellier et al., 2018), and this phenomenon may play a more 

substantial role in the CNS, in which RBFOX proteins may be in greater stoichiometric 

excess than in muscle. Finally, differences in cell-type-specific expression of DMPK, CNBP, 

MBNL, and RBFOX may also play a role in producing distinct transcriptome signatures of 

each disease subtype.

By implementing a Bayesian inference approach to infer cell-type composition using 

published single-cell RNA-seq data, we found no significant neuronal cell loss in the FC 
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samples we studied. However, there was a significant increase in microglia. Downregulated 

genes tended to be those expressed preferentially in neurons, and upregulated genes tended 

to be those expressed preferentially in endothelial and microglial cells. These observations 

suggest a neuroinflammatory response accompanied by neuronal dysfunction, but not overt 

neurodegeneration, at least in this brain region. The complexity of cell-type composition 

in the CNS concurrent with somatic instability prompts future studies to directly assess 

variability of transcriptome alterations at a single-cell level to separate those cells driving 

disease versus those responding to paracrine signals. Overall, gene expression changes 

correlate strongly with mis-splicing, providing an opportunity to develop gene expression or 

protein-based biomarkers of disease severity. Indeed, overlapping observed gene expression 

changes with published CSF proteomics datasets suggest strong candidates for further 

evaluation. RPH3A plays roles at both the pre- and the post-synapse; it interacts with 

RAB3A (Shirataki et al., 1993) and SNAP25 (Ferrer-Orta et al., 2017) to regulate synaptic 

vesicle trafficking at the pre-synapses and interacts with PSD-95 to stabilize NMDA 

receptors at the post-synapse (Stanic et al., 2015). Related to this pathway, RAB3A 

protein has been observed to be elevated in a CNS mouse model of DM, as well as in 

DM1 FC (Hernández-Hernández et al., 2013). Finally, RPH3A has been observed to be 

downregulated in HD patients (Smith et al., 2007). Therefore, these candidates may also 

inform us about pathways perturbed specifically in DM or broadly across neurological 

diseases.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Eric T. Wang (eric.t.wang@ufl.edu).

Materials Availability—Plasmids generated for this study are available from the lead 

contact without any restriction.

Data and Code Availability—All RNA-seq data generated in this study are available in 

GEO (accession number GSE157428). The code generated during this study is available at 

https://github.com/brittneyotero/dm1-frontalcortex

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—Mouse Neuro2a cells were used in this study, grown at 37°C and 5% CO2 in 

DMEM media containing 10% fetal bovine serum.

Human subjects—Adult frontal cortex samples were obtained from post-mortem frozen 

brains, totalling in 21 DM1 samples, 4 DM2 samples and 8 unaffected controls. Samples 

ranged in age from 39 to 83 and were split across both sexes. Details about human samples 

used can be found in Table S1. Appropriate IRB approval was obtained at institutions to 

allow for post-mortem collection and analysis of tissue.
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METHOD DETAILS

Tissue and RNA collection, RNA-seq library construction—Autopsy samples were 

obtained from Stanford University, The Research Resource Network Japan, University of 

Rochester Medical Center and the NIH Biobank. Tissue samples were homogenized in 

TRIzol using the Omni bead ruptor followed by the Direct-zol RNA Miniprep kit, with 

DNase I treatment. RNA quality and abundance were assessed using fragment analysis 

(Agilent/Advanced Analytical). Samples with an RQN > 4 were further processed. RNA-seq 

libraries were constructed using the NEBNext Ultra II Directional RNA library prep kit for 

Illumina, using ribosomal RNA depletion followed by strand-specific RNA-seq preparation. 

Samples were amplified with PCR for 9–11 cycles and sequenced using the Illumina 

NextSeq 500 v2 with 75 nucleotide paired end reads. Samples were sequenced across 

multiple runs to account for possible batch effects, and reads were pooled so that all samples 

had at least 88 million reads.

