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Abstract

With cutting-edge live microscopy and image analysis, biologists can now systematically

track individual cells in complex tissues and quantify cellular behavior over extended time

windows. Computational approaches that utilize the systematic and quantitative data are

needed to understand how cells interact in vivo to give rise to the different cell types and

3D morphology of tissues. An agent-based, minimum descriptive modeling and analysis

framework is presented in this paper to study C. elegans embryogenesis. The framework

is designed to incorporate the large amounts of experimental observations on cellular

behavior and reserve data structures/interfaces that allow regulatory mechanisms to be

added as more insights are gained. Observed cellular behaviors are organized into lineage

identity, timing and direction of cell division, and path of cell movement. The framework

also includes global parameters such as the eggshell and a clock. Division and movement

behaviors are driven by statistical models of the observations. Data structures/interfaces

are reserved for gene list, cell-cell interaction, cell fate and landscape, and other global

parameters until the descriptive model is replaced by a regulatory mechanism. This

approach provides a framework to handle the ongoing experiments of single-cell analysis

of complex tissues where mechanistic insights lag data collection and need to be validated

on complex observations.

Introduction

Recent breakthroughs in light microscopy have opened new doors to study complex tissues

in vivo at single-cell resolution. With genetically encoded fluorophores, 3D time-lapse imag-

ing has provided unprecedented temporal and spatial resolution to observe cellular dynam-

ics in diverse organisms. The recordings often contain hundreds to thousands of cells over
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hours to days of development, with sub-cellular spatial resolution and second- to minute-

level temporal resolution. Such images offer cellular level systems analysis. How to utilize

the complex information, however, in the large image series still presents a significant

challenge.

In organisms such as the Nematode C. elegans, which is amenable to large-scale imaging

and genetic experiments, systematic single-cell analysis has led to the highly desired quanti-

tative measurement of cellular behaviors and unparalleled opportunities for such studies [1,

2]. During the first few hours, the embryo undergoes several rounds of cell division to gener-

ate hundreds of cells. Based on 3D time-lapse imaging, the entire cell lineage can be automat-

ically traced to this stage, with every cell tracked through its movements and cell division.

Quantitative measurements can be made on every cell to characterize its developmental

behavior [3–6]. Most recently, this has led to over 4,000 measurements per embryo in terms

of tissue type, proliferation (cell cycle length) and migration [7]. Furthermore, lineage analy-

sis has been combined with systematic genetic perturbation. A recent study analyzed the loss

of function phenotypes of genes that are essential for embryogenesis and generated a multi-

scale model that contains a number of cell fates and cell-specific gene networks that regulate

cell fate differentiation [2, 8]. Clearly, computational synthesis is required to understand the

developmental mechanisms revealed by such complex data and to generate testable

hypotheses.

Agent-based modeling (ABM) [9] is a powerful approach to study systems consisting of

self- and environment-ruling, interacting agents [10–13], and it is well suited for multi-scale

analysis of complex tissues and development. A desired framework would include players at

multiple scales, namely how genes interact to give rise to cellular behavior and how cells inter-

act to give rise to an organism. An ABM framework for complex tissues typically includes

three scales: molecules (genes), cells, and tissues, in which agents represent interacting individ-

ual cells. Behaviors of an agent are controlled by inherited biological information: known

actions of gene; intercellular signals, physical limitations, environment factors and external

interference; or statistical models based on experimental measurements if the underlying

molecular mechanism is not known. Emergent properties, such as coordinated generation of

the cell types and tissue morphology, can be examined by simulating gene actions and cell

interaction. Among the earlier ABM-related approaches, the Cellular Potts Model (CPM) [14,

15] and statecharts [16–19] are two representative ones that are worth noting. These models

effectively simulate certain kinds of cell behavior, such as morphology, tissue development,

and organogenesis. Such models focus on examining known/prescribed mechanisms, and are

not aimed at, or even capable of handling, large amounts of observational/phenomenological

data from the live microscope and 3D time-lapse imaging.

