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Abstract: Glycosylation inactivation is one of the important macrolide resistance mechanisms. The
accumulated evidences attributed glycosylation inactivation to a glucosylation modification at the
inactivation sites of macrolides. Whether other glycosylation modifications lead to macrolides inac-
tivation is unclear. Herein, we demonstrated that varied glycosylation modifications could cause
inactivation of midecamycin, a 16-membered macrolide antibiotic used clinically and agriculturally.
Specifically, an actinomycetic glycosyltransferase (GT) OleD was selected for its glycodiversification
capacity towards midecamycin. OleD was demonstrated to recognize UDP-D-glucose, UDP-D-xylose,
UDP-galactose, UDP-rhamnose and UDP-N-acetylglucosamine to yield corresponding midecamycin
2′-O-glycosides, most of which displayed low yields. Protein engineering of OleD was thus per-
formed to improve its conversions towards sugar donors. Q327F was the most favorable variant
with seven times the conversion enhancement towards UDP-N-acetylglucosamine. Likewise, Q327A
exhibited 30% conversion enhancement towards UDP-D-xylose. Potent biocatalysts for midecamycin
glycosylation were thus obtained through protein engineering. Wild OleD, Q327F and Q327A
were used as biocatalysts for scale-up preparation of midecamycin 2′-O-glucopyranoside, mide-
camycin 2′-O-GlcNAc and midecamycin 2′-O-xylopyranoside. In contrast to midecamycin, these
midecamycin 2′-O-glycosides displayed no antimicrobial activities. These evidences suggested that
besides glucosylation, other glycosylation patterns also could inactivate midecamycin, providing a
new inactivation mechanism for midecamycin resistance. Cumulatively, glycosylation inactivation of
midecamycin was independent of the type of attached sugar moieties at its inactivation site.

Keywords: macrolide resistance; midecamycin; glycodiversification; glycosylation inactivation

1. Introduction

Antibiotics have been applied extensively in the clinic, veterinary medicine and farm-
ing as antibacterials. Of these antibiotics, macrolides are an important group of antibiotics,
which account for 20% of all antibiotics prescribed. At least 500 kinds of macrolide antibi-
otics are known, most of which are derived from Streptomyces species. The frequently
used macrolide antibiotics are erythromycin [1], oleandomycin [2,3], josamycin [4,5],
midecamycin [4,6], spiramycin [7,8], roxithromycin [9,10], azithromycin [11,12], and clar-
ithromycin [13,14]. Macrolides exhibit high activity against Gram-positive bacteria, and
are thus used widely as excellent bacteriostatic agents due to their low toxicity and broad-
spectrum activities. Macrolide antibiotics inhibit protein synthesis by binding to the nascent
peptide exit tunnel of the bacterial ribosome, thus leading to growth arrest or cell death.
The action mechanism of macrolides is determined by the location of sugars and specific
functional groups on their macrolactone rings [15–17]. However, as with other antibiotics,
the misuse and overuse of macrolides will inevitably result in antibiotic resistance [18],
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which usually causes the decline or loss of antibiotic efficacy. Antibiotic-resistant infections
can be difficult and sometimes impossible to treat, thereby resulting in extended hospital
stays, higher medical costs and increased mortality. Antibiotic resistance is regarded as
one of the biggest threats to healthcare, veterinary and agriculture industries in our time.
Hence, it is urgent to explore the underlying mechanisms of macrolide resistance.

To date, several mechanisms including antibiotics efflux, modifications of the antibi-
otic targets and antibiotic inactivation have been reported [19–21]. Of these mechanisms,
antibiotic inactivation is achieved by enzyme-mediated structural modifications, such as
phosphorylation, glycosylation and acylation [19,20]. Under the actions of modifying en-
zymes like phosphotransferases (PTs), glycosyltransferases (GTs) and acyltransferases (ATs),
macrolide antibiotics are modified to form derivatives with structural alterations, which
can impair target binding [18–20]. Enzymatic modification of antibiotics has been known as
one of the most common resistance mechanisms, which is extensively present in antibiotic
producers [18,22]. Enzymatic modifications are effective strategies to inactivate antibi-
otics, thereby avoiding their damage to producers, which is also called self-resistance [23].
GT-mediated macrolides inactivation has been observed in diverse producers, like Strep-
tomyces vendargensis [24], S. lividans [25–27], S. antibioticus [28–32], Saccharopolyspora ery-
thraea [33], Nocardia Species [34,35], S. hygroscopicus [36] and S.ambofaciens [37]. Many
macrolides, such as erythromycin [24,25,27], tylosin [25,27], rosaramicin [25–28], chal-
comycin [26,27], lankamycin [26–28], methymycin [26–28], pikromycin [26,27], olean-
domycin [26–29], spiramycin [26,27], azithromycin [26,27] and rapamycin [38] could be
inactivated by glycosylation modifications. The glycosylation inactivation was deemed as
a common self-protection mechanism in these macrolide-producing strains.