Read mapping, gene expression quantitation and isoform quantitation—Upon 

passing FASTQC metrics for quality control (Andrews, 2010), reads were mapped to the 

hg19 genome using STAR (Dobin et al., 2013). Gene expression was quantified using 

Kallisto (Bray et al., 2016), with hg19 Refseq tables as a reference. Differentially regulated 

genes were identified using Sleuth (Pimentel et al., 2017). Isoform percent spliced in (PSI, 

Ψ) values were quantified by MISO (Katz et al., 2010) using hg19 v2.0 MISO annotations 

(http://genes.mit.edu/burgelab/miso/annotations/ver2/miso_annotations_hg19_v2.zip).

Identification of dysregulated exons and calculation of splicing dysregulation 
score—Splicing events were assessed for significant dysregulation across individuals by 

rank-sum test. One hundred thirty DM1 events and 59 DM2 events were found to meet 

criteria of |Δψ| > 0.2, p < 0.01 (rank-sum test). To assess a false discovery rate, psi values 

were shuffled among individuals for each event, and the rank-sum test was performed again. 

After shuffling, 6 out of 130 events remained significant, so we estimate a false discovery 

rate of < 5%. Of the 130 significantly regulated exons in the DM1 frontal cortex, those 

with a psi range < 0.25 among unaffected samples were chosen and shown in the heatmap 

in Figure 1F. Patients were ordered along the x axis by their splicing dysregulation score. 

This score was derived from the average magnitude of delta psi across all 130 significantly 

regulated exons, compared to the mean psi of the unaffected samples. The scores themselves 

are visualized in the corresponding bar graph above the heatmap.

Splicing event cross-correlations—Cross-correlations were computed for psi values 

across individuals, between every pair of differentially regulated exons. The histogram of 

Pearson correlation values is shown in Figure 1E in black. To compute a null distribution, 

psi values were shuffled among individuals, and Pearson correlationswere re-computed 

between all pairs. The histogram of Pearson correlations for shuffled values isshown in gray.

Motif Analysis—Of the 130 significantly regulated splicing events in the DM1 frontal 

cortex, 101 skipped exon events (31 aberrantly included exons and 70 aberrant excluded 

exons) were used to analyze motif signatures. Sequences from 5 distinct regions were 

assessed for each event: 250 bases downstream of the upstream exon, 250 bases upstream 
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of the skipped exon, the skipped exon itself, 250 bases downstream of the skipped exon, 

and 250 bases upstream of the downstream exon. Four-mers within these regions were 

enumerated and compared to the same regions around all other skipped exon events 

observed in our dataset. Significance for 4-mer enrichment was determined using a binomial 

test with Bonferroni correction. A similar analysis was performed for the top 59 events in 

DM2 frontal cortex, 35 of which were skipped exon events (17 aberrantly included exons 

and 18 aberrantly excluded exons). To provide additional resolution with respect to motif 

sequences, which facilitated comparison to 5-mer Bind-N-Seq data (Lambert et al., 2014), 

5mers were enumerated along each sequence from these regions, rather than 4mers.

Analysis of exons conserved between human and mouse—Previously published 

RNA-seq datasets of MBNL2 KO (Charizanis et al., 2012) and MBNL1/2 Nestin-cre DKO 

(Goodwin et al., 2015) mice were analyzed. MISO was used to calculate PSI values across 

all captured events and significance was calculated by rank-sum test. Events were filtered 

by |Δψ| > 0.1, p < 0.05 and intersected with significantly mis-spliced events in the DM1 

patients using human-mouse orthologous exons as defined by Ensembl. Seventy-nine exons 

were found to be dysregulated in both human DM1 patients and MBNL DKO mice, and 39 

exons were found to be dysregulated in both human DM1 patients and MBNL2 KO mice. 

Of the 79 exons in both human DM1 and MBNL DKO, 77 were observed in all 3 datasets 

and used to calculate a splicing dysregulation score as defined above. Samples were ordered 

along the x axis according to this score in Figure 1H.