These considerations lead to our design and implementation of an observation-driven

ABM framework for C. elegans embryogenesis, in which related fundamental aspects are

included, such as lineage identity, cell fate, cell division timing and direction, and cell move-

ment pathway. The framework incorporates large amounts of observational/phenomenologi-

cal data until they are replaced by regulatory mechanisms to deal with the scenario where

regulatory mechanisms lag data collection and potential mechanistic insights need to be exam-

ined against complex phenomena. Consequently, what is achieved and validated in this paper

is a simple/clean way to (1) capture observational data with statistic models and (2) generate

system level results (lineage, morphology). The rest of this paper is organized as follows: a

multi-scale modeling and analysis framework, based on agent-based modeling concepts, is

first described in the next section. Then the framework is validated using the observational C.
elegans datasets, and results are analyzed. At the end of the paper, further model enhancements

and computational experiments are discussed.

Agent-Based Modeling for C. elegans Embryogenesis
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Methodology

In recent years, many platforms for agent-based modeling have emerged to achieve specific

goals, such as NetLogo [20], FLAME [21], MASON [22], Repast [23], and others. NetLogo is

used in this study because NetLogo is straightforward in implementing the agent-based model-

ing concept for cell development. With its own syntax and grammar, as well as a friendly

graphical interface, NetLogo is very easy to use, meaning that we can setup, run, and observe

models without writing codes with complicated programming languages. A number of built-

in models related to biology can greatly help our current model. Moreover, NetLogo supports

3D modeling, which is appropriate for simulating morphogenesis of tissues. Also, the built-in

visualization provides useful tools for model verification. NetLogo’s main problem is its lack of

speed [24], but this is not an issue at current scope of the project. Therefore, NetLogo is an

appropriate choice of platform. The ODD (overview, design concepts, and details) protocol

[25] is used to describe our model below.

Overview

The following sub-sections present a brief description of the framework, including the purpose

of this simulation, key variables used for constructing the model, and the overall framework.

Details are then provided in the “Detail” sub-section.

Purpose. The long-term goal of this study is to provide a general platform to incorporate

experimental data at the molecular and cellular levels to examine emergent properties of C. ele-
gans embryogenesis. The purpose of the current study is to provide a basic implementation

that can be extended to incorporate complex experimental data. In this regard, the eggshell,

body axes and the lineage (mother-daughter relationship) are implemented to provide the

foundation to describe embryogenesis. The implementation of cellular behaviors is limited to

cell division and cell migration, and each behavior is controlled by a statistical model (mean

and standard deviation) instead of through gene networks. The goal is to provide timely vali-

dation of the overall design and implementation. Different tools are also implemented to plot

and visualize the results of simulation and examine the key temporal and spatial features of the

simulated embryo.

State variables and scales. In order to simulate cell behaviors during development, two

kinds of parameters are defined in advance: (1) attributes of the agent (cells in the framework);

and (2) environmental parameters, such as spatial and temporal scales. The variables used in

each category and a brief description of each variable are provided in Tables 1 and 2,

respectively.

Process overview and scheduling. Our ABM framework for C. elegans embryogenesis

contains agents corresponding to the exact number of cells from the 4-cell to 350-cell stage, as

well as the mother-daughter relationships between cells known as the cell lineage. The current

implementation includes three behaviors for each cell: cell-cycle length, the direction in which

the cell divides, and its migration paths. Each of these behaviors is modeled based on statistical

measurements in the wild-type embryo [7]. The model also includes an ellipsoidal eggshell

and three body axes of the embryo.

On a higher level, our model can be divided into two processes (Fig 1): (1) the “setup” pro-

cess and (2) the “execution” process (including a “movement” activity and a “division” activ-

ity). The setup process establishes the environment in which cells live and initializes a cell’s

state such as nuclear size and coordinates. This will be further described in the “Initialization”

section.

