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ABSTRACT

Mutations that cause an error in the splicing of a messenger RNA (mRNA) can lead to
diseases in humans. Various computational models have been developed to recognize
the sequence pattern of the splice sites. In recent studies, Convolutional Neural Network
(CNN) architectures were shown to outperform other existing models in predicting
the splice sites. However, an insufficient effort has been put into extending the CNN
model to predict the effect of the genomic variants on the splicing of mRNAs. This
study proposes a framework to elaborate on the utility of CNNss to assess the effect of
splice variants on the identification of potential disease-causing variants that disrupt
the RNA splicing process. Five models, including three CNN-based and two non-
CNN machine learning based, were trained and compared using two existing splice
site datasets, Genome Wide Human splice sites (GWH) and a dataset provided at the
Deep Learning and Artificial Intelligence winter school 2018 (DLAI). The donor sites
were also used to test on the HSplice tool to evaluate the predictive models. To improve
the effectiveness of predictive models, two datasets were combined. The CNN model
with four convolutional layers showed the best splice site prediction performance with
an AUPRC of 93.4% and 88.8% for donor and acceptor sites, respectively. The effects
of variants on splicing were estimated by applying the best model on variant data
from the ClinVar database. Based on the estimation, the framework could effectively
differentiate pathogenic variants from the benign variants (p = 5.9 x 1077). These
promising results support that the proposed framework could be applied in future
genetic studies to identify disease causing loci involving the splicing mechanism. The
datasets and Python scripts used in this study are available on the GitHub repository at
https://github.com/smiile8888/rna-splice-sites-recognition.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning, Data
Science

Keywords Splice site, Convolutional neural networks, Deep learning, RNA Splice Sites, Binding
sites, Splicing events, Genomic variants

INTRODUCTION

RNA splicing, a process exclusive to eukaryotic cells, is a post-transcriptional modification
of a protein-coding messenger RNA (mRNA). This process is carried out by a complex of
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small nuclear RNA (snRNA) and protein, known as a spliceosome, which binds to the splice
site on a pre-mRNA to fold, clip and rejoin the pre-mRNA. The intronic sequence is then
eliminated, and the remaining exonic sequences are joined. The whole process is referred to
as RNA splicing (Faustino ¢ Cooper, 2003). A single pre-mRNA can be encoded to multiple
proteins by a mechanism called alternative splicing, where the pre-mRNA is modified by
incorporating different sets of the exons. This mechanism allows the eukaryotic genome to
store more information economically but requires precise regulation. In humans, errors in
splicing or mis-splicing have been shown to underlie many diseases, including heart disease,
dementia, and autism spectrum disorder (ASD) (Scotti ¢» Swanson, 2016). Specifically, a
mis-splicing of LDB3 regulated by RBM20 leads to the development of heart disease (Zhu
et al., 2017; Rexiati, Sun ¢ Guo, 2018), and mutations in MAPT can cause an increase in
the splicing of its exon that leads to frontotemporal dementia with Parkinsonism (Buée
et al., 2000). More complex conditions like schizophrenia and autism spectrum disorder
(ASD) have also been linked to mis-splicing caused by single nucleotide variations (SNVs)
(Reble, Dineen ¢ Barr, 2018).

Many studies have used position-weight-matrix (PWM) to recognize the sequence
pattern of DNA/RNA binding sites, including splice sites (Stormo, 2000). Knowing the
sequence pattern and binding specificity makes it possible to assess the effect of SNVs on
the binding affinity at the sequence level (Desmet et al., 2010). Although PWM is powerful
and easy to interpret, it can capture only a simple sequence pattern; for more complex
sequence patterns, a more advanced method is required. Over the past few years, whole
genome sequencing data have been increasingly deposited in public databases due to
the advances in sequencing technology and lowered costs (Stephens et al., 2015; Lek et al ,
2016). The enormous amount of publicly available data has allowed more analytic methods
to emerge, with some being improved versions of existing techniques and some being
novelties.

Recently, machine learning (ML) and deep learning (DL) have been applied to solve
problems in many fields with astonishing results, especially for applications in the computer
vision field (LeCun, Bengio ¢» Hinton, 2015). It has also been adopted in biomedical research
(Wainberg et al., 2018). Support Vector Machines (SVMs) and Random Forest (RF) are
the most popular of traditional ML techniques. Sonnenburg et al. (2007) proposed the
SVM with a weighted degree kernel to recognize splice sites. Various SVM- and RF-based
tools, for example, HSplice (Meher et al., 2016) and MaLDoSS (Meher, Sahu ¢ Rao, 2016),
have been made available in the public domain for the prediction of donor splice sites in
many species, including Homo sapiens, Bos taurus, Danio rerio, and Caenorhabditis elegans.
Convolutional neural networks (CNNs) have been leveraged to identify the sequence
motifs of the binding sites in the human genome. DeepSEA and DeepBind are CNN-based
algorithms designed to capture the sequence specificity of DNA/RNA binding proteins and
assess the impact of SNVs on the binding sites (Alipanahi et al., 2015; Zhou ¢ Troyanskaya,
2015). SpliceRover, a CNN-based tool for splice site prediction, demonstrated improved
performance compared to conventional SVMs (i.e., linear SVM and SVM with a weighted
degree kernel) and the deep belief network (i.e., restricted Boltzmann machine (RBM))
on different splice site datasets (Zuallaert et al., 2018). Recurrent Neural Network (RNN)
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and its variants, such as Long Short-Term Memory (LSTM), have also been adopted

to solve classification problems on DNA and RNA sequences. Quang and Xie proposed
a hybrid convolutional and recurrent deep neural network to predict the transcription
factor binding sites. They made use of a CNN to capture the features in the sequences,
while a RNN learned the relationship among those features. Their comparison results with
DeepSEA showed that using a hybrid model improves the performance by more than 50%
over using CNN alone (Quang ¢ Xie, 2016).