Assessment of cell type composition by Bayesian Inference—Single-cell RNA-

sequencing of human adult temporal lobe (Darmanis et al., 2015) was analyzed to obtain cell 

type-specific markers in neurons, endothelial cells, microglia, astrocytes, oligodendrocytes, 

and oligodendrocyte precursor cells (OPCs). The top 50 enriched genes in each cell type 

were compiled and of these 300, 220 were expressed in our dataset. Using these cell 

type markers, a Bayesian inference model was built using Pymc3 (Salvatier et al., 2016) 

to estimate relative proportions of all cell types across all samples. We estimated the 

proportion of each cell type by implementing a Bayesian framework in which p(cell type | 

expression data) f p(expression data | cell type) * p(cell type). The priors for each cell type 

were initialized as Dirichlets, and the sum of all cell type proportions was constrained to 

100%. Reported cell type proportions are derived from the mean of the inferred posterior 

distributions. The estimated proportion of OPCs was < 2.5% and was eliminated from the 

model; final cell type proportions are reported using a model that incorporates only neurons, 

endothelial cells, microglia, astrocytes, and oligodendrocytes and uses 184 cell type marker 

genes.

Assessment of cell type-specific gene expression and splicing changes—Cell 

type specificity of genes was calculated by dividing the recorded expression of each gene 

in a given cell type by the expected expression of that gene if that gene were equally 

expressed across all cell types. We designated genes with scores > 3 as specific. The 

number of up- and downregulated genes (and genes that do not change) was enumerated. 

A Fisher exact test was used to determine whether particular cell types showed enrichment 

of differentially regulated genes versus genes not showing changes. A similar analysis was 
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performed with differentially regulated exons versus all exons captured in the dataset not 

showing regulation.

Gene ontology analysis—Gene Ontology analysis was performed on all significantly 

up- and downregulated genes (235 and 145 genes, respectively), with all expressed genes 

in the dataset used as the background, using http://geneontology.org/. Categories were 

collapsed using Revigo (Supek et al., 2011) and the top 5 categories (sorted by enrichment) 

are shown.

Gene expression dysregulation score, correlations, and overlap with CSF 
proteomics and SignalP—The gene expression dysregulation score was calculated using 

the significantly up- and down- regulated genes; it was computed as the average magnitude 

of logged gene expression changes relative to the mean log2(TPM) of all unaffected samples. 

log2(TPM) for all up- and downregulated genes were correlated to the splicing dysregulation 

score across all individuals (Figure 6F). Pearson correlations were calculated and shown 

on the histogram in green. Additionally, scores were derived for all possible pairs of genes 

among significantly up- and downregulated genes; the score for pairs of genes going in the 

same direction was defined as the sum of log(TPM) and the score for pairs of genes going in 

opposite directions was defined as the difference of log(TPM). Pearson correlations for these 

scores relative to splicing dysregulation score were calculated and shown on the histogram 

in blue. To obtain a null distribution for correlations, expression values for all up- and 

downregulated genes were shuffled and compared again to splicing dysregulation; Pearson 

correlations were calculated and shown on the histogram in gray. Regulated genes were 

intersected with genes detected in CSF by proteomics (Macron et al., 2018) to determine 

whether any genes would be strong biomarker candidates (Figure 6G), shown in teal. This 

subset of genes was also scored by SignalP version 5 (Nielsen et al., 1997) to identify signal 

peptides, shown in blue.

Bionano Saphyr sample preparation and mapping—For each sample, 10 mg brain 

tissue was homogenized, embedded in agarose plugs and incubated with lysis buffer and 

Proteinase K at 50°C overnight. RNase A was added and incubated for 1 hour at 37°C. 

Agarose was digested with agarase and the purified DNA was subjected to drop dialysis 

for 4 hours and quantified by the Qubit dsDNA BR assay. Purified DNA was labeled 

using the Direct Label Enzyme (DLE) method (Bionano Genomics). A total of 750ng of 

DNA was labeled using the DLE-1 kit following the manufacturer’s instructions and then 

treated with proteinase K. The DNA was stained with YOYO-1 according to the DLE-1 kit 

instructions and homogenized by HulaMixer. The stained sample was incubated overnight 

at room temperature. Labeled and stained DNA was loaded onto the Bionano Genomics 

Saphyr chip. DNA was linearized in the nanochannel array by electrophoresis. Strands 

were imaged and the backbone and labels detected by Bionano image detection software. 