The “execution” phase is further divided into two biological stages, namely the interphase

stages and mitosis for each cell cycle [26]. During the interphase, a cell moves in the ellipsoidal
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eggshell. The movement is controlled by several conditions of the environment and attributes

of the cell itself. During mitosis, a cell divides. Two new cells are generated and initialized,

replacing the old parent cell. The timing and direction of the division are controlled by attri-

butes of the cell (see Table 1). As time goes by, the model continuously checks whether a cell is

in the ellipsoidal eggshell, whether it is at the movement stage or enters the division stage, and

implements the right actions. Detailed descriptions of each activity are provided in the “Sub-

models” sub-section.

Design concepts

A number of general concepts in ABM apply to this framework for C. elegans embryogenesis.

The fundamental goal of this agent-based C. elegans modeling framework includes under-

standing how cells become the appropriate cell type and find their appropriate positions

through cell-cell interactions. The objectives of a cell include becoming the appropriate type

and moving to the appropriate position based on the type and position of its neighbors. In the

current implementation, a cell’s type is modeled as its lineal identity. In wild-type embryogen-

esis, a cell’s type equates with its lineal identity. At each time point, a cell adapts the direction

of its movement based on its current position relative to the destination, moves to the next

location, and continuously checks the division timing with appropriate stochasticity built into

it. The model is designed to regularly output the agent’s status in standard data format. Such

information is further used to validate the model by comparing it with observational data.

Details

Initialization. The overall initiation of the simulation is achieved through a “setup” but-

ton in NetLogo. It triggers the import of various inputs that are derived from observational

Table 2. Environmental variables used in model.

Variable Name Brief Description

divCycleTime Division cycle time of a cell, the default value is 90 s.

outTimeResolution Time interval for output information of cell’s status, the default value is 60 s.

inEllipsoid Used to determine if the cell is in a limited space of environment.

doi:10.1371/journal.pone.0166551.t002

Table 1. Agent variables used in model.

Variable Name Brief Description

name Used for keeping track of a cell when looking up division directions; grabbed

when cell divides from division direction file.

cellSize Size of the cell, may change as time goes by or through division.

divTime Contains time at which the cell divides in seconds; calculated during the

divide function.

stdDev Standard deviation of cycle length; read in from given time table and used in

calculating divTime.

divX, divY, divZ Holds division direction unit vector; calculated during divide function.

divTick Used to determine if the cell is in its division cycle or in normal migration.

xCor, yCor, zCor Hold the current X, Y and Z coordinates of a cell.

cellMoveX, cellMoveY,

cellMoveZ

Hold the X, Y and Z coordinates of the next place that the cell will move to.

cellTargetX, cellTargetY,

cellTargetZ

Long term target of cells. Hold the X, Y and Z coordinates of the destination

that the cell will move to.

doi:10.1371/journal.pone.0166551.t001
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data (see the “Input and output” section) and sets the timer. Most specifically, four initial cells

are hatched by the following procedures:

1. Set the name, size and original location (the X, Y, Z coordinates) for each cell.

2. Arrange a new color for every current cell in order to distinguish their later generations

from other initial parents and their offspring.

3. Import divTime and the standard deviation.

4. Set the division direction (divX, divY, divZ) and make divTick temporarily unavailable.

5. Import the target destination (cellTargetX, cellTargetY, cellTargexZ) and calculate the next

location (cellMoveX, cellMoveY, cellMoveZ) for current cell.

6. If there exist other cell(s) to be hatched, go to step 1.

Input and output. To achieve the goals of the cell development simulation, three groups

of data are introduced at the current stage. The “timeTable” holds an index of all cells by their

names, time points and durations of division, along with their standard deviations, respec-

tively. A “dirTable” is introduced for keeping names of cells and their two daughters. Also,

there are three other parameters recording the movement directions of the newly hatched

cells. Finally, a “positionTable” is always necessary for maintaining every cell’s destination

target.