Diverse macrolide-inactivating GTs had been isolated and functionally identified.
The exemplifying macrolide-inactivating GTs were OleI and OleD from S. antibioticus [31],
MGT from S. lividans [25], BaGT from Bacillus atrophaeus, BamGT from B. amyloliquefaciens,
BcGT-1 from B.cereus, BgGT from B. glycinifermentans, BpGT from B. paralicheniformis, as
well as BsGT-1 and BssGT from B. subtilis [38,39]. These GTs have been demonstrated to be
acceptor promiscuous, recognizing multiple macrolides. Both OleI and OleD displayed
activity against, for example, oleandomycin, carbomycin, tylosin and erythromycin [31].
MGT could recognize diverse macrolides such as chalcomycin, lankamycin, rosaramicin,
methymycin, pikromycin and erythromycin [25–27]. Besides acceptor promiscuity, many
antibiotic-inactivating GTs like OleI, OleD and MGT showed a wide donor tolerance [40],
attaching diverse sugar moieties to an aglycon through a process named glycodiversification.

The underlying mechanisms causing macrolide inactivation was elucidated through the
structural identification of glycosylated macrolides. MGT usually inactivates methymycin,
erythromycin, azithromycin or tylosin through the glucosylation on 2′-OH in their my-
caminosyl moiety [25–27]. Likewise, both OleD and OleI inactivate oleandomycin by
2′-glucosylation in the mycaminosyl moiety [28,30–32,40–43]. Nocardia species inactivated
chalcomycin and tylosin by the glucosylation at 2′-OH in the mycaminosyl moiety of
the two antibiotics [35]. In addition, rapamycin inactivation was proved to be caused by
glucosylation at its C-28 or C-40 position [38]. These evidences indicated that glucosylation
modification at inactivation sites (C-2′, C-28, C-40) was the main glycosylation inactivation
pattern of these macrolides. However, the effect of other glycosylation modifications, such
as xylosylation and O-GlcNAcylation, on macrolide inactivation is still unknown.

Midecamycin, a naturally occurring 16-membered macrolide, is synthesized from
Streptomyces mycarofaciens [44,45]. It contains a 16-membered lactone ring, to which a disac-
charide moiety 4′-O-(α-L-mycarosyl)-β-D-mycaminosyl is attached [46]. Midecamycin is
active against both erythromycin-susceptible and efflux-mediated erythromycin-resistant
strains [47]. Moreover, midecamycin and its derivatives are also active against mycoplasma
species [4,6]. Hence, it has been widely applied in the clinic to treat upper and lower
respiratory tract infections [48]. In addition, midecamycin and other macrolides were sup-
plemented in feeds for food-producing animals to treat infectious diseases and promote the
health [49,50]. Due to the important roles in clinical therapy and animal-derived food safety,
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midecamycin resistance has attracted significant attention [34,35]. Midecamycin resistance
was due to drug inactivation caused by phosphorylation, reduction, deacylation, or a
combination thereof [34,35]. It was not clear, however, that the glycosylation modifications
including glucosylation of midecamycin could inactivate midecamycin.

Herein, midecamycin inactivation caused by varied glycosylation modifications was
demonstrated. Specifically, OleD was screened from four candidate GTs as the most favor-
able biocatalyst to glycodiversify midecamycin, generating five 2′-substituted glycosides,
most of which had low yields (Figure 1). Protein engineering was then conducted with the
aim to improve the conversions of OleD towards five reactive donors. Q327F and Q327A
were thus identified as the most favorable biocatalysts capable of increasing the conver-
sion towards UDP-GlcNAc and UDP-Xyl, respectively. OleD, Q327F and Q327A were
thus used as the biocatalysts for scale preparation of midecamycin 2′-O-glucopyranoside,
midecamycin 2′-O-acetylglucosamine and midecamycin 2′-O-xylopyranoside, respectively.
The antimicrobial activities of the three midecamycin 2′-O-glycosides were lost completely.
These data indicated that glycosylation inactivation could contribute to midecamycin re-
sistance. Besides glucosylation, other glycosylation patterns could result in midecamycin
inactivation, suggesting glycosylation inactivation of midecamycin was independent of
the type of attached sugar moieties. This study will lay a foundation for the mechanism
clarification of macrolide resistance and the development of GT inhibitors as drugs.
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Figure 1. OleD-catalyzed glycodiversification towards midecamycin.