Single-molecule maps were assembled into consensus maps. Consensus maps were refined 

and merged based on overlapping segments. The final consensus maps were aligned to the 

GRCh38 human reference genome. Repeat expansions in the DMPK locus were identified 

by distances between flanking labels in the single-molecule maps aligned to the region.
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GRIP1 constructs and cloning—Double-stranded gene fragments encoding for GRIP1 

kinesin-binding domain (GRIP1-KBD) +/− exon 21 were synthesized by Integrated DNA 

Technologies (IDT). The pEGFP-C1 (Clontech) plasmid containing a CMV promoter and 

C-terminal EGFP was used. Using the InFusion HD Cloning Kit (Clontech), GRIP1-KBD 

± exon 21 was inserted into the pEGFP-C1 plasmid backbone between the SalI and BamHI 

sites. mCherry sequence was obtained from a pcDNA3.1 (Invitrogen) plasmid. An mCherry-

C1 plasmid was subsequently constructed through excision and replacement of pEGFP 

between the AgeI and BglII sites. GRIP1-KBD -exon 21 was then cloned into mCherry-C1 

as described above.

Centrosome recruitment assay and quantification—Mouse Neuro2a cells 

(Olmsted et al., 1970) were grown at 37°C in Dulbecco’s Modified Eagle 

Medium (Cytiva) containing 10% fetal bovine serum, D-glucose, L-glutamine, 

sodium pyruvate, streptomycin, and penicillin. Cells were trypsinized and plated 

onto glass chamber slides 1–2 days prior to transfection. To generate the 

BicD2-KIF5A expression plasmid, first a pcDNA3.1-BicD2-KIF1Balpha plasmid 

was generated. The pcDNA3.1-V5-His-TOPO backbone was cut with BamHI and 

EcoRV. BicD2 was amplified from a BicD2-FKBP expression plasmid provided by 

Gary Banker using primers GCTAGTTAAGCTTGGTACCGAGCTCGGATCCATGGATAT 

CATGGATTACAAGGATGAC and 

CCACCCCCTCCCGAACCTCCGCCCCCTCTAGAGACGGTCCGATCT. The 

KIF1Balpha tail was amplified from mouse cDNA using 

primers GGAGGTTCGGGAGGGGGTGGCTCAGATACATCCATGGGGTCCCTC and 

GAGCGGCCGCCACTGTGCTGGATATCCTAGACTGTGGTTTCTCGACCT. The BicD2 

PCR product and KIF1Balpha PCR products were joined together by PCR using 

the outer primers, and cloned into the pcDNA3.1 backbone by InFusion HD cloning 

(Clontech). The pcDNA3.1-BicD2-KIF1Balpha plasmid was then cut using SanDI 

and NotI, and the KIF5A tail was amplified from human cDNA using primers 

GCCTCAGTAAATTTGGAGTTGACTGC and TTAGCTGGCTGCTGTCTCTTGG, 

followed by GCTCAGATACATC CATGGGGTCCCTCGCCTCAGTAAATTTGGAGT 

and GGGCCCTCTAGACTCGAGCGGCCGCTTAGCTGGCTGCTGTCTCTT. The PCR 

product was cloned into the backbone also by InFusion HD cloning to generate the 

BicD2-KIF5A tail construct. Constructs containing FP-GRIP1-KBD ± exon 21 and FLAG-

BicD2-KIF5A were expressed by transfection using TransIT-LT1 (Mirus). Approximately 

24 hours after transfection, cells were fixed using 4% paraformaldehyde and permeabilized 

with 0.2% Triton X-100. Cells were stained with a rabbit monoclonal anti-DYKDDDDK 

tag antibody (D6W5B; Cell Signaling Technologies) followed by an Alexa Fluor 647-

conjugated goat anti-rabbit secondary antibody (Abcam). Cells were then mounted in 

Fluoroshield (Millipore-Sigma). Cells were imaged using the Zeiss LSM880 microscope 

by epifluorescence with an AxioCam MRm camera and Apochromat 40x/1.3 NA objective. 