In Table 3, a brief description and example of each parameter are given.

Fig 1. High level representation of framework. Two processes in the the framework, namely “setup” and

“execution”. The “execution” process is further divided into a “movement” and a “division” activity.

doi:10.1371/journal.pone.0166551.g001
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For the output, to establish a standard form for not only the current simulation, but further

research as well, the data is organized as a format including 20 fields. In such format, mother-

daughter relationship is coded in the first four columns: Column 1 represents an arbitrary

index for a cell, specific to the time point. Column 2 is the index of the corresponding cell at

the previous time point, either the cell itself or its mother, and −1 means NULL. Columns 3

and 4 are introduced as indices of the corresponding cell(s) at the next time point, either the

cell itself or its two daughters. When the cell is not dividing, column four is set to −1. Columns

5 to 10 provide the x, y, z coordinates, diameter and name of a cell, respectively. Columns 11

to 20 are unused for current simulation, but will be used for further research. They are set to 0

except Column 15 is left blank.

An example of output data format is given in Table 4 for intuitive understanding.

The parameter “outTimeResolution” (see Table 2) functions as controlling the output inter-

val of the standard format data. In our model, the default value is 60 seconds.

Sub-models. As previously mentioned in the section “Process overview and scheduling”

section, behaviors of the agents are divided into two activities: movement and division. Each is

described in detail below.

In the “movement” process, a cell moves to its target destination, where the next division

takes place. To achieve this goal, two kinds of calculation of the cell’s location are imple-

mented. (1) When a cell is just divided into two single ones, the primary thing is to split the

two cells completely, without any overlap. In our model, we set the variable divCycleTime to

90 seconds for this process. (2) After that, the cell’s next location is calculated based on the dif-

ferences between current time and cell’s division time (divTime), current location and its

Table 4. Example of output data format.

Variable Name M-D relationship x,y,z coordinates diameter Name Column 11–20

Example 1, 1, 1, 1, -1 48, -121, 4 78 ABp 0, 0, 0, 0, 0, 0, 0, 0, 0

doi:10.1371/journal.pone.0166551.t004

Table 3. Input parameters of each table and example values.

Parameters Brief Description Example

timeTable

Tname Names of every cell, appear to be an index. “ABal”

divTime Time point when the certain cell divide 41.8

divStdDev Standard deviation of divTime, may be “-1” if it is not

available.

0.6

cycleTime Duration of division of certain cell. 14.8

cycleStdDev Standard deviation of cycleTime, may be “-1” if it is not

available.

0.6

dirctionTable

parent Names of every parent cell, appear to be an index. “ABa”

daughter1 New generated cell. “ABal”

daughter2 The other new generated cell, moves opposite to

daughter1.

“ABar”

dirX, dirY, dirZ 3-D movement direction of daughter1. (0.285, -0.547,

0.686)

positionTable

Pname Names of every cell, appear to be an index. “ABal”

targetX, targetY,

targetZ

Coordinate of certain cell’s destination. (-10.371, 0.649,

2.536)

doi:10.1371/journal.pone.0166551.t003
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target destination. Eqs (1) and (2) are introduced to achieve such calculations Finally, we

check whether each cell is still in the eggshell. The whole process of “movement” activity is

shown in Fig 2.

cellMove ¼ ðcorþ ððdiv� cellSize=2Þ=ðdivCycleTimeÞÞÞ; ð1Þ

where cellMove = [cellMoveX, cellMoveY, cellMoveZ], cor = [xcor, ycor, zcor] represents the

current coordinates of a cell, and div = [divX, divY, divZ].

cellMove ¼ ðcellTarget � corÞ=ðdivTime � ticksÞ; ð2Þ

where cellTarget = [cellTargetX, cellTargetY, cellTargetY] and ticks represents the current time.