Although deep learning techniques have shown superior performance over other
methods, no framework has been built to extend the model to estimate the effect of
genomic variants located near the splice sites. Therefore, a framework is proposed here
to predict the effects of such variants on splicing events, in the hopes of identifying the
variants causing disease through disruption of the splicing mechanism.

Framework

The framework covers two parts: (1) training a model for splice site prediction; and (2)
estimating the effect of variants on splicing. In particular, the pipeline used in this study
involved the comparison of deep learning and traditional machine learning models to
recognize sequence patterns of the splice sites on two datasets. Then the model with the
best performance in distinguishing the actual splice sites from the negative sequences was
used to estimate the effect of the point mutation on the splice site (referred here as ‘splice
variant’ or ‘variant’). The overall workflow of this framework is shown in Fig. 1.

The model preparation starts from data gathering and preprocessing, followed by
modeling and validation of the model with unseen data. Data gathering and preprocessing
are essential steps because the quality and quantity of the data directly affect the performance
of the model. The preprocessing step involves the conversion of raw data into a compatible
format as the input of the model. The model can be based on traditional machine
learning algorithms, deep learning techniques, or other algorithms that give a probabilistic
prediction. The probabilistic prediction is required to calculate a score for the splice
variants.

The second part is to estimate the effect of the splice variant by using the pre-trained
model from the previous step. For each variant, a reference (major allele) and an alternative
(minor allele) sequence of splice sites where the variant is located was obtained, then the
model was applied on the obtained sequences to give a probability of being a splice site.
If the variant affected the splice site in some way, it was inferred that the probabilistic
prediction on the reference sequence was higher than the one with an alternative variant.
The variants affecting the splice sites could result in mis-splicing and be disease-causing if
an important gene is disrupted. A score for each pair of sequences was calculated by taking
the difference between the probabilistic prediction of reference and alternative sequences.

MATERIALS & METHODS

Dataset
As mentioned earlier, two datasets were used in this work. The first one is called Genome-
Wide Human splice sites (GWH), which was obtained from a 2007 paper by Sonnenburg et
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Figure 1 Overall workflow of the proposed variant scoring framework.
Full-size Gal DOI: 10.7717/peerj.9470/fig-1

al. (2007). The splice site data were retrieved by processing the Expressed-Sequence Tags
(ESTs) and cDNA data available in commonly used databases (Sonnenburg et al., 2007).
The GWH data is an imbalanced case-control dataset where cases or positive sequences
are confirmed sequences of being spliced sites, and controls or negative sequences are
other sequences with spliced-site core dinucleotide at the center position of the sequences.
For donor sites, there are 1,484,844 sequences of negative data, while 80,515 sequences
are positive data. Similarly, 1,374,182 sequences of acceptor sites are negative data, while
79,250 sequences are positive data. Each sequence has a length of 398 nucleotides (nt)
with core dinucleotides, GT for donor sites and AG for acceptor sites, in the middle of the
sequence. Specifically, the dimer of donor sites is at the position of 201 and 202, while 198
and 199 are the position of the dimer in acceptor sites.

The second dataset is called DLAL It was a dataset provided in the competition
track of the First Deep Learning and Artificial Intelligence Winter School (DLAI1)
(https://deeplearningandaiwinterschool.github.io/dlail.html). The dataset was prepared
by obtaining transcript data from the curated RefSeq database (hgl9). Many of the splicing
signals are found within £50 nt window from the splice site based on the average absolute
weighted contribution score (wcs) (Zuallaert et al., 2018); however, the majority is mainly
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within £20 nt window of the splice sites. Thus, sequences of £20 nt window from the
splice site were extracted. This was done to reduce noise from extending the window for
too far and also to speed up the training process. The negative sequences were defined
as non-splice site sequences (40 nt) containing core dinucleotides. The negative donor
sequences have a GT dimer at position 20 and 21, while the acceptor negative sequences
have an AG dimer at position 19 and 20. Unlike the GWH dataset, this is a balanced dataset
which contains 223,143 sequences of the donor, and 220,034 sequences of the acceptor.
Even though the preparation of the two datasets was different, overlapping levels of positive
sequences between the two were very high, as 74% of donor and 75% of acceptor sites of
GWH data were found in the DLAI data. On the other hand, the negative sequences rarely
overlapped between both datasets, as only 1% of donor and 2% of acceptor sites from the
GWH data were found in the DLAI data.