2. Results
2.1. Expression and Purification of GTs

OleD [41], DesVII [51], SpnP [52,53] and Srm29 [54] are macrolide GTs. Hence, these
GTs were selected as the candidate biocatalysts for glycosylation of midecamycin. The
genes encoding the four GTs were thus induced to express in Escherichia coli for preparative
production of biocatalysts, respectively. SDS-PAGE analysis showed that an intense band
with the expected size of 45.7 kDa was present in the supernatant of the recombinant
strain harboring OleD gene. On the contrary, no corresponding band was detected in the
control supernatant, suggesting OleD was successfully expressed in E. coli as a soluble
product. The soluble OleD protein was subsequently purified to near homogeneity, reach-
ing 107.96 mg/mL (Figure 2A). Likewise, the other three genes desVII, spnP and srm29 were
demonstrated to be expressed as soluble forms in E. coli (Figure S1). The concentration
of the purified DesVII, SpnP and Srm29 was 40.32, 50.83 and 46.67 mg/mL, respectively.
These recombinant GTs were then used as the biocatalysts to glucosylate midecamycin.
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indicated in kDa in the left margin; 1, Induced E. coli harboring pET-His empty vector; 2, Soluble fraction of OleD; 3, The
purified OleD. The arrows showed the expressing OleD protein. (B), Glucosylation of midecamycin catalyzed by the purified
OleD(e), Srm29(d), SpnP(c), DesVII (b) or no protein (a), which were separated by HPLC. 1, 1a and 1b referred to midecamycin
and its monoglucosylated products. Arrows showed the glucosylated products. (C), UV spectrum of midecamycin (1) and its
glucosylated products (1a and 1b). (D), HR-MS spectrum of 1a with m/z value of 976.5081. (E), HR-MS spectrum of 1b with
m/z value of 976.5082. (F), HR-MS spectrum of midecamycin with m/z value of 814.4577.

2.2. Glucosylation of Midecamycin

Each of these purified OleD, DesVII, SpnP and Srm29 was used as the biocatalyst
to react with UDP-Glc and midecamycin, respectively. Results indicated that four GTs
could glucosylate midecamycin to form new products (Figure 2B). Of the four GTs, OleD
exhibited the most favorable glucosylating activity towards midecamycin. OleD could
glucosylate midecamycin to yield two products 1a and 1b (Figure 2B). Conversely, the other
three GTs could glucosylate midecamycin to form trace products (Figure 2B). Hence, the
purified OleD was used as the biocatalyst for further glycodiversification of midecamycin.

The newly formed peaks 1a and 1b displayed similar UV spectra with that of mide-
camycin (Figure 2C), suggesting the two products containing similar skeleton structure with
that of midecamycin. The newly formed 1a and 1b exhibited [M + H]+ ion peaks with m/z
values of 976.5081 (Figure 2D) and 976.5082 (Figure 2E), respectively, which revealed both
were monoglucosylated products of midecamycin with m/z value of 814.4577 (Figure 2F).
The compound 1a was collected and then analyzed by NMR measurement. 1H and 13C-
NMR data assigned 1a as midecamycin 2′-O-glucopyranoside (Table 1, Figures S2–S6),
suggesting OleD preferred to attack 2′-OH in mycaminosyl moiety of midecamycin. In ad-
dition, OleD was able to glucosylate 2′-OH of oleandomycin [25–28,38–40]. These facts
collectively indicated that 2′-OH might be the preferred site of glycosylation for macrolides.
In an attempt to collect 1b for structural identification, this compound was found to be
unstable and could be easily converted to 1a. It was speculated that there was an isomer-
ization between 1a and 1b, which resulted from the allylic rearrangement caused by two
conjugated double bonds in midecamycin. The isomerization of the diene alcohol system
in macrolides had been observed previously [55,56]. The instability of 1b, together with its
trace amount in the reaction mixture, made it was difficult to purify 1b. Hence, the exact
structure of 1b had not been assigned.
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Table 1. NMR data of 1a and 1c in CD3OD.

1a 1c

Position δC δH (mult, J Hz) δC δH (mult, J Hz)

1 172.3 172.2
2 37.9 2.65 (dd, 12.3, 12.0) 37.9 2.65 (overlap)

2.41 (dd, 13.2, 5.4) 2.37 (dd, 12.3, 7.6)
3 71.1 5.09–5.14 (m) 71.1 5.08–5.13 (m)
4 85.7 3.54 (dd, 10.2, 6.0) 85.9 3.38 (overlap)
5 76.8 3.87 (overlap) 76.3 3.89 (overlap)
6 30.2 2.13–2.21 (m) 30.1 2.14–2.23 (m)
7 31.6 1.48–1.56 (m) 32.6 1.52–1.61 (m)

1.07–1.13 (m) 0.98–1.03 (m)
8 35.2 1.86–1.95 (m) 35.1 1.92–2.00 (m)
9 74.1 4.23 (dd, 9.6, 5.4) 74.1 4.22 (dd, 9.6, 7.6)
10 128.8 5.64 (dd, 15.6, 9.6) 128.6 5.65 (dd, 15.3, 5.8)
11 136.6 6.58 (dd, 16.0, 10.2) 136.7 6.59 (dd, 15.2, 10.4)
12 133.9 6.10 (dd,15.0, 10.8) 133.8 6.11 (dd, 14.9, 10.6)
13 133.2 5.71–5.78 (m) 133.3 5.71–5.79 (m)
14 41.8 2.13–2.21 (m) 42.8 2.47–2.51 (m)

2.45–2.50 (m) 2.16–2.22 (m)
15 70.6 4.94 (dd, 13.8, 6.6) 70.7 4.93 (dd, 10.0, 6.5)
16 20.6 1.25 (d, 6.0) 20.9 1.27 (d, 5.6)
17 43.5 2.82–2.90 (m) 43.4 2.83 (dd, 18.6, 11.3)