When it is time for division, information on the cell to be divided is temporarily saved for

further potential usage. After that, two new daughter cells are generated, replacing the old par-

ent one. In the current simulation, new cells are named by finding out their parents’ names in

dirTable, and then obtaining the corresponding daughters’ names (see Table 3). Also, division

directions are extracted from dirTable and transmitted into the cells’ attributes dirX, dirY and

dirZ, which are used for the direction setting. DivTick, representing the current status of a cell,

should be reset and goes into the next cycle. This operation helps to determine whether a cell

is dividing, that is, separating into two halves, or has divided, and then to choose a correspond-

ing method (see Eqs (1) and (2)) to calculate its next location in the “movement” activity.

When this is done, information on division time point and duration from the timeTable is

extracted, and a new divTime for cells are recalculated by adding random disturbances based

on their standard deviations. Finally, destination target coordinates for the cell are obtained by

indexing its name in positionTable. The whole process is shown in Fig 3.

Fig 2. Movement activity of the model.

doi:10.1371/journal.pone.0166551.g002
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Results and Discussion

Model validation strategies

The long-term objectives and potential research implications of this project aim to allow biolo-

gists to generate testable hypotheses about cell development. The short term objectives are

complete verification, to confirm that the framework is properly built.

We use a MATLAB application to verify the division cycle movement, by comparing the

standard format output simulation data with the observational data. The MATLAB application

used is named Dev-scape, which is an open source software that was first presented in [7]. The

software package provides a comprehensive analysis of a cell’s differentiation, proliferation

and morphogenesis at single-cell resolution. Input for Dev-scape is exactly the standard format

output file of NetLogo. All the text or graphic information for validation, such as cell cycle,

division time, and others, will be outputted for further analysis. Besides Dev-scape, we also use

Fig 3. Divide activity of the model.

doi:10.1371/journal.pone.0166551.g003
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Java for the visualization of cell lineage tree, and POV-Ray [27] to analysis the cell migration

process. Inputs for the above two validations are also obtained from Dev-scape.

Specifically, two main points of verification are introduced for the current stage of simula-

tion, division cycle movement, and cell migration.

Computational experiments

Quantifying division timing is relatively simple, since every sixty seconds, the program outputs

standard format data, from which the number of cells at current time point can be counted. A

curve that presents the number of cells over time is created as we continuously track this value.

Theoretically, the number of cells is rigorously limited by the division time and its standard

deviation in the framework. As a result of this assertion, simulation results outputted from

simulation should not show a large difference as compared with observational data.

Number of cells in embryo overtime is properly modeled. From Fig 4 we can see that

the two curves, representing the number of cells in the embryo from simulation and observa-

tion, respectively, largely overlap with each other, except that a few intervals have some slight

deviation. This makes sense since for better recurring realistic situations, we add a random dif-

ference to the division time of each cell based on their statistical standard deviations.

Systematic and quantitative analysis of the result is implemented by utilizing root-mean-

square error (RMSE) to measure the deviation between simulation and observational data

(Eq (3)).

s ¼

ffiffiffiffiffiffiffiffiffiffiffiP
d2

i

n � 1

r

; i ¼ 1; 2; 3; :::; n; ð3Þ

where n is the number of measurements, and di is the deviation between simulation and

observational data.

The number of cells in an embryo over time is sampled every 5 minutes from both simula-

tion result and observational data. If data is missing at the minute multiple of 5, the nearest

minute with data for both cases is chosen as the sampling point. Because of the frequent divi-

sions of cells during some time intervals (especially 100 to 140 min), and the limited output

Fig 4. Number of cells in embryo over time. Figure shows the number of cells in the simulation/real embryo from the beginning to *180

minutes, from 4-cell stage to *180-cell stage.

doi:10.1371/journal.pone.0166551.g004
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resolution (60 s in this case), when the above two sampling rules cannot be met, we select the

point with minimum time difference between simulation result and observation data instead

of an approximate estimation (see Table 5).