The splice variant data was gathered from the ClinVar database. The ClinVar is a
clinical variant database, which contains both copy number variations (CNVs) and single
nucleotide variations (SNVs). All the variants were classified into different groups based on
their pathogenicity level by manual validation and/or computational method following the
American College of Medical Genetics and Genomics (ACMG) guidelines for Mendelian
disorder variant interpretation (Landrum et al., 2014). The SNVs belonging to benign,
likely benign, likely pathogenic, and pathogenic groups were obtained to validate the
model in the second part of the framework. The pathogenic variants are genomic variants
with evidence reported that they cause a disease. To evaluate the performance of the model,
the splicing effect scores estimated by the model SNVs were compared between pathogenic
(pathogenic + likely pathogenic; # = 801 and n = 356, for donor and acceptor, respectively)
and benign (benign + likely benign; n = 11,200 and n = 10,944, for donor and acceptor,
respectively) variants. Only variants located within 20 base pairs (bp) from splice sites
were obtained along with their respective splice site sequences (40 bp of length with splice
junction at the center of the sequence).

Methodology
This section describes a case study applied to the proposed framework, including the
process of building predictive models and predicting the effect of splice variants.

Data Preprocessing

The predictive models used in the study are based on deep learning and traditional machine
learning techniques. The input of these models requires a numerical matrix representing
pixels in a black and white or a grayscale image. Thus, the input sequences have to be
transformed into a matrix format. A DNA sequence is a string composed of four letters: A,
G, G, and T. These correspond to the vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, O,
1], respectively. Therefore, each sequence is represented as a N x 4 matrix, where N is the
length of the input DNA sequence, and 4 is the number of different nucleotides. Figure 2
illustrates an input DNA sequence and the corresponding matrix. This transformation

technique is called one-hot encoding.
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Figure 2 DNA Sequence converted into a binary matrix. (A) A DNA sequence transformed into a bi-
nary matrix. (B) The DNA sequence represented as an image.
Full-size &l DOI: 10.7717/peerj.9470/fig-2

Modeling

To recognize splice sites, any model that can give a probabilistic prediction can be applied.
In this study, a comparison of deep learning, to traditional machine learning algorithms—
convolutional neural networks (CNNs), and a hybrid CNN with LSTM, to support vector
machine (SVM) and random forest (RF)—is provided.

The NNs are designed for representation of high-level abstraction in the data. Typically,
NN consist of an input layer, hidden layers, and an output layer, each consisting of a
number of neurons or nodes. Each neuron is a processing unit with different parameters
or weights. The input layer propagates the data through the network, yielding intermediate
results using an activation function at each hidden layer. The output layer results in a final
prediction. For more complex models, a nonlinear function, e.g., Rectified Linear Unit
(ReLU) (Nair & Hinton, 2010) and softmax, is applied to activate neurons in each layer
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so that they are able to represent a non linear relationship. Over the past few years, the
ReLU has been applied to activate neurons in hidden layers. It is the simplest nonlinear
activation function, which outputs 0 if the input is less than or equal 0, and outputs raw
output, otherwise. In classification problems, softmax is commonly used as an activation
function in the last layer to generate a probability of each class. In supervised learning, NNs
learn from the annotated training data by adjusting the weights based on a loss function.
The loss function represents the difference between the predictions from the network and
the annotated labels. Besides traditional NNs, convolutional neural networks (CNNs) have
been proposed and shown to outperform traditional NNs in image recognition, including
classifying images, detecting objects, and recognizing faces. CNN is a variation of NNs that
consists of at least one convolutional layer in the NNs. The convolutional layer has filters
that slide over the sequence and detect patterns. Here, weights are stored within a filter
to be shared over different positions. Typically, the convolutional layer is followed by a
pooling layer, which helps to reduce dimensionality and map features independently. The
most common approach used in the pooling layer is Max-pooling, which uses a maximum
value representing the area of the specified filter. Overfitting is the main issue when NNs
have many layers, resulting in high performance in training data but poor performance
on unseen data. Neuron dropout is a common technique used to avoid the over-fitting
issue by randomly deactivating some neurons from the network which helps to reduces
independent learning among neurons (Srivastava et al., 2014).

Another variation of NN is recurrent neural networks (RNNs). The RNN has an
internal loop to maintain a cell state of extracted information. Instead of processing
the whole sequence in a single step, it processes the sequence by iterating through the
sequence elements and allowing information relative to what it has processed to persist.
The information stored in the internal state allows the network to exhibit dynamic temporal
or spatial behavior (Schuster ¢ Paliwal, 1997). Although the RNN should theoretically be
able to relate previous information to the present extracted information, in practice, as
the sequence grows, it becomes unable to learn to connect the information. Connections
between past and present information are called “long-term dependencies.” Long Short-
Term Memory networks (LSTMs) have been introduced to solve this problem (Bengio,
Simard & Frasconi, 1994; Hochreiter ¢~ Schmidhuber, 1997). The LSTM is the variant of
RNN that is capable of learning long-term dependencies. It is able to add or remove
information to the internal cell states. The amounts of information to be added or removed
are carefully regulated by structures called gates. A bi-directional LSTM is a variant of
standard LSTM that combines two LSTMs, where each takes a sequence in a different
direction; for example, in sequential data, one moves from left to right, and the other
moves right to left.

