
Research Article
Firefly Mating Algorithm for Continuous
Optimization Problems

Amarita Ritthipakdee,1,2 Arit Thammano,1,2 Nol Premasathian,2

and Duangjai Jitkongchuen3

1Computational Intelligence Laboratory, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
2Faculty of Information Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
3College of Innovative Technology and Engineering, Dhurakij Pundit University, Bangkok, Thailand

Correspondence should be addressed to Arit Thammano; arit@it.kmitl.ac.th

Received 15 January 2017; Revised 22 May 2017; Accepted 14 June 2017; Published 20 July 2017

Academic Editor: Leonardo Franco

Copyright © 2017 Amarita Ritthipakdee et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization
problems. FMAuses genetic algorithmas the core of the algorithm.Themain feature of the algorithm is a novelmating pair selection
method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and
females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex
partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for
several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm.
The performance of FMAwas tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones)
against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms.The
experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other
algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.

1. Introduction

Optimization is a process of finding the most desirable solu-
tion to the problem of interest. Optimization problems can be
divided into two main categories depending on the types of
variables involved (discrete or continuous). A problem with
discrete variables is known as a combinatorial optimization
problemwhile a problemwith continuous variables is known
as a continuous optimization problem. The optimization
algorithm proposed in this paper only emphasizes solving
continuous optimization problems. Optimization algorithms
are of many varieties ranging from simple search to much
more complex ones that require a great deal of computational
time. At present, among the widely researched types of opti-
mization algorithms, self-organized algorithms employing
procedures that emulate animal swarm behavior are very
popular. Brief overviews of recent metaheuristic algorithms

based on firefly, ant, fish, bird, and bee are presented in the
next paragraph.

Yang [1] developed a swarm intelligent algorithm based
on the flashing behavior of fireflies. In nature, the firefly
flashes its light to attract other fireflies for mating. The less
bright firefly is attracted and moves towards the one that
flashes brighter light. The experimental results in Yang’s
paper showed that the firefly algorithm outperformed both
genetic algorithm and particle swarm optimization on the
tested benchmarks. Similar results were also obtained by
Baykasoğlu and Ozsoydan [2]. Even though the algorithm is
very promising, further investigation is needed to improve
on the convergence of the algorithm and to prevent trapping
in local optima. Farahani et al. [3] proposed an improved
firefly algorithm called Gaussian distribution firefly (GD-
FF) algorithm. Three new strategies were introduced: (i) an
adaptive step length that changes with time, (ii) a directed
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movement towards the global best solution when there is no
brighter firefly within its vicinity, and (iii) a social behavior
that changes the position of each firefly based on a Gaussian
distribution.The authors found that their algorithmgot better
result and converged to the global optimum faster than the
original firefly algorithm. Rizk-Allah et al. [4], on the other
hand, improved the firefly algorithm in a different way;
they combined it with an ant colony optimization (ACO)
algorithm. First, this hybrid algorithm is initialized using the
ACO algorithm. Then the firefly algorithm is put to work as
a local search to refine the solutions found by the ants. The
hybrid was proven successful. Shin and Kita [5] improved
the performance of particle swarm optimization (PSO) by
including the information of the second global best and
second personal best particles in their developed algorithm.
The algorithm’s performance was found to be better than
the original PSO. Another variant of PSO was an algorithm
called Levy flight particle swarm optimization (LFPSO) [6].
This algorithm combined PSOwith Levy flight. Experimental
results showed that the LFPSO clearly outperformed the
original PSO and other PSO variants in terms of solution
quality and robustness. A different kind of swarm intelligent
algorithm based on the behavior of bees in finding food
sources, called bee colony optimization (BCO), was also fur-
ther developed by assigning two weights to each food source.
One is a global weight and the other is a local weight. As a
result, the proposed algorithm, named weighted bee colony
optimization (wBCO) [7], performed better than the original
BCO and many state-of-the-art algorithms. Artificial bee
colony (ABC), another bee-inspired algorithm, was modified
by Gao and Liu [8]. In their proposed algorithm, Levy flight,
differential evolution, and particle swarm optimization were
incorporated into the original ABC algorithm. Experimental
results showed that the proposed algorithm achieved better
performance than the original ABC algorithm and many
of its variants. Niu et al. [9] proposed an improved ver-
sion of the original fruit fly optimization algorithm (FOA),
called DFOA. They modified the expression of the smell
concentration judgement value and introduced DE/best/1
mutation strategy to replace the random search. The results
showed that DFOA was superior to seven other evolutionary
computation methods. Chen et al. [10] presented a new PSO
variant called particle swarm optimization with an aging
leader and challengers (ALC-PSO). In ALC-PSO, the leader
of the swarm has a lifespan. If the leader is trapped in a
local optimum, it will age quickly and new challengers will
emerge to replace the old leader. As a result, ALC-PSO has
an ability to escape from local optima and to find global
optima in a short period of time. Genetic algorithm (GA) was
also developed further by Thakur [11] who proposed a new
crossover operator, called double Pareto crossover operator
(DPX). DPX was used in combination with power mutation
(PM) operator. He tested this algorithm with multimodal
nonlinear functions and found that its success rate was higher
than that of the standard GA.