Tile scans were gathered for each condition using ZEN software (Carl Zeiss International). 

Image analysis and quantitation of tile scans were performed using ImageJ/Fiji (Schindelin 

et al., 2012). Intensity values for whole cells and centrosomes were manually traced and 

quantitated using EGFP or mCherry (whole cell) and FLAG (centrosome) signals as masks. 

Intensity values from these tracings were used to quantify recruitment of GRIP1-KBD 
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to the centrosome by BicD2-KIF5A, as represented by the ratio of centrosomal signal to 

whole-cell signal.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for this study was done using custom python scripts. Tests, thresholds 

and significance values are detailed in the results, methods and figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• DM1 RNA-seq shows mis-splicing of neurotransmitter receptors along a 

severity gradient

• Repeats >1,000 CTGs occur in all individuals; lengths correlate with mis-

splicing

• GRIP1 mis-splicing perturbs kinesin association and may alter synaptic 

trafficking

• Expression changes suggest neuroinflammation and downregulation of 

neuronal genes
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Figure 1. Mis-splicing changes across DM1 FC samples show a gradient of severity consistent 
with quantitative loss of MBNL
(A) RNA-seq was performed on 21 DM1, 4 DM2, and 8 unaffected FC (Brodmann area 10) 

samples across a range of ages.

(B) Percentage spliced in (PSI, ψ) for specific exons in unaffected and DM1 FC samples.

(C) Scatterplot of mean ψ for unaffected versus DM1 samples for all exons measured; 

130 mis-splicing events were detected as significantly regulated (|Δψ| > 0.2, p < 0.01 by 

rank-sum test) and are highlighted in blue.
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(D) Scatterplot of ψ for MBNL2 exon 5 versus GABRG2 exon 10 and GRIP1 exon 21 

versus DLGAP1 exon 20 across unaffected and DM1 individuals. The Pearson correlation 

value is shown.

(E) Histogram of correlation values for all pairs of 130 significantly regulated exons 

(black). A similar histogram of correlation values for all pairs following shuffling of patient 

identities is also shown (gray) (see STAR Methods). A Kolmogorov-Smirnov (KS) test 

shows that the distributions are different (p < 1e–300).

(F) Normalized ψ for 47 of the 130 significantly regulated exons showing the least 

variation in ψ across unaffected FC (see STAR Methods). Individuals are sorted by splicing 

dysregulation score (see STAR Methods), also shown above in bars.

(G) Heatmap showing enrichment of motifs around the 101 significantly regulated skipped 

exons relative to all other measured skipped exons. The columns denote the intronic region 

from +1 to +250 and −250 to −1 of the upstream intron, the skipped exon, and the intronic 

region from +1 to +250 and −250 to −1 of the downstream intron.

(H) Total splicing dysregulation in all human and MBNL KO mouse samples considered as 

computed using 74 orthologous exons significantly dysregulated (|Δψ| > 0.1, p < 0.05 by 

rank-sum test) in DM1 patients and MBNL DKO mice.
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Figure 2. DM1 FC samples show large expansions, and the proportion of long expansions 
correlates with overall splicing dysregulation
(A) DNA fragments from unaffected and DM1 FC samples were labeled by direct labeling 

enzyme (DLE) and subjected to optical mapping of the DMPK locus.

(B) Observed Bionano reads are shown on the left for one unaffected individual (top) and 

one DM1 individual (bottom). Histograms of the estimated CTG repeat lengths are shown 

on the right (gray bars) for individuals, along with their cumulative distribution functions 

(CDFs, blue line). The 50th, 75th, and 90th percentiles of repeat lengths are indicated.

(C) Scatterplot of the 50th, 75th, and 90th percentiles of repeat lengths versus total splicing 

dysregulation across all unaffected and DM1 individuals for which repeat lengths were 

measured. Pearson correlation values are shown.
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Figure 3. Mis-splicing of GRIP1 in DM1 may lead to changes in kinesin association
(A) GRIP1 exon 21 is significantly mis-spliced in DM1 FC.