Machine learning techniques like SVMs and RFs are known to be excellent for
classification tasks. In the bioinformatics field, SVMs and RFs have been applied to
predict splice sites. They both gave a promising performance as reported in papers by
Sonnenburg, Lee and Yoon (Sonnenburg et al., 2007; Lee ¢ Yoon, 2015).

In this case study, five models were used: two CNN-based models, the CNN with
bidirectional LSTM model, the SVM model, and the RF model, to distinguish the positive
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and negative sequences. The CNN-based models include the model for the sequence length
of 40 nucleotides from SpliceRover (Zuallaert et al., 2018) and the other one from our
preliminary study (Thanapattheerakul et al., 2018). These models are called CNN_3 and
CNN_4 as the number represents the number of convolutional layers in the model. The
hybrid CNN with bidirectional LSTM, the architecture of which was derived from DanQ
(Quang & Xie, 2016), is called CNN_LSTM. The bi-directional LSTM is integrated with a
CNN at the last layer before being connected to the fully connected layer. All architectures
and hyperparameters of CNN and CNN with LSTM models are shown in Tables 1 and 2,
respectively. For SVM and RF, the recommended default hyperparameters were used.

Model Comparison

To evaluate the different models, 5-fold cross-validation was performed on the DLAI
data. The DLAI was used because it is a balanced dataset containing the most up-to-date
sequences. When comparing to the other datasets, it is the smallest one, but it was sufficient
to train models, so the training time was reduced. The 5-fold cross-validation was done by
the traditional cross-validation approach that resamples the data into five portions. In each
iteration, four portions are used as a training data to fit the model, while the rest is used as
a hold-out to evaluate the model. The model is then discarded and re-declared in the next
iteration. As an additional comparison of the developed CNN models to the traditional
machine learning approach, an existing web-based tool termed HSplice (Meher et al., 2016)
was used. This tool is available for prediction of human donor splice sites only, and it is
available at http://cabgrid.res.in:8080/HSplice. Prior to using the HSplice tool, the donor
sites needed to be shortened from 40 bp to 15 bp (—8 to 47 from splice junction). The
output of the tool was the prediction probability of the given sequence being a splice site.
For a direct comparison with this work, the prediction probability was used to calculate
the area under precision and recall curve (AUPRC) and area under the receiver operating
characteristic (AUROC). To obtain precision and recall, the same procedure was used to
convert the probability of each sequence to a binary class output, using a threshold of 0.5;
if the probability was greater than 0.5, it was classified as splice site, otherwise it was a
nonsplice site.

Testing effect of imbalanced data

To maximize statistical power, the two datasets, GWH and DLAI, were combined to increase
the number of positive and negative sequences. The sequences from GWH were trimmed
down from 398 nt to 40 nt to match with the ones from DLAI. Although the combined
dataset was much more comprehensive, it became imbalanced. For donor sites, there were
230,208 positive sequences and 1,669,934 negative sequences. For acceptor sites, there were
226,436 positive sequences and 1,558,077 negative sequences. The combined dataset was
used to test the effect of imbalanced data in order to utilize the model performance. Since
the positive data is in the minority, 80% of the positive data was randomly selected. Also,
subsets of negative data were then picked to construct different datasets where the ratio of
positive to negative data was restricted at 1:1, 1:3, 1:5, and 1:7. The CNN_3 and CNN_4
models were then validated by performing 5-fold cross-validation using these subsets of
positive and negative sequences. Furthermore, after training on the different subsets, each

Thanapattheerakul et al. (2020), PeerJ, DOI 10.7717/peerj.9470 8/21


https://peerj.com
http://cabgrid.res.in:8080/HSplice
http://dx.doi.org/10.7717/peerj.9470

Peer

Table 1 CNN-based architecture details. The details of the architecture of CNN_3, CNN_4, and
CNN_LSTM are described. Both CNN_3 and CNN_4 are CNN-based architecture, but they are different
in the number of layers and the filter in each layer. The CNN_LSTM is a hybrid CNN with bi-directional

LSTM.

Name Architectures
Layers Details
conv2D layer 1 70 filters of size (9,4)
dropout layer 1 p=0.2
conv2D layer 2 100 filters of size (7,1)
maxpool layer 1 pool size (2,1)
dropout layer 2 p=0.2

CNN_3 conv2D layer 3 150 filters of size (7,1)
maxpool layer 2 pool size (2,1)
dropout layer 3 p=0.2
dense layer 1 512 neurons
dropout layer 4 p=0.2
softmax layer 2 outputs
conv2D layer 1 70 filters of size (3,4)
dropout layer 1 p=0.2
conv2D layer 2 100 filters of size (3,1)
dropout layer 2 p=0.2
conv2D layer 3 100 filters of size (3,1)
maxpool layer 1 pool size (2,1)

CNN_4 dropout layer 3 p=0.2
conv2D layer 4 200 filters of size (3,1)
maxpool layer 2 pool size (2,1)
dropout layer 4 p=0.2
dense layer 1 512 neurons
dropout layer 5 p=0.2
softmax layer 2 outputs
convlD layer 1 320 filters of length 26
maxpool layer 1 pool size (13)
dropout layer 1 p=0.2

CNN_LSTM bidirectional LSTM layer 1 320 output dimension
dropout layer 2 p=0.5

Dense layer 1

softmax layer

925 neurons

2 outputs

model was tested on the remaining 20% of positive data and the rest of the negative data.
As an additional comparison, 20% of the donor site test set was randomly selected to test
on the CNN models and HSplice tool.