In this paper, a swarm intelligence algorithm called firefly
mating algorithm (FMA) is presented. In FMA, GA is used
as the core of the algorithm. A new mating pair selection

method, inspired by themating behavior of fireflies in nature,
is introduced and incorporated into GA.

The rest of the paper is organized as follows: Sections
2 and 3 briefly discuss the original firefly algorithm and
genetic algorithm, respectively; in Section 4, the biological
background of the proposed algorithm is explained; in
Section 5, the proposed model with a detailed description
of each step is presented; in Section 6, a description of the
experiments is given; in Section 7, experimental results are
shown and compared; finally, Section 8 is the conclusion.

2. Firefly Algorithm

This section describes the original firefly algorithm. Fire-
fly algorithm (FA) is a reliable and efficient metaheuristic
algorithm capable of solving many real-world problems such
as scheduling, optimization problems in dynamic environ-
ments, and economic load dispatch problem. This algorithm
is influenced by the flashing behavior of fireflies to attract one
another. It is constructed based on three rules [12]:

(i) All fireflies are unisex so that one firefly is attracted to
all other fireflies.

(ii) The attractiveness of a firefly is proportional to its
brightness. For any two fireflies, the dimmer one is attracted
by (and thus moves towards) the brighter one. However, if
there are no fireflies brighter than a given firefly, that firefly
will move randomly.

(iii) The brightness of a firefly decreases as the distance
from it increases. This is because light is absorbed when it
passes through the medium. Therefore, the brightness (also
attractiveness) of the firefly 𝑗 seen by the firefly 𝑖 is defined in
(1).

𝛽𝑗 (𝑟) = 𝛽𝑗 (0) 𝑒−𝛾𝑟2 , (1)

𝑟 = 𝑥𝑖 − 𝑥𝑗 = √ 𝑑∑
𝑘=1

(𝑥𝑘𝑖 − 𝑥𝑘𝑗)2, (2)

where 𝛾 is a light absorption coefficient of the medium, 𝑟 is
the Euclidean distance between the firefly 𝑖 and the firefly 𝑗,𝛽𝑗(0) is the brightness of the firefly 𝑗 at 𝑟 = 0, and 𝑥𝑖 and 𝑥𝑗
are the locations of the fireflies 𝑖 and 𝑗, respectively.

If the firefly 𝑗 is the brighter one, the value of its attrac-
tiveness regulates the movement of the firefly 𝑖 according to
the following equation:

𝑥𝑖 = 𝑥𝑖 + [𝛽𝑗 (𝑟)] (𝑥𝑗 − 𝑥𝑖) + 𝛼 (rand) , (3)

where 𝛼 is a randomization parameter and rand is a uniform
random number in the range [−0.5, 0.5]. The function of the
second term in (3) is to move the firefly 𝑖 towards the firefly 𝑗.
The function of the third term in (3) is to move the solution
away from a local optimum when such incident takes place.

3. Genetic Algorithm

Genetic algorithm (GA) is an optimization technique
inspired by the process of natural selection. GA starts with
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an initial population which consists of a number of randomly
generated chromosomes. A new population is created from
the current one by means of 3 genetic operators: selection,
crossover, andmutation.The selection operator stochastically
chooses chromosomes to be included in the mating pool;
the ones with higher fitness values are more likely to be
chosen. Crossover operator selectively chooses some genes
from the chromosomes of the parents and combines them
into the offspring.Mutation operator randomly changes some
genes of the offspring. This evolution process is repeatedly
performed until any of the stopping criteria is met. The com-
monly used stopping criteria are as follows: (i) a predefined
number of iterations is reached, (ii) the best solution does not
improve for a predefined number of iterations, and (iii) a large
percentage of the chromosomes in the population is the same.