2.36 (dd, 18.0, 7.8) 2.36 (overlap)
18 203.5 9.66 (s) 203.5 9.66 (s)
19 15.3 0.99 (t, 5.4) 15.3 0.99 (d, 5.2)
20 175.8 175.8
21 28.5 2.43–2.49 (m) 28.5 2.41–2.49 (m)
22 9.6 1.19 (overlap) 9.6 1.19 (overlap)
23 62.9 3.62 (s) 62.5 3.58 (s)
1′ 102.7 4.69 102.1 4.69 (d, 7.1)
2′ 82.3 3.42 (dd, 7.8, 6.0) 81.5 3.48 (dd, 8.9, 5.6)
3′ 69.7 2.87 (overlap) 69.9 2.98 (overlap)
4′ 80.4 3.63 (overlap) 78.5 3.70 (dd, 9.6, 7.3)
5′ 73.5 3.54–3.60 (m) 73.5 3.52–3.56 (m)
6′ 19.3 1.34 (d, 6.0) 19.3 1.36 (d, 6.2)

7′ and 8′ 41.8 2.59(s) 41.9 2.68 (s)
1′′ 99.0 5.16 (overlap) 98.7 5.17 (overlap)
2′′ 43.0 2.06 (d, 15.0) 42.8 2.06 (dd, 14.5, 4.6)

1.96 (dd, 14.4, 4.8) 1.97 (d, 14.1)
3′′ 70.4 70.6
4′′ 78.6 4.60 (d, 10.2) 78.5 4.62 (d, 9.8)
5′′ 65.0 4.43–4.47 (m) 65.1 4.37 (overlap)
6′′ 17.9 1.11 (s) 17.9 1.13 (d, 2.3)
7′′ 26.8 1.13 (s) 26.5 1.14 (s)
8′′ 175.8 175.8
9′′ 28.3 2.45 (overlap) 28.3 2.46 (overlap)

10′′ 9.6 1.20 9.6 1.21 (overlap)
1′′′ 107.8 4.40 (dd, 7.8, 7.2) 107.8 4.88 (d, 7.8)
2′′′ 76.5 3.21 (dd, 8.4, 8.4) 76.1 3.21 (dd, 9.0, 7.6)
3′′′ 77.8 3.38 (dd, 9.0, 9.0) 78.0 3.35 (overlap)
4′′′ 71.3 3.34 (overlap) 71.1 3.46 (overlap)
5′′′ 78.5 3.29 (overlap) 67.5 3.90 (overlap)

3.2 (overlap)
6′′′ 62.9 3.89 (overlap)

3.76 (dd, 12.0, 4.8)

The effect of pH and temperature on OleD-catalyzed glucosylation towards mide-
camycin was illustrated in Figure S7. OleD exhibited a wide pH tolerance ranging from
pH 4.0 to pH 12.0. When pH was between 9 and 10, the highest OleD activity was observ-
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able. Likewise, OleD had a wide range of temperature tolerance. It kept activity from 0 to
70 ◦C and got the highest activity at 50 ◦C. When the temperature was 70 ◦C, the residual
activity of OleD was more than 25%. Hence, the optimal pH 9.0 and optimal temperature
50 ◦C were determined as the reaction conditions in the following assays unless otherwise
specified. The kinetic parameters were determined under the optimal reaction conditions
and summarized in Table 2.

Table 2. Kinetic parameters for OleD-catalyzed glucosylation towards midecamycin.

Substrate Km (mM) Vmax (mM/min)

UDP-Glc 1.933 ± 0.124 0.080 ± 0.002
midecamycin 0.626 ± 0.106 11.120 ± 0.830

2.3. OleD-Mediated Glycodiversificaion of Midecamycin

The glycodiversification capacity of OleD towards midecamycin was explored with
the aim to enzymatically synthesize an array of midecamycin 2′-O-glycosides. Each of
the compounds summarized in Figure S8 was used as the sugar donor to react with
midecamycin under the action of OleD (Figure 3). OleD was reactive with five donors,
including UDP-Glc, UDP-Xyl, UDP-Gal, UDP-Rha and UDP-GlcNAc, but stringently re-
pellent to UDP-glucuronic acid (UDP-GlcA), UDP-N-acetylgalactosamine (UDP-GalNAc),
GDP-mannose (GDP-Man) and other donors in Figure S8. Like UDP-Glc, UDP-Xyl reacted
with midecamycin to form two products 1c and 1d displaying similar UV spectra with
that of midecamycin (Figure 3A,E). Mass analyses of the two peaks showed m/z ions of
946.4995 and 946.4982, respectively, suggesting 1c and 1d were monoxylosylated prod-
ucts of midecamycin (Figure 3C,D). Further NMR analysis assigned 1c as midecamycin
2′-O-xylopyranoside (Table 1, Figures S9–S13). The midecamycin xyloside 1d was also
unstable, and might be an allylic isomer of 1c (Figure 3A). Moreover, the yield of 1d was
very low. Therefore, we did not identify the structure of 1d.