Testing effect of window sizes

Another factor that could affect the model performance is window size or input sequence
length. To compare the effect of window size, the CNN_4 model was performed on the
GWH dataset with five different sequence lengths: 40 nt, 80 nt, 160 nt, 240 nt, and 398 nt.
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Table2 CNN-based hyperparameter details. The hyperparameters set applied for CNN_3, CNN_4, and CNN_LSTM.

Optimizer Loss Epoch Batch Start # Steps per Learning rate
function size learning rate learning rate decay decay scheduling
SGD with Nesterov Categorical 30 64 0.05 5 Yes

momentum 0.9

cross-entropy

The subset of the GWH dataset with a 1:7 ratio of positive to negative sequencing from the
previous step was used in 5-fold cross-validation.

Predicting variant effect
To predict the effects of variants, the CNN_4 model was used on the combined dataset
with a 1:7 ratio of positive to negative sequences. This dataset was used since it contains
the most up-to-date data (DLAI dataset) and a bigger negative set. This model was tested
on the splice variants from the ClinVar database. The effects of variants on splicing were
estimated by making a probabilistic prediction of whether splicing would occur on the
sequence with the presence and the absence of an alternative allele. Then, the variant was
scored by taking the difference between the two predictions using the formula below as
suggested by a previous study of the effect of variants on transcription factor binding site
(Zhou & Troyanskaya, 2015):
Score (m;) =1og10( M)

PM (alt)

where Score(m;) is a score of variant or mutation, PM (ref ) is a probability of a reference
sequence being a splice site (reference sequence: sequence with the absence of an alternative
allele), and PM (alt) is the probability of an alternative sequence being a splice site
(alternative sequence: sequence with the presence of an alternative allele).

The splice variant effect prediction was obtained from the dbscSNV database, used to
compare with the prediction from the proposed method. The dbscSNV is a comprehensive
database that stores splicing effect score (ada_score) of human SNVs located in the splicing
regions, i.e., 3 to 48 from donor sites and —12 to 42 from acceptor sites (Jian, Boerwinkle
¢ Liu, 2014). The ada_score is a prediction score (in the range of 0 to 1) of variants
causing splicing disruption and leading to disease computed using AdaBoost model (Jian,
Boerwinkle ¢ Liu, 2014). It was compared to the score predicted by the proposed method
based on how well they distinguished benign and pathogenic variants.

Computational setup

All experiments of CNN- and RF-based models were conducted on Google Colaboratory
(https://colab.research.google.com/). The backend was run with Python 3 and a GPU
hardware accelerator. Due to the time limitation (12 h per session for the freely available
resource) on Google Colaboratory, the SVM-based model was run on a local laptop without
GPU (Intel Core i5-3230M CPU @ 2.60 GHz, x64-based Windows OS, 8 GB of RAM, 256
GB SSD). Pandas (McKinney, 2010) and NumPy (Oliphant, 2006; VanDer Walt, Colbert
¢ Varoquaux, 2011) were used in the processes of data preparation and representation.
The ggplot2 R package (Wickham, 2009) and matplotlib (Hunter, 2007) were used for
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Table 3 The performance of five predictive models. The average AUPRC, precision, recall, AUROC, and the average training time of the five pre-
dictive models from 5-fold cross-validation are described. For the donor sites, the HSplice tool was used as a benchmark.

Site Model AUPRC Precision Recall AUROC Runtime
(Colab)
mean SD mean SD mean SD mean SD

CNN_3 0.986 0.0005 0.936 0.0013 0.979 0.0009 0.989 0.0003 12 m
CNN_4 0.986 0.0002 0.930 0.0015 0.982 0.0010 0.989 0.0001 12m

Donor CNN_LSTM 0.983 0.0004 0.932 0.0003 0.975 0.0013 0.986 0.0002 25m
SVM 0.923 0.0007 0.937 0.0007 0.968 0.0012 0.952 0.0006 2 hr?
RF 0.913 0.0004 0.939 0.0006 0.942 0.0007 0.940 0.0002 11s
HSplice 0.968 0.928 0.936 0.975 N/A
CNN_3 0.979 0.0003 0.910 0.0028 0.968 0.0027 0.982 0.0004 12 m
CNN_4 0.979 0.0008 0.905 0.0030 0.973 0.0012 0.982 0.0006 12m

Acceptor  CNN_LSTM 0.975 0.0008 0.914 0.0020 0.960 0.0013 0.979 0.0006 25m
SVM 0.893 0.0017 0.915 0.0018 0.948 0.0013 0.930 0.0013 2.30 hr*
RF 0.866 0.0009 0.910 0.0011 0.893 0.0020 0.902 0.0010 11s

Notes.

2The SVM-based model was run on a local laptop without GPU (Intel Core i5-3230M CPU 2.60 GHz, x64-based Windows OS, 8 GB of RAM, 256 GB SSD).

Bold styling emphasizes the highest values

regarding the evaluation metrics used in the study.

data and result visualization, including graphic generation. Keras (https://keras.io/) with
TensorFlow was used for model construction, training and testing.