From the result we find that the deviations increase when the number of cells increases rap-

idly, especially the interval between 100 and 140 minutes. For the other time intervals, the

deviations are relatively small. With Eq (3), we calculate that the RMSE σ for this case is 2.491.

The immediate follow-up efforts are to (1) optimize the “movement” and “division” function

to reduce the RMSE σ, and (2) substitute statistical models with regulatory mechanisms to

approach the RMSE we obtain here.

Simulation generated cell lineage tree and cell cycle length of founder cells during C.
elegans early embryogenesis show consistencies with those from wild-type embryo. A cell

lineage tree drawn from simulation data is also provided (see Fig 5). The shape of this lineage

tree intuitively describes every cell’s division timing, as well as different paces of cell divisions

in their sublineages. We compare the simulation result with the cell lineage tree of wild-type

embryos [28], and the large extent of similarity validates that division timing of each cell in

simulation conforms to the situation of wild-type embryos. Also, consistency in the shape of

both trees,where two sister cells show different paces of cell divisions in their sublineages, vali-

dates the correctness of body axes and cell naming.

Table 5. Number of cells in embryo over time sampled every 5 minutes from simulation and observational data.

Sampling point Simulation result Observational result Deviation Sampling point Simulation result Observational result Deviation

5 4 4 0 85 51 55 4

11 6 7 1 89 54 55 1

16 8 8 0 97 87 88 1

20 8 8 0 100 87 88 1

25 12 12 0 104 87 92 5

31 14 15 1 112 96 97 1

35 15 15 0 115 99 97 2

41 24 24 0 120 103 100 3

45 24 24 0 124* 107 111 4

49 24 26 2 132** 154 162 8

55 26 28 2 140*** 176 179 3

60 28 28 0 146**** 185 187 2

68 44 44 0 152***** 188 189 1

76 47 51 4 157 190 190 0

81 51 52 1 160 191 190 1

The following sampling points for simulation result and observational data vary: *124.2464 and 124.2027, **132.3937 and 132.576, ***140.541 and

140.9492, ****146.6515 and 146.5313, *****152.762 and 152.1134.

doi:10.1371/journal.pone.0166551.t005

Fig 5. Cell lineage tree of simulation. Nodes represent cells with lines connecting mother and daughter cells. Length of the line represents cell cycle

time.

doi:10.1371/journal.pone.0166551.g005
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Twelve founder cells in early embryogenesis are selected for the analysis of cell cycle length.

We collect the born and divided times for each founder cell during simulation and compare

the result with observational data (see Table 6). Cell cycle standard deviation is calculated

based on born time and divided time standard deviations with Eq (4).

sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

b þ s2
d

p
; ð4Þ

where σc, σb and σd are the cell cycle, born time and divided time starnard deviations,

respectively.

We find that most of the deviations of cell cycle length (11 of 12) between simulation result

and observational data are less than 60% of the corresponding standard deviations. Moreover,

the RMSE σ for cell cycle length is 52.877.

Cell migration patterns and distribution of positions. Fig 6 demonstrates the cell migra-

tion of simulation and observational data, respectively, in which different types of cells are

color coded. A 3D view of cell migration dynamics is provided during AB64 (when AB divides

to 64 cells) stage. We cannot expect the two figures are completely the same, since the observa-

tional result is an average movement from large amounts of data, and on the other hand, ran-

dom deviations (see Table 3 and the “Sub-models” section) are also added into the simulation

model. The conclusion that trends of cell movement in simulation largely follows the situation

in observation illustrates that the experimental result of cell displacement patterns looks good.