The other three donors, UDP-Gal, UDP-Rha and UDP-GlcNAc, could react with mide-
camycin to yield one product, respectively (Figure 3A). HRESIMS demonstrated their
monoglycosylated products of midecamycin (Figure S14). According to the catalytic behav-
ior of OleD towards midecamycin, these glycosylated midecamycin derivatives 1e, 1f and
1g could reasonably deduced to midecamycin 2′-O-galactopyranoside (1e), midecamycin
2′-O-rhamnoside (1f) and midecamycin 2′-O-acetylglucosamine (1g) (Figure 3). However,
more evidences are still needed to determine the exact structure of these monoglycosides.
Hence, OleD was demonstrated to glycodiversify midecamycin, attaching five sugar moi-
eties including glucosyl, xylosyl, galactosyl, rhamnosyl and N-acetylglucosamine (GlcNAc)
at 2′-OH, respectively (Figure 3A). OleD displayed distinct catalytic efficiencies towards
these donors (Figure 3B). The conversion of UDP-Glc was the highest, approaching to
91.3%. OleD had low catalytic efficiency for other four donors. The conversion of UDP-Xyl
was only 27%, while those of UDP-Gal, UDP-Rha and UDP-GlcNAc were lower, giving
3.96%, 7.62%, 4.56%, respectively (Figure 3B). It was difficult to collect enough amounts
of glycosylated products 1c, 1e, 1f and 1g for activity evaluation due to the low conver-
sions. Hence, protein engineering of OleD based on homology modeling was performed
with the aim to improve its catalytic efficiency towards UDP-Xyl, UDP-Gal, UDP-Rha or
UDP-GlcNAc.

GlcNAc and 2-deoxy-2-fluoroglucose are derivatives of glucose. Moreover, the com-
plex of UGT72B1 (a GT displaying similar structure with that of OleD) and UDP-2-deoxy-
2-fluoroglucose (U2F) could provide a reference for homology modeling of OleD with
UDP-GlcNAc [57]. Hence, we put the emphasis on the enhancement of the conversion of
OleD towards UDP-GlcNAc.
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2.4. Protein Engineering of OleD to Enhance Its Catalytic Efficiencies

The complex of OleD with U2F was obtained through the alignment and superposition
with wild type OleD (PDB ID: 2IYF) and UGT72B1 (PDB ID: 2VCE). Next, the fluoride ion
at C-2 of glucose moiety in U2F was replaced with N-acetyl group to yield a complex of
OleD with UDP-GlcNAc. As observed from the modelled complex structure of OleD with
UDP-GlcNAc, the residue Gln331 in OleD formed hydrogen bond with the O3 of GlcNAc,
suggesting the critical interaction of a sugar donor with OleD (Figure S15). Gln331 was a
component of the strictly conserved signature Glu/Asp-Gln (E/D-Q) and no mutations
were therefore performed on this residue [41,57,58]. We focused on amino acids less than
5Å away from Gln331, such as Gln327, Val329, Asp330 and Phe332, which might affect
the binding of Gln331 to glycosyl donors (Figure S15). Alanine-scanning mutagenesis of
these four residues was thus performed. Four alanine mutants of OleD, namely Q327A,
V329A, D330A and F332A, were yielded and their catalytic activities towards UDP-GlcNAc,
UDP-Xyl, UDP-Gal, UDP-Rha and UDP-Glc were measured. Q327A variant displayed an
improved activity towards UDP-GlcNAc. Conversely, the catalytic activity of the mutant
D330A towards the five donors was lost completely. Hence, the residue Q327 was selected
for further saturation mutagenesis (Figure S16).
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Saturation mutation on Q327 was performed and 19 recombinant OleD mutants were
thus induced to express in E. coli (Figure S17). Each of these crude mutants was used as
the biocatalyst to incubate with midecamycin and UDP-GlcNAc, UDP-Xyl or UDP-Glc,
respectively. As illustrated in Figure S18C, the UDP-GlcNAc conversions of 16 mutants
increased while the other three mutants, Q327D, Q327E and Q327P, decreased. The most
notable increase in UDP-GlcNAc conversion occurred in Q327F mutant. The UDP-GlcNAc
conversion of Q327F reached 30.7%, eight times higher than that of the wild OleD (3.6%).

The UDP-Xyl conversion of these variants was also measured (Figure S18B). The
conversion of 12 variants towards UDP-Xyl increased, while the other seven obtained a
decreased conversion towards UDP-Xyl. The conversion of Q327D and Q327P towards
UDP-Xyl decreased significantly. Specifically, the conversion of Q327D declined below 5%
while the catalytic activity of Q327P was lost completely. Of 12 mutants with increased
activity, Q327I obtained the highest conversion of 46.5% towards UDP-Xyl (Figure S18B),
33% more than that of wild OleD (34.9%).