RESULTS

Comparison between deep learning and traditional machine learning
approaches

The first set of results is a comparison between CNNs, CNN_LSTM, SVM, and RF in splice
site prediction performance assessed by 5-fold cross-validation on the DLAI dataset only,
which is a balanced dataset. Moreover, for donor sites, HSplice, a donor site prediction tool,
was used as a benchmark in the comparison. Here, several evaluation metrics are reported,
including precision, recall, AUPRC, and AUROC. Table 3 shows the performance on the
5-fold cross-validation and the average training time, which was also obtained from 5-fold
cross-validation of all models. The CNN-based models performed significantly better than
SVM and RF models regarding the AUPRC (One-sided Welch’s ¢-test p = 6x10~'? and
p=4.8x1071, for SVM and RF, respectively). Among the CNN-based models, CNN_3
and CNN_4 outperformed the CNN_LSTM (One-sided Welch’s t-test p=1. 4x107°),
while no significant difference in performance between the CNN_3 and CNN_4 models
was found (One-sided Welch’s t-test p = 0.54). Besides the superior performance, the
training times of CNN_3 and CNN_4 (average runtime was 12 min per fold) were also
faster than CNN_LSTM (average runtime was 25 min per fold). Therefore, only CNN_3
and CNN_4 were applied for further analysis.

Effect of imbalanced data
According to the results shown in Table 4, the performance tends to decrease when the
ratio of positive to negative data is increased. As shown, the models trained on the 1:1 gave
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Table 4 The performance of CNN_3 and CNN_4 on the combined dataset. The training performance on the combined dataset with different ra-
tios collected from 5-fold cross-validation are described.

Site Ratio Model
CNN_3 CNN_4
AUPRC Precision Recall MCC AUPRC Precision Recall MCC
1:1 0.987 0.944 0.969 0.841 0.988 0.940 0.973 0.846
Donor 1:3 0.969 0.911 0.939 0.899 0.970 0.900 0.949 0.898
1:5 0.954 0.892 0.912 0.882 0.954 0.875 0.931 0.882
1:7 0.940 0.878 0.886 0.865 0.940 0.854 0.915 0.866
1:1 0.972 0.902 0.949 0.846 0.973 0.898 0.954 0.847
Ay 1:3 0.933 0.850 0.894 0.827 0.935 0.839 0.907 0.828
1:5 0.903 0.820 0.851 0.802 0.904 0.806 0.870 0.806
1:7 0.877 0.804 0.811 0.780 0.878 0.788 0.835 0.783
Notes.

Bold styling emphasizes the highest values regarding the evaluation metrics used in the study.

Table 5 The testing results of CNN_3 and CNN_4 performed on the combined dataset. The testing results performed on the hold-out data.

Site Ratio Model
CNN_3 CNN_4
AUPRC Precision Recall MCC AUPRC Precision Recall MCC
1:1 0.801 0.394 0.963 0.600 0.802 0.387 0.964 0.595
Donot 1:3 0.847 0.619 0.917 0.741 0.848 0.566 0.940 0.716
1:5 0.887 0.758 0.885 0.807 0.887 0.705 0.921 0.792
1:7 0.934 0.888 0.850 0.854 0.934 0.852 0.901 0.860
1:1 0.674 0.277 0.933 0.487 0.679 0.266 0.941 0.475
A 1:3 0.734 0.475 0.871 0.623 0.738 0.463 0.881 0.618
1:5 0.801 0.675 0.804 0.717 0.802 0.631 0.845 0.709
1:7 0.886 0.850 0.761 0.776 0.888 0.828 0.805 0.788
Notes.

Bold styling emphasizes the highest values regarding the evaluation metrics used in the study.

the highest evaluation metrics, while the models trained on 1:7 gave the lowest in both
donor and acceptor sites. However, the results shown in Table 5 suggest that using balanced
data (1:1) for training resulted in over-fitting of the positive data where the model failed
to classify negative data in the testing step. It can be concluded that validating the models
on the balanced data may result in an overestimation of the performance. Between the
two CNN-based models, the CNN_4 outperformed CNN_3, in both donor and acceptor
sites, based on the highest AUPRC in the testing step. Recall, precision, and Matthews
Correlation Coefficient (MCC) were used as tiebreakers. In addition, the comparison
between CNN models and the existing HSplice tool was reported in Table 6.

Effect of window sizes

As shown in Tables 6 and 7, the results of both training and testing show the same trend
that using a sequence length of 398 nt performs better than other lengths. From Table 7,
according to the AUPRC, considering donor sites, using 398nt does not cause the model
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Table 6 The testing results of CNN_3, CNN_4, and HSplice performed on the donor sites of the com-
bined dataset. The testing results performed on 20% of each hold-out set of the donor sites.

Site Evallfation Model Ratio
Metrics
1:1 1:3 1:5 1:7
CNN_3 0.795 0.846 0.891 0.935
AUPRC CNN_4 0.798 0.847 0.892 0.934
HSplice 0.551 0.527 0.686 0.594
CNN_3 0.394 0.615 0.760 0.889
Precision CNN_4 0.387 0.561 0.708 0.850
Donor HSplice 0.290 0.327 0.443 0.539
CNN_3 0.960 0.919 0.888 0.854
Recall CNN_4 0.962 0.940 0.922 0.903
HSplice 0.927 0.813 0.909 0.660
CNN_3 0.599 0.740 0.810 0.856
MCC CNN_4 0.594 0.713 0.795 0.861
HSplice 0.496 0.487 0.606 0.542
Notes.