4. Biological Inspiration of
the Proposed Algorithm

There are over 2,000 species of fireflies around the world, but
most of them are found in the tropical zone. They live under
the water when they are larvae and on the ground and in the
air when they are adults. Fireflies are social animals. They
stay in a swarm on tree branches and lay eggs on the ground
around the trees. The fascinating thing when observing
fireflies is their light flash. The light emitted from their
abdomens is a cold light through chemical reactions within
their bodies. Fireflies emit flashing light for communication,
luring preys, repelling predators, and attracting mates. Note
that this research only focuses on the mating behavior of the
firefly; therefore, the detailed relation of the flashing light
signal to themate selection process is further discussed in the
next paragraph.

In the mating season, female fireflies release pheromones
into the air to signal their readiness to mate.The pheromones
are carried away in the direction controlled by the wind [13].
Male fireflies follow the pheromone trail and approach the
females from a downwind direction [13]. More males are
attracted to females who release more pheromones. Males
then fly around the trees that the females perch on and flash
courtship signal to attract females [14]. Females are more
attracted to brighter males and response to those males by
flashing their own lights. Then many rounds of mating take
place during the night [15]. Males mate until they run out of
sperm in their sperm reservoir while females can hold only
a certain amount of sperms in their spermatheca. Sperms
from fitter males are more likely to be chosen to fertilize a
female’s eggs; this is due to the following two explanations: (i)
females have ways to discard low-quality sperms, including
destroying them by their internally produced chemicals [16,
17]; (ii) one male’s seminal fluid can incapacitate rival males’
sperm within the female reproductive tract [16, 18]. It is
nature’s way of selective breeding.

5. Our Proposed Algorithm

This section describes a firefly mating algorithm (FMA),
which is built on top of the GA. FMA incorporates a new

mating feature, inspired by the mating behavior of fireflies in
nature, into GA.This new feature, which will be discussed in
Section 5.2, significantly contributes to the capability of the
proposed FMA.

FMA consists of three main processes: (i) a male selects
a female according to the level of her released pheromone
that he senses which changes according to wind speed and
direction; (ii) a female selects a male according the light
intensity of his flash; and (iii) a male or a female mates
repeatedly until he runs out of sperms or her spermatheca
is full, producing more able offspring for the next generation.
This algorithm proceeds from the first step to the last in the 6
following steps.

5.1. Initialization. An initial population of 𝑁 fireflies is ran-
domly generated; half are assigned asmales and the other half
are females. Each firefly consists of 𝑑 genes (which is equal
to the number of variables in the problem). Additionally, the
sizes of each female’s spermatheca and each male’s sperm
reservoir, which are real numbers between 0 and 1, are
randomly generated. Lastly, the fitness value of each firefly is
calculated.

5.2. Selection of Mating Pairs. This step features a new
method for determining the mating pairs. Unlike in the GA
where mating pairs are selected by using a roulette wheel
selection technique, our proposed algorithm introduces a
new selection method based on a process of firefly mate
selection. First, male fireflies are drawn to a female’s location
by following the pheromone that the female releases. Second,
the female selects males based on their brightness. Finally,
mating pairs are formed based on the mutual attraction of
each pair. By introducing this concept to the algorithm, it
provides a way to overcome the problem of getting stuck
in local optima, as is often the case with the roulette wheel
selection technique. A detail of this new selection method is
described in the following subsection.

5.2.1. Determination of Female Sex Appeal. Female sex appeal
is directly proportional to the amount of pheromone released
by the female. The pheromone released by the female firefly
diffuses downwind and reaches each male firefly in unequal
amounts depending on 2 factors: (i) the distance and (ii) the
speed and direction of the wind. In this subsection, therefore,
the male fireflies determine the concentration level of each
female’s pheromone reaching them. A highly fit female that is
farther away from a male can get selected by the male if her
highly concentrated pheromone gets carried along by a high-
speed wind towards the male. The concentration level of the
female 𝑖’s pheromone reaching themale 𝑗,𝑃𝑗𝑖, is calculated by
using

𝑃𝑗𝑖 = 𝑓𝑖 × (�⃗� ⋅ �⃗�) , (4)

where 𝑓𝑖 is the fitness value of a female firefly 𝑖, �⃗� is the wind
vector which is randomly generated in each iteration, and �⃗�
is the difference vector between the position vector of a male
and that of the female.
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5.2.2. Determination of Male Sex Appeal. In this subsection,
the female fireflies determine the appeal of each male in their
vicinity. Similar to the original FA, the appeal of a male firefly
is directly proportional to his brightness. Thus, by imitating
(1), the appeal of the male firefly 𝑗 seen by the female firefly 𝑖
is calculated according to the following equation:

𝐴 𝑖𝑗 = 𝑓𝑗𝑒−𝛾𝑟2 , (5)

where 𝐴 𝑖𝑗 is the appeal of the male firefly 𝑗 seen by the
female firefly 𝑖, 𝛾 is a constant in the range [0, 1], 𝑟 is
the Euclidean distance between the male and the female
(calculated according to (2)), and 𝑓𝑗 is the fitness value of the
male firefly 𝑗.
5.2.3. Calculation of the Mutual Attraction. According to the
degree of mutual attraction, a number of males and females
are paired together as potential parents. A pair whose mutual
attraction value is the highest among all pairs is selected as the
first mating pair. The mutual attraction between the female
firefly 𝑖 and the male firefly 𝑗, MA𝑖𝑗, is defined as

MA𝑖𝑗 = 𝐴 𝑖𝑗 + 𝑃𝑗𝑖. (6)

After eachmating, the numbers of sperms in themale’s sperm
reservoir and in the female’s spermatheca are updated. The
update procedure is described in the next subsection. Next,
the pair with the next highest value is selected if its male
member still has some sperms left in the sperm reservoir and
the female’s sperm bucket has not become full yet.

5.2.4. Update Procedure for Male’s Sperm Reservoir and
Female’s Spermatheca. At the beginning, the number of
sperms in each male’s sperm reservoir and the size of each
female’s spermatheca are randomly initialized within the
range [0, 1]. When a pair of male and female mates, sperms
are transferred from themale’s sperm reservoir to the female’s
spermatheca, and the number of sperms in the male’s sperm
reservoir is reduced. For each mating, the number of sperms
a male gives to the female he chose depends on her fitness.
The number of sperms that a male can transfer to the female
he chose is calculated by the following equation:

𝜂𝑖𝑗 = 𝛿𝑗 × 𝑓𝑖, (7)

where 𝜂𝑖𝑗 is the number of sperms transferred to the female at
the time of mating, 𝛿𝑗 is the number of sperms in the sperm
reservoir, and 𝑓𝑖 is the fitness value of a female firefly 𝑖. It
stands to reason that a fitter female should get more sperms
because, then, she would produce more offspring that are
fitter than those produced by other females.

After mating, the number of sperms in each male’s sperm
reservoir and the space of each female’s spermatheca are
checked. Once a male runs out of sperm or a female’s
spermatheca is full, he/she will be disqualified frommating in
the next round. Equations (8) and (9) are used to update the

number of sperms in a male’s sperm reservoir and a female’s
spermatheca, respectively.

𝛿new𝑗 = 𝛿old𝑗 − 𝜂𝑖𝑗, (8)

𝜔new𝑖 = 𝜔old𝑖 + 𝜂𝑖𝑗. (9)

Mating goes on until there is no qualified firefly left to form
the mating pair.

5.3. Crossover Operation. When a male and a female mates,
some of their genes are crossed over to form two new
offspring. One of the two following cases is applied with a
specific crossover procedure as follows.

Case 1. If the parents have never been mated before, the
2-point crossover operator (Figure 1) is used to create the
offspring. The 2-point crossover operator starts from ran-
domly selecting a start position and an end position in the
parent chromosomes to be crossed over, and then the genes
between these two positions are crossed over and placed in
the same position in the chromosomes of the two offspring,
each having the original genes from each parent before the
crossover.

Case 2. If either of the parents has been mated before,
the 𝑛-point crossover operator (Figure 2) is used to create
the offspring. The 𝑛-point crossover operator starts from
randomly selecting 𝑛/2 pairs of back-to-back start and end
positions, then crossing over the genes from the parents
between each pair of start and end position. The rest of the
genes are retained.
5.4. Mutation Operation. After an incipient offspring is pro-
duced from mating, some of its genes are randomly changed
(mutated) to new values within the range of the variables as
shown in Figure 3. The mutation is performed in order to
promote diversity of the population and to help avoid getting
stuck in local optima.

5.5. Selection of the Population for the Next Generation. After
all offspring are mutated, the 𝑁 best fireflies out of the
combined population of parents and offspring are selected
to replace the old population of parents; in effect, only the
more effective fireflies are selected to be the population of the
next generation. The selection is done by sorting members
by their fitness values and then selecting only the members
with the higher fitness values that make up the total number
of members of the initial population.

5.6. Termination. After the selection of a new population for
the next generation, the current iteration is completed. The
algorithm then moves on to perform the next iteration until
the specifiedmaximumnumber of iterations is reached or the
best solution does not improve for a predefined number of
iterations.
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Parent 1 0.34 0.25 0.44 0.12 0.05 0.27 0.11 0.24 0.32 0.11 0.41 0.03 0.33

Parent 2 0.23 0.41 0.55 0.18 0.34 0.07 0.23 0.12 0.22 0.18 0.17 0.43 0.09

O�spring 0.34 0.25 0.44 0.18 0.34 0.07 0.23 0.12 0.32 0.11 0.41 0.03 0.33

O�spring 0.23 0.41 0.55 0.12 0.05 0.27 0.11 0.24 0.22 0.18 0.17 0.43 0.09

Figure 1: Example of 2-point crossover.