In Fig 7, we also visualize distributions of cell positions at AB32 and AB64 stage, respec-

tively. Ellipsoids are drawn relying on a large amounts of data, centered at the average position

of cell positions at the certain stage with radii of one standard deviation on each direction. The

single point in each figure represents one certain result of cell position from simulation and

observation. By comparing the corresponding figures in each stage for a number times of

experiments, we observe that cells always locate near the spots where they are most likely to

appear (in the ellipsoid), which is reasonable, even though there are slight differences between

corresponding cells. Moreover, we examine whether the cumulative effect of positional

Table 6. Cell cycle analysis of 12 founder cells.

Simulation result Observational data

Cell name Born time Divided time Cell cycle Born time BTSD* Divided time DTSD** Cell cycle CCSD*** Deviation

ABala 2504 3604 1100 2508 36 3546 102 1038 108.1665 62

ABalp 2504 3503 999 2508 36 3540 102 1032 108.1665 33

ABara 2488 3498 1010 2514 36 3546 102 1032 108.1665 22

ABarp 2488 3492 1004 2514 36 3540 90 1026 96.933 22

ABpla 2522 3578 1056 2514 48 3522 96 1008 107.3313 48

ABplp 2522 3582 1060 2514 48 3552 96 1038 107.3313 22

ABpra 2501 3534 1033 2520 42 3540 96 1020 104.7855 13

ABprp 2501 3627 1126 2520 42 3582 108 1062 115.8792 64

MS 1860 2979 1119 1860 36 2928 84 1068 91.3893 51

E 1860 2948 1088 1860 36 2994 84 1134 91.3893 46

C 2094 3241 1147 2094 48 3198 108 1104 118.1863 43

P3 2094 3736 1642 2094 48 3630 132 1536 140.4564 106

*Born time standard deviation.

**Divided time standard deviation.

***Cell cycle standard deviation.

doi:10.1371/journal.pone.0166551.t006
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deviations will have an influence on the results, and it turns out that errors produced at earlier

stages are controlled in a proper range as they accumulate towards later stages.

Finally, we compare the positions of twelve founder cells at the time when they divide in

simulation and observational cases (see Table 7). Deviations in each direction are produced

owning the random errors added to the division times of all the cells. Compared with the stan-

dard deviations of observational data on each direction (data not shown here), the deviations

between simulation result and observational data are extremely small. The RMSE on each

direction σx, σy and σz is 0.0059, 0.0067, and 0.0033, respectively.

Fig 6. Cell displacement patterns during AB64 stage. 3D depth trajectories represent the movement path of cells.

Different colors represent the 14 founder cells of C. elegans, which is color coded by the following rules: ABala(light

brown), ABalp(light blue), ABara(light purple), ABarp(yellow), ABpla(red), ABplp(dark blue), ABpra(magenta), ABprp(dark

purple), MSa(light green), MSp(dark green), E(pink), C(dark brown), D(light gray), P(dark gray).

doi:10.1371/journal.pone.0166551.g006

Fig 7. Cell position validation. Stages of AB32 and AB64 mean when the AB lineage divides into 32 and 64

cells. Color-coded rule is the same as in Fig 6. Dots represent the exact cell positions in a specific simulation/

observational case, and ellipses represent the average position of each coresponding cell (with one standard

deviation).

doi:10.1371/journal.pone.0166551.g007
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Conclusion and future work

In this paper, an agent-based C. elegans model has been developed to incorporate observational

data on cellular behavior, such as cell lineage, fate, division time and direction, and movement

path. Observation-driven data structures and flowcharts have been implemented in the frame-

work to establish a statistic model, and regulatory mechanisms are allowed to be incorporated

when more insights are discovered. System-level results have been generated, analyzed and val-

idated in a simple and clean ways to gain potential possibilities to guide further C. elegans
embryogenesis research. The software system is available through a public code repository at

https://bitbucket.org/abm_utk/.

Our model considers fundamental aspects of C.elegans embryogenesis a whole process,

rather than in separate modules [29]. This approach/design provides a framework to deal with

experiments of complex tissues at a single-cell resolution under the circumstance that mecha-

nistic rules lag data collection and remain to be substantiated on complex observations, which

is of general interest.