Bold styling emphasizes the highest values regarding the evaluation metrics used in the study.

Table 7 The training performance of CNN_4 on the GWH dataset with different window sizes. The
training performance on the GWH dataset with different window sizes were collected from 5-fold cross-
validation. The average values of each evaluation matrix are shown.

Site Window Model
size (nt)

CNN_4
AUPRC Precision Recall MCC
40 0.924 0.848 0.890 0.849
80 0.933 0.871 0.894 0.866
Donor 160 0.948 0.886 0.908 0.882
240 0.951 0.888 0.916 0.888
398 0.951 0.888 0.918 0.889
40 0.846 0.774 0.788 0.749
80 0.890 0.818 0.834 0.801
Acceptor 160 0.922 0.856 0.860 0.838
240 0.933 0.880 0.870 0.857
398 0.938 0.886 0.880 0.867

Notes.

Bold styling emphasizes the highest values regarding the evaluation metrics used in the study.

to perform significantly differently from using 160 nt and 240 nt (one-sided Welch’s ¢ -test
p=0.1and p=0.39), while using 40 nt cannot beat other window sizes (one-sided Welch’s
t-test p=9.4x10"% p=3x10"% p=4.8x10"7,and p=3.7x 1077, for 80 nt, 160 nt, 240
nt, and 398 nt, respectively). Similarly, for acceptor sites, using 40 nt is insufficient when
compared to other window sizes (one-sided Welch’s t-test p=2. 8x 1077, p=1.2x 1072,
p=1.8x 10719, and p=2.1x 10719, for 80 nt, 160 nt, 240, and 398 nt, respectively).
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Table 8 The testing performance of the CNN_4 on the GWH dataset with different window sizes. The
testing results of the CNN_4 performed on the hold-out data with different window sizes.

Site Window Model
size (nt)

CNN_4
AUPRC Precision Recall MCC
40 0.922 0.846 0.882 0.844
80 0.931 0.868 0.886 0.859
Donor 160 0.945 0.884 0.901 0.877
240 0.950 0.887 0.910 0.883
398 0.950 0.887 0.912 0.885
40 0.840 0.762 0.786 0.741
80 0.887 0.813 0.831 0.796
Acceptor 160 0.919 0.854 0.858 0.834
240 0.932 0.878 0.867 0.855
398 0.937 0.883 0.878 0.863

Notes.

Bold styling emphasizes the highest values regarding the evaluation metrics used in the study.

When it comes to testing, the model trained on 398 nt gave the best results for both
donor and acceptor sites, as shown in Table 8. However, for donor sites, using 240 nt is
not significantly different from using 398 nt as one-sided Welch’s t-test p =0.37.

Variant effect prediction

As mentioned earlier, the best CNN-based model, or CNN_4 from the previous step, was
used to predict the effect of variants on splicing events. Only variants on splice sites with
a splicing probability of reference sequences over 80% were taken into account. There
remained only 16,600 benign variants (9,361 in donor and 7,239 in acceptor) and 833
pathogenic variants (628 in donor and 205 in acceptor). The result shows that pathogenic
variants significantly reduced the probability of sequences being splice sites compared to
benign variants (one-sided Welch’s ¢-test p=5. 9x107% and p=1. 6x 107!, for donor
and acceptor sites, as shown in Figs. 3A and 3B, respectively). The effects of variants were
further investigated in each position relative to the splice sites (Figs. 3C and 3D). It was
shown that, for donor sites (see Fig. 3C), the model detected effects of variants on splicing
within 5 bp around the splice site (15th-20th positions). However, for acceptor sites (see
Fig. 3D), this range was extended further but still within 15 bp around the splice site
(5th-36th positions).

Table 9 shows the p-value of a one-sided Welch’s t-test comparing the score obtained
from the CNN_4 and the ada_score from the dbscSNV database. In general, CNN_4 is able
to differentiate the pathogenic and benign variants as the one-sided Welch’s ¢-test p < 0.05
for both donor and acceptor sites. However, the ada_score yields lower p-values for both
donor and acceptor sites meaning that the score from the dbscSNV better differentiates
the benign and pathogenic variants.
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Figure 3 Variant effect prediction result. (A) Distribution of donor score of benign and pathogenic vari-
ants. (B) Distribution of acceptor score of benign and pathogenic variants. (C) Distribution of donor score
of variant at each position. (D) Distribution of acceptor score of variant at each position.

Full-size ) DOI: 10.7717/peerj.9470/fig-3
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Table 9 The p-value of one-sided Welch’s ¢-test comparing between the score obtained from the
CNN_4 and the ada_score from the dbscSNV database. The p-value shows the comparison between the
effectiveness of the CNN_4 model when predicting the effect of variants and the splicing variant scores
(ada_score) from the dbscSNV database.