In addition, the conversion of these variants towards UDP-Glc was also determined
(Figure S18A). Of these 19 variants, the conversion of Q327D towards UDP-Glc decreased
to 50%, while the catalytic efficiency of Q327P towards UDP-Glc was lost completely. The
other 17 mutations at Q327 residue led to an insignificant variation of OleD activity towards
UDP-Glc (Figure S18A). Cumulatively, Q327 residue was a favorable site to improve the
conversions towards UDP-GlcNAc. The saturation mutations at Q327, however, did not im-
prove the conversion significantly towards UDP-Xyl and UDP-Glc. Thus, the measurement
of more residues is required so as to obtain favorable variants with improved conversions
towards UDP-Xyl and UDP-Glc. Considering that saturation mutation of Q327 could
only significantly increase the conversion towards UDP-GlcNAc, the effects of saturation
mutation of Q327 on the conversions towards UDP-Gal and UDP-Rha were thus not tested.

In order to further verify these results, five Q327 mutants ranking first to fifth in UDP-
GlcNAc conversion were purified (Figure 4A). The concentrations of these purified enzymes
were 62.03 (Q327F), 82.52 (Q327H), 99.57 (Q327M), 67.26 (Q327R) and 89.91 mg/mL (Q327W),
respectively, and were used as biocatalysts to react with midecamycin and UDP-GlcNAc
(Figure 4B). The conversions of these mutants towards UDP-GlcNAc increased significantly.
The highest conversion occurred on Q327F variant, reaching 34.13 ± 1.55% (Figure 4).

The wild type OleD and its variants Q327I and Q327F were used as the biocatalysts for
scale preparation of midecamycin 2′-O-glucopyranoside, midecamycin 2′-O-xylopyranoside,
and midecamycin 2′-O-acetylglucosamine, respectively. These enzymatically synthesized mide-
camycin 2′-O-glycosides were then used to test their water solubility and biological activities.

2.5. Water Solubility of Midecamycin 2′-O-Glucopyranoside

Glycosylation modifications usually increase the water solubility of compounds.
This notion was further confirmed by the fact that the water solubility of midecamycin
2′-O-glucopyranoside was greater than that of midecamycin. The water solubility of the
enzymatically synthesized midecamycin 2′-O-glucopyranoside was 8.62 mg/mL, 11 times
higher than that of midecamycin (0.74 mg/mL).

2.6. Antimicrobial Activities of Midecamycin 2′-O-Glycosides

As shown in Table 3, the MIC values of midecamycin against Bacillus intestinalis strain
T30, B. subtilis strain 168, Staphylococcus aureus and Streptococcus pneumoniae were 0.5, 1, 1
and 0.25 µg/mL, respectively, suggesting midecamycin exhibited potent antibacterial activ-
ities. Three midecamycin 2′-O-glycosides, however, displayed no antibacterial activities
against the tested microorganisms listed in Table 3, even if the maximum concentration of
these glycosides reached 64 µg/mL. The midecamycin inactivation caused by glycosylation
might be due to the configuration change of midecamycin, which in turn prevented the
binding of midecamycin to its target [41]. More evidences are required to analyze the exact
mechanism underlying the resistance to midecamycin by glycosylation.
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Table 3. Antimicrobial activity of midecamycin 2′-O-glycosides against microorganisms.

Strain
MIC (µg/mL)

Midecamycin 1a 1c 1g

Bacillus intestinalis strain T30 0.5 — — —
Bacillus subtilis strain 168 1 — — —

Staphylococcus aureus 1 — — —
Streptococcus pneumoniae 0.25 — — —

Pseudomonas aeruginosa PAO1 — — — —
Escherichia coli DH5α — — — —

3. Discussion

Antibiotic resistance is one of the biggest threats to human health and food security.
The infections of humans or animals caused by antibiotic-resistant bacteria will increase
mortality and medical costs. Understanding more about the resistance mechanisms will
be helpful for better treatment of infections caused by antibiotic-resistant bacteria. Glu-
cosylation inactivation is one of the important resistance mechanisms [24–37]. However,
if other glycosylation modifications will inactivate antibiotics is not clear. Herein, we took
macrolide antibiotic midecamycin as the research object and demonstrated that besides
glucosylation, other glycosylation modifications could cause antibiotics inactivation for the
first time.

This work has at least three contributions to the new cognition in this field. First, this
study provided a novel mechanism for midecamycin inactivation. Midecamycin is an
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important macrolide antibiotic. The research on its inactivation mechanism contributed to
the comprehensive understanding of macrolide resistance. In this manuscript, we convinc-
ingly demonstrated glycosylation inactivation was a novel mechanism of midecamycin
resistance, which broadened the understanding of midecamycin resistance.

Second, we demonstrated that glycosylation inactivation of midecamycin was inde-
pendent of the type of attached sugar moieties at its inactivation site. Varied glycosylation
modifications, including glucosylation, xylosylation and O-GlcNAcylation, could inacti-
vate midecamycin, suggesting varied glycosylation modifications at the same inactivation
site could lead to antibiotic resistance.

Finally, O-GlcNAcylation improvement of midecamycin was achieved in this investi-
gation. The wild OleD displayed a low O-GlcNAcylation efficiency towards midecamycin,
which limited the scale preparation of midecamycin 2′-O-acetylglucosamine. The protein
engineering was performed to enhance the O-GlcNAcylation efficiency of OleD. The residue
Q327 was identified as the key amino acid regulating O-GlcNAcylation of OleD. Q327F was
determined as the most favorable OleD variant with seven times conversion enhancement
towards UDP-GlcNAc. These data provided a reference for activity improvement of other
modifying enzymes.