Although we have built a basic descriptive agent-based model, and acquired a number of

meaningful simulation results, a comprehensive framework including other main aspects dur-

ing C. elegans embryogenesis is needed for further research and experimentation. Therefore,

we design and reserve the following necessary interfaces, which can be considered as our

immediate follow-up efforts.

Gene list

Each agent should hold a list that contains genes related to the current model, with their

genetic states and active states. Genetic information, as the basis of all agent (cell in our case)

behaviors, is indispensable in agent-based C. elegans embryogenesis framework. Such kinds of

structures built in the agents is also a prerequisite for further investigation of cell movement,

division, polarity, interaction, fate, and landscape.

Polarity and cell interaction

Polarity and cell interaction are the two most important ways to change genetic and active

states of genes in cells. Such processes play significant roles during cell differentiation and

Table 7. Analysis of dividing positions of 12 founder cells.

Simulation result Observational data Deviation

Cell name x y z x y z x y z

ABala -10.3181 -1.4295 2.156 -10.3185 -1.4285 2.1545 0.0004 0.001 0.0015

ABalp -5.4404 6.4491 0.0724 -5.4435 6.4475 0.074 0.0031 0.0016 0.0016

ABara -4.5968 -3.0929 4.6138 -4.596 -3.094 4.613 0.0008 0.0011 0.0008

ABarp -0.6491 -5.1982 -2.2607 -0.649 -5.1985 -2.2605 0.0001 0.0003 0.0002

ABpla -7.3182 -1.9064 -3.9134 -7.3145 -1.9025 -3.9135 0.0037 0.0039 0.0001

ABplp 1.2492 4.8501 -3.5957 1.2485 4.85 -3.5955 0.0007 0.0001 0.0002

ABpra 3.2836 -5.9391 2.2794 3.2845 -5.939 2.2795 0.0009 0.0001 0.0001

ABprp 8.8367 0.8474 2.6359 8.836 0.8445 2.636 0.0007 0.0029 0.0001

MS -0.0008 0.004 -0.0022 0 0 0 0.0008 0.004 0.0022

E 9.1584 3.5893 -0.31 9.1555 3.5895 -0.3095 0.0029 0.0002 0.0005

C 5.1186 -2.3211 -3.7254 5.1119 -2.321 -3.725 0.0004 0.0001 0.0004

P3 12.252 3.723 0.1905 12.252 3.723 0.1905 0 0 0

doi:10.1371/journal.pone.0166551.t007
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control cell fate differentiation, and further impact other downstream cell activities, such as

movement and division. Therefore, we maintain interfaces for these two processes, in which

cells continuously seek the changes produced in themselves, from other cells, or the surround-

ing environment. When regulatory mechanisms that can lead to genetic change are targeted,

states of the corresponding genes in certain target cells will change. The domino effect of the

agent-based changes of gene states in huge network will provide us with much more interest-

ing results than ever before.

Cell fate and developmental landscape

As mentioned earlier, cell fate and developmental landscape [2] play important roles for

research on developmental problems. The classic definition of cell fate is implemented by

obtaining gene expression information in each cell. However, the limitation of such an

approach is that it is quite difficult to acquire such a large amounts of data. Therefore, we

reserve a hybrid definition of cell fate, in which the gene expression information in the cells

themselves is not only utilized, but in their descendants is gathered as well. This allows us to

maximize the potential to find more meaningful results by utilizing known knowledge

obtained from regulatory mechanisms and experimentations.

Global parameters

Factors that are not related to agent (cell) can be considered global parameters. It is obvious

that such kind of factors will have a influence on biological processes. Interfaces reserved for

this purpose will help us investigate the changes resulting from non agent-related factors:

whether changes of temperature and humidity will result in different cell behaviors or fate

changes during embryogenesis.
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