(B) Schematic of GRIP1 kinesin binding domain (KBD) and the centrosome recruitment 

assay. The C-terminal tail of KIF5A is used as a bait to recruit GFP-GRIP1 fusions to the 

centrosome.

(C) Representative images of the centrosome recruitment assay using GRIP1 KBD 

fluorescent fusion proteins, with and without exon 21, taken at 403 magnification.

(D and E) Quantitation of recruitment efficiency (mean signal at the centrosome divided 

by mean cytoplasmic signal outside the centrosome) for each construct transfected either 

(D) independently or (E) competitively, in which the construct with exon 21 was fused to 

GFP and the construct without exon 21 was fused to mCherry. Significance is shown by an 

asterisk, and p < 0.01 is shown by a rank-sum test. Cells were quantitated from at least 3 

independent transfections.
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Figure 4. Across DM1 FC, skeletal muscle, and heart, most splicing events are tissue specific
(A) Venn diagram showing exons mis-spliced in 1, 2, or all 3 DM1 tissues.

(B) ψ for specific exons in FC, skeletal muscle, and heart. Exons significantly mis-regulated 

in any given tissue are indicated with an asterisk.

(C) Scatterplot of ψ for each pair of tissues analyzed. Exons that are significantly regulated 

(|Δψ| > 0.1, p < 0.01 by rank-sum test) in both tissues are highlighted in blue; 86 are 

shared between FC and skeletal muscle, and 38 are shared between FC and heart. Pearson 

correlations for blue points are shown.
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Figure 5. The extent of mis-splicing shared between DM1 and DM2 FC is limited
(A) Venn diagram showing exons mis-spliced (|Δψ| > 0.1, p < 0.01 by rank-sum test) in 

DM1 or DM2 FC or both.

(B) Scatterplot of Δψ for DM2 versus DM1. 62 exons identified to be significantly regulated 

in both DM1 and DM2 (|Δψ| > 0.1, p < 0.01 by rank-sum test) are highlighted in teal, and 

162 exons identified to be significantly regulated uniquely in DM2 (|Δψ| > 0.1, p < 0.01 by 

rank-sum test) are highlighted in purple. DM1-specific events have been omitted for clarity. 

Pearson correlation for shared (teal) events is shown.

(C) Heatmap showing enrichment of motifs around 35 DM2-regulated skipped exons 

relative to all other measured skipped exons. The columns denote the intronic region from 

+1 to +250 and −250 to −1 of the upstream intron, the skipped exon, and the intronic 

region +1 to +250 and −250 to −1 of the downstream intron. Bind-N-Seq enrichment values 

for MBNL and RBFOX are also shown; enrichments were derived from experiments using 

1,080 nM MBNL1 or 1,100 nM RBFOX2.

(D) Transcript per million (TPM) ratios of total RBFOX (RBFOX1, RBFOX2, and 

RBFOX3) versus CNBP, total MBNL (MBNL1, MBNL2, and MBNL3) versus CNBP, and 

total RBFOX versus total MBNL are shown across FC and skeletal muscle. Note the high 

concentration of RBFOX in FC relative to skeletal muscle.
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Figure 6. Analysis of gene expression changes reveals neuroinflammation and potential 
biomarkers
(A) Gene Ontology analysis of genes upregulated (green) and downregulated (blue) in DM1 

versus unaffected FC (top five categories shown for each, selected by fold change).

(B) Proportions of neurons, microglia, endothelial cells, oligodendrocytes, and astrocytes 

in each FC sample were estimated by Bayesian inference using published transcriptome 

profiles (see STAR Methods) and plotted. Significance is shown by an asterisk.

(C) Proportion of up-, non-, and downregulated genes derived from specific cell types is 

shown (left panel). The proportion of mis-spliced and unaffected genes derived from specific 

cell types is also shown (right panel). Cell-type specificity for genes was determined using 

publicly available single-cell sequencing data (see STAR Methods). Significance is shown 

by an asterisk.