The facts convincingly demonstrated that varied glycosylation modifications, including
glucosylation, xylosylation and O-GlcNAcylation could inactivate midecamycin. Besides
glycosylation modifications, the resistance to midecamycin could also be achieved by the
combinational modification of phosphorylation of 2′-OH and reduction at the 18-formyl
group (18-dihydro-2′-O-phosphorylmidecamycin) [34,35]. These evidences suggest that
multiple modifications at 2′-OH can cause midecamycin inactivation. Hence, 2′-OH is a
key determinator for midecamycin activity. 2′-OH of the desosamine moiety, which locates
at C5 position of midecamycin and some macrolides, can make specific hydrogen bond in-
teraction with the nucleobase of A2058 of the 23S rRNA, thereby facilitating the occupation
of macrolide drugs in the nascent peptide exit tunnel. The glycosylation at 2′-OH might
blocked the binding between the desosamine hydroxyl and the N1 atom of A2058, thus
leading to macrolide resistance [18,59]. We demonstrated the glycosylation inactivation
occurred in midecamycin herein. Still, more evidences are required to determine the exact
action mechanism of glycosylation inactivation.

Glycosylation inactivation had been explored comprehensively in S. antibioticus, the
producer of the well-known macrolide oleandomycin [28–31,43]. An array of GTs capable
of glycosylating macrolides had been identified, suggesting macrolide-inactivating GTs
might exist extensively in antibiotic-producing organisms [28–31,43,51–53,60]. An OleD
isoenzyme might exist in the midecamycin-producing species S. mycarofaciens [61]. Further
study on this glycosyltransferase will help to understand the inactivation mechanism of
midecamycin glycosylation. Cumulatively, this investigation will thus lay a foundation for
the mechanism clarification of macrolide resistance and the development of GT inhibitors
as drugs.

4. Materials and Methods
4.1. Chemicals

Midecamycin (1) was purchased from Yuanye Bio-Technology Co., Ltd. (Shanghai,
China). The compounds listed in Figure S8 were used as glycosyl donors for glycosylation
reactions. These donors were obtained from Sigma-Aldrich Co. LLC (St. Louis, MO, USA),
Yuanye Bio-Technology Co., Ltd., J&K Scientific Ltd. (Beijing, China), and Qiyue Biological
Technology Co.,Ltd (Xi’an, China), respectively. Acetonitrile and methanol were obtained
from MREDA (Beijing, China). Other chemicals and reagents were of analytical grade.

4.2. Plasmids and Strains

The E. coli strains Trans1-T1 and BL21 (DE3) (TransGen Biotech, Beijing, China) were
used as the hosts for the plasmid amplification and heterologous expression, respec-
tively. The genes encoding DesVII (accession No. AAC68677.1) [62], OleD (accession No.
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WP_063854495.1) [40], SpnP (accession NO. AAG23277.1) [63] and Srm29 (accession No.
QBG49784.1) [7] were synthesized in Taihe Biotechnology (Beijing, China). The synthetic
oleD gene was inserted between BamH I and EcoR I sites of pET-His (Figure S19), while
the other three genes were cloned into pColdTF (Takara Bio (Dalian) Co. Ltd., Dalian,
China) at the Xho I and Hind III sites to obtain their respective expression vectors (Table S1).
The recombinant plasmids were constructed using seamless assembly cloning kit (CloneS-
marter Technologies Inc., Houston, TX, USA). The primers used in plasmids construction
were listed in Table S2. The authenticity of these recombinant plasmids was verified by
direct sequencing.

4.3. Protein Expression and Purification

A single colony containing an expression plasmid was grown in 10 mL LB medium
supplemented with a final concentration of 0.1 mg/mL ampicillin at 37 ◦C for 6–8 h. Next,
3 mL cultures were removed and transferred into 300 mL fresh LB medium containing
appropriate ampicillin for large-scale cultivation. When the OD600 of the cultures reached
0.6–0.8, isopropyl-β-D-thiogalactopyranoside (IPTG) was added with a final concentration
of 0.2 mM to induce expression of pETHis-OleD. As for pColdTF-derived plasmids, there
was a 30-min rest period at 15 ◦C prior to 0.2 mM IPTG induction. The cultures continued
to grow at 18 ◦C for additional 20 h after IPTG addition. The cell pellets were collected
by centrifugation at 10,625× g and resuspended in PBS buffer (20 mM, pH 8.0). The cells
were sonicated, and the supernatant was collected by centrifugation at 10,625× g and
4 ◦C for 2 min. The protein expressions were analyzed by the sodium dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE), and purified using Ni-Agarose Resin
(CoWin Biotech Co., Ltd., Beijing, China). The concentration of the purified proteins was
determined using Nano-300 Micro-Spectrophotometer (Hangzhou Allsheng Instruments
Co., Ltd., Zhejiang, China).