Site CNN_4 dbscSNV

Donor 1.7x 1072 5x107°

Acceptor 3.2x 1072 43x1073
DISCUSSION

CNN models provided significantly better performance than the traditional machine
learning approaches (see Tables 3 and 6). Based on the comparison of donor sites to the
existing HSplice tool, it is clear that constructing additional features for classification
using domain knowledge can provide reasonably good performance despite using only a
window size of 15 nt. However, the CNN models significantly improved performance
by automatically extracting more useful features than the aforementioned feature
engineering process. Among CNN-based models, the models containing CNN layers
alone outperformed the hybrid CNN with bi-directional LSTM. This could be because
the hybrid model contains only one layer of CNN. The performance could improve or
be better than CNN alone if more CNN layers are added. Even though CNN models
successfully recognized the sequence patterns of the actual splice sites, there is still room
for improvement. The recall of two CNN models with different complexities was very
high, but their precision was not at a comparable level. As a result, the models were not as
good for predicting the negative sequences. Comparing the predicting performance on the
unseen data between donor and acceptor sites, the performance of acceptor site prediction
was not as good as of that the donor sites. This contradicts previous studies asserting that
acceptor sites are far less variable and should be easier to predict when compared to donor
sites (Garg & Green, 2007). The limited performance in predicting negative sequences as
well as acceptor sites could be caused by the limitation of the input sequence size in existing
data (40 bp). In fact, more information could be fed to the model if longer sequences were
used, as this study showed that the optimal performance occurs when a model is trained
on input sequences of size 398 bp. However, the donor sites can perform similarly well
when using 240 bp of the input sequences. For the effect of imbalanced data, according
to the results shown in Table 4, training a model using balanced data (1:1) tends to cause
overfitting. This may be due to the fact that the data with a 1:1 ratio does not represent
the actual scenario; there is much more negative data than positive data in the human
genome. It is also possible that the negative data is not enough when trying to balance the
dataset by randomly using a smaller set of negative data. It seems as though the imbalanced
data does not affect the model as when more negative data is added to train the model,
it actually improved the performance of the model. This also applies to the traditional
machine learning approach as shown in Table 6. The effectiveness of HSplice increases
when the ratio of positive and negative increases. This may also be because of the fact that
DL techniques, especially CNNs, can potentially extract features and learn by themselves
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to address imbalanced data. However, interpretable models are still on-going in research
areas.

Variant effect prediction based on the CNN model showed that the proposed framework
with the CNN_4 model was able to differentiate the pathogenic splice variants from the
benign splice variants. When comparing the obtained scores with the ada_score from
dbscSNV database, the obtained scores for both donor and acceptor sites were not better
than the ada_score in terms of the difference between benign and pathogenic variants. It
could be because the dbscSNV database directly studied the variant effect on splice sites. The
model was trained using variant data with given labels, while the CNN_4 model was trained
by using splice sequences. Also, the dbscSNV used additional features on top of the mRNA
sequences. Specifically, they used conservation scores (i.e., PhyloP46way_placental and
PhyloP46way_primate) (Jian, Boerwinkle ¢ Liu, 2014). Moreover, there is some overlap
between their training dataset and the ClinVar database; thus, the performance observed
could be due to over-fitting. Even though the CNN_4 model did not yield better results, it
was able to predict a wider range of splice variants’ locations, i.e., 20 at both donor and
acceptor sites, unlike the dbscSNV which can only predict —3 to +8 at donor sites and —12
to 42 at acceptor sites. Only a small set of variants could be tested here as the model was
trained on a sequence of length 40 bp. Based on the prediction performance comparison of
difference sequence lengths, it would be better to extend the length of splice site sequences
to train the model, so that not only the performance might be improved but the effect of
variants located further could also be assessed.

Future work will address the limitations of the current study. In addition, an even larger
amount of data will be collected, especially negative data, to provide a more comprehensive
dataset. This includes longer sequences and different preprocessing techniques, e.g.,
shifting the core-dinucleotides to different positions, and using two or more nucleotides
for encoding the sequence instead of using one nucleotide as shown in this study, which
would help to make more robust models. Also, the conservation scores can be added as an
additional feature for the splice variants to improve the model performance. In addition,
to facilitate other researchers who may be interested to pursue the effect of sequence
length in more depth, the pseudocode of splice site and variant data preparation have been
included on GitHub for open access; however, the domain knowledge is needed to finalize
a validated dataset and it is also a time-consuming process.

CONCLUSIONS

This study provided a framework for predicting the effects of variants on splice sites. A case
study was demonstrated by applying the framework with two datasets. These datasets were
combined to improve the power of the predictive model. Multiple measures were used
to compare the performance of different models. CNN models outperformed traditional
machine learning models with average AUPRC of 93% for donor sites and 88% for acceptor
sites. The best model was the CNN model with four convolutional layers, which then used
to analyze genetic variant data from the ClinVar database. It showed promising results
in distinguishing pathogenic variants from the benign. A few limitations found in the
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current study were discussed and will be further addressed in a future study. The GitHub
repository for this study has been created, including the Python scripts and the datasets used
in this study (see https://github.com/smiile8888/rna-splice-sites-recognition). However,
the GWH dataset was not included because it has been published by Lee ¢ Yoon (2015:
https://dl.acm.org/doi/10.5555/3045118.3045382).
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