(D) TPM ratios for DMPK versus total MBNL (MBNL1, MBNL2, and MBNL3) across 

various CNS cell types.

(E) Scatterplot of splicing dysregulation score versus gene expression dysregulation score 

(see STAR Methods). Pearson correlation is shown (p = 3e–10).

(F) Pearson correlations between splicing dysregulation score and log2(TPM) for each 

dysregulated gene were computed and plotted as a histogram (teal). Samples were shuffled 
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and correlations were recomputed and plotted (gray). A similar score was also computed 

between splicing dysregulation and all pairs of genes (blue) (see STAR Methods). Absolute 

values for all correlations were used for plotting. Similarities of distributions were assessed 

by a KS test; p < 1e–300 when comparing shuffled to single genes, and p < −200 when 

comparing shuffled to pairs of genes.

(G) Scatterplot of the single-gene correlations computed in (F) versus log2(TPM) for 

those genes. Genes encoding proteins detectable in CSF, and those additionally found to 

have signal sequences (SignalP) (see STAR Methods) are highlighted in teal and blue, 

respectively.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-DYKDDDDK tag Cell Signaling Technologies Cat#D6W5B; RRID:AB_2572291

Alexa Fluor 647-conjugated goat anti-rabbit 
secondary

Abcam Cat#ab150079; RRID:AB_2722623

Biological Samples

DM1 frozen post-mortem frontal cortex samples Stanford University, The Research 
Resource Network Japan, 
University of Rochester Medical 
Center

N/A

Unaffected frozen post-mortem frontal cortex 
samples

NIH Biobank N/A

Critical Commercial Assays

Direct-zol RNA Miniprep kit Zymo Research Cat#R2052

NEBNext Ultra II Directional RNA Library kit New England Biolabs Cat#E7765S

Qubit dsDNA BR Assay Kit ThermoFischer Cat#Q32850

Animal Tissue DNA Isolation Kit Bionano Genomics Cat#80002

DLS DNA Labeling Kit Bionano Genomics Cat#80005

Saphyr Chip G1.2 Bionano Genomics Cat#20319

In-Fusion HD Cloning Plus Clontech Cat#638911

TransIT-LT1 Transfection Reagent Mirus Bio Cat#MIR2306

Deposited Data

Raw and analyzed data (both) This paper GEO: GSE157428

Experimental Models: Cell Lines

Mouse Neuro2A Cells Olmsted et al., 1970 ATCC #CCL-131; RRID:CVCL_0470

Oligonucleotides

See Table S7. This paper N/A

Recombinant DNA

Plasmid: pEGFP-C1 Clontech Cat#6084-1

Plasmid: pcDNA3.1 Invitrogen CAT#V790-20

Plasmid: pcDNA3.1-BicD2-KIF1Balpha This paper N/A

Plasmid: pcDNA3.1-V5-His-TOPO Invitrogen Cat#K4800-01

Plasmid: FLAG-BicD2-KIF5A This paper N/A

Plasmid: FP-GRIP1-KBD +exon 21 This paper N/A

Plasmid: FP-GRIP1-KBD −exon 21 This paper N/A

Plasmid: BicD2-FKBP Gift from Gary Banker, Bentley and 
Banker, 2015

N/A

Software and Algorithms

FASTQC Andrews, 2010 https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Kallisto Bray et al., 2016 https://pachterlab.github.io/kallisto/about

Sleuth Pimentel et al., 2017 https://pachterlab.github.io/sleuth/about
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REAGENT or RESOURCE SOURCE IDENTIFIER

MISO Katz et al., 2010 https://miso.readthedocs.io/en/fastmiso/

Pymc3 Salvatier et al., 2016 https://docs.pymc.io/

Revigo Supek et al., 2011 http://revigo.irb.hr/

SignalP Nielsen et al., 1997 http://www.cbs.dtu.dk/services/SignalP/

ImageJ/Fiji Schindelin et al., 2012 https://imagej.net/Fiji
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