4.4. Glycosylation Assays

The glycosylation assays were performed in 100 µL PBS buffer (20 mM, pH 8.0)
containing 1 mM sugar donor, 1 mM midecamycin (dissolved in DMSO) and 200 µg of
a purified GT. After incubated at 37 ◦C for 2 h, the reactions were terminated by adding
the equal volume of methanol and 5 µL glacial acetic acid. The reaction mixtures were
separated by centrifugation at 10,625× g for 10 min. The resultant supernatants were
filtered through 0.22 µm filter and directly monitored by HPLC and HPLC-MS with a
C18 column (SilGreen C18, 250 mm × 4.6 mm, 5 µm). The mobile phase consisted of
solvent A (10 mM ammonium acetate, pH 8.0) and solvent B (acetonitrile, HPLC grade),
with a flow rate of 1.0 mL/min for 35 min. The concentration of solvent B was 10–90%
(from 0 to 35 min). The conversion rate (%) was calculated by dividing the peak area of
the glycosylation product by the sum of the peak areas of the product and the remaining
substrate. The high resolution electrospray ionization mass spectroscopy (HR-ESI-MS) and
nuclear magnetic resonance (NMR) data were recorded as described previously [64].

4.5. Condition Optimization for OleD-Catalyzed Reactions

The effects of pH and temperature on OleD-catalyzed glucosylation towards mide-
camycin were explored. The pH dependence of OleD-catalyzed glucosylation was tested in
varied buffers including citric acid/sodium citrate buffer (10 mM, pH 3.0–5.6), PBS buffer
(20 mM, pH 7.0–8.0) and Na2CO3-NaHCO3 buffer (10 mM, pH 9.0–12.0). All reactions
were incubated at 37 ◦C for 2 h.

The effect of temperature was measured on the optimal optimum Na2CO3-NaHCO3
buffer (10 mM, pH 9.0). Reactions were measured at different temperatures (0, 10, 20, 30,
37, 50, 60, 70 ◦C) for 2 h.

Kinetic characteristics were tested under the optimal pH and temperature, using differ-
ent concentrations of midecamycin (0.002–2 mM) and UDP-Glc (0.004–4 mM). Non-linear
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regression calculations were used to directly determine the apparent kinetic parameters
(Km and Vmax) by GraphPad Prism 7.0.

4.6. Molecular Docking of Ligands with Proteins

Molecular docking of OleD with UDP-GlcNAc was performed using the same proce-
dures as described by Gantt et al. [57].

4.7. Directed Mutations of OleD

Using pETHis-OleD plasmid as the template, the directed mutation of OleD was
performed in the 2×TransStart® FastPfu RCR SuperMix according to the direction of the
manufacturer (TransGen Biotech.). The primers for OleD mutations were summarized in
the supporting Table S2. Cloning mutant products were verified using sanger sequencing.
The procedures for protein expression, purification, and glycosylation assays were the
same as mentioned above.

4.8. Water Solubility Assay

The water solubility of midecamycin and midecamycin 2′-O-glucopyranoside was
detected using miniaturized shake-flask solubility method [65]. Specifically, midecamycin
and midecamycin 2′-O-glucopyranoside were added into 100 µL ddH2O until turbidity
appeared, respectively. After ultrasonic treatment for 30 min, the two mixtures were
allowed to stand at room temperature for 3 h. Next, the mixtures were separated by the
centrifugation at 10,625× g for 30 min, and the resulting supernatants were filtered with
0.22 µM filter membrane. The concentration of filtrate is determined by HPLC.

4.9. Evaluation of Antimicrobial Activity of Midecamycin 2′-O-Glycosides

The determination of antimicrobial activity of midecamycin and its glycosides were
based on their minimum inhibitory concentrations (MICs) against the tested microorgan-
isms. The MICs of midecamycin 2′-O-glycosides were measured using the broth microdi-
lution procedure described previously [66]. Briefly, the cell suspensions of these tested
microorganisms were prepared from a 24 h-culture using LB liquid medium (BHI medium
for S. pneumoniae). The serial dilutions of midecamycin and its glycosides were made using
the corresponding mediums in serially decreasing concentrations from 64 µg/mL. The
same amount of diluent and bacterial solution (usually 200 µL each) were added to 96 well
plate and incubated at 37 ◦C overnight. The OD600 of each well was recorded and the
lowest concentration that inhibited bacterial growth completely was defined as MIC values
of midecamycin 2′-O-glycosides.

5. Conclusions

Glucosylation inactivation is one of commonly-accepted resistance mechanisms on
antibiotics. Still, the effect of other glycosylation modifications, such as xylosylation and
O-GlcNAcylation, on macrolide inactivation is unclear. Herein, we demonstrated that
besides glucosylation inactivation, other glycosylation could inactivate macrolide antibi-
otics, deepening the understanding on glycosylation inactivation of antibiotics. In addition,
glycosylation modification has been proved to be a new mechanism of midecamycin resis-
tance. Moreover, glycosylation inactivation of midecamycin was independent of the type
of attached sugar moieties at its inactivation site. These data contribute to the in-depth
understanding of the resistance mechanism and lay a foundation for the development of
glycosyltransferase inhibitors.
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