Parent 1 0.22 0.35 0.24 0.42 0.15 0.67 0.31 0.27 0.22 0.81 0.31 0.03 0.23

Parent 2 0.67 0.01 0.05 0.08 0.64 0.27 0.53 0.12 0.27 0.25 0.97 0.13 0.09

O�spring 0.22 0.01 0.05 0.42 0.15 0.27 0.53 0.12 0.22 0.81 0.31 0.13 0.09

O�spring 0.67 0.35 0.24 0.08 0.64 0.67 0.31 0.27 0.27 0.25 0.97 0.03 0.23

Figure 2: Example of 𝑛-point crossover.
0.22 0.01 0.05 0.42 0.15 0.27 0.53 0.12 0.22 0.81 0.31 0.13 0.09

0.22 0.01 0.05 0.42 0.15 0.27 0.53 0.71 0.22 0.81 0.31 0.13 0.09

Figure 3: Example of the mutation operation.

6. Description of the Experiments

Our FMA algorithm was performance-tested on Core-i7
computers, and the test results were compared against those
of firefly algorithm (FA) and 11 other widely cited algorithms
in the literature, namely, ALC-PSO [10], COA [19], MCPSO
[20], LWGSODE [21], MPSODDS [22], DFOA [9], SHPSOS
[23], LSA [24], MPDPGA [25], DE [26], and GABC [27].
These algorithms were chosen as benchmarks because they
are variants of the prominent bioinspired algorithms such as
particle swarm optimization, genetic algorithm, differential
evolution algorithm, and artificial bee colony algorithm.
Moreover, from the literature, their performance was supe-
rior to that of their original counterparts. Twenty well-
known standard test functions (𝑓1–𝑓20) were employed to test
whether these algorithms would be able to solve all common
types of problems. In particular,𝑓1–𝑓16 are high-dimensional
(30 dimensions) that represent computationally complex
tasks while 𝑓17–𝑓20 are two-dimensional multimodal func-
tions. The descriptions of the test functions are shown in
Table 1. Table 1 provides the following information about
each test function: function ID, equation, dimension (𝑑),
search domain (𝑆), and optimum value (𝑓min). For each test
function, five experimental repetitions were performed with
different initial populations each time. Since the performance
of the metaheuristic algorithms strongly depends on proper

Table 2: The parameter setting.

Parameters Values
Population size 300
Maximum number of iterations 5000
Light absorption 0.2
Crossover rate 1.0
Mutation rate 0.2

selection of system parameters, as most of other intelligent
systems, the parameters of FMA are varied to a wide extent
in order to get the best out of the algorithm. As a result,
the best value for each parameter is shown in Table 2. The
performance of FMA was tested in terms of the following 3
aspects: (i) the best solution that an algorithm found, (ii) the
average number of iterations to reach the global optimum (in
the case that an algorithm has found it), and (iii) the success
rate or the number of times that an algorithmwas able to find
the global optimum divided by the total number of trials.

7. Results and Discussion

The performance of all compared algorithms in finding the
optimal solutions of 20 test functions is shown in Table 3.
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Table 4: Success rates and average numbers of iterations achieved by FMA and FA.

FMA FA
Average number of iterations Success rate Average number of iterations Success rate

f 1 126.8 100% 47.2 100%
f 2 51.6 100% 229.6 100%
f 3 32 100% N/A 0%
f 4 N/A 0% N/A 0%
f 5 214.4 100% 83 100%
f 6 158 100% N/A 0%
f 7 84.2 100% 120 100%
f 8 N/A 0% N/A 0%
f 9 62.8 100% 207.8 100%
f 10 90.8 100% N/A 0%
f 11 80 100% 162 100%
f 12 133.8 100% N/A 0%
f 13 101.5 40% N/A 0%
f 14 N/A 0% N/A 0%
f 15 113 100% N/A 0%
f 16 102.4 100% 284 100%
f 17 280.6 100% N/A 0%
f 18 171 100% N/A 0%
f 19 N/A 0% 64.2 100%
f 20 67 100% 125.2 100%

The number shown in each cell of the table is the best result
obtained by each algorithm. The symbol “—” denotes that
the algorithm was not tested on that function. Compared to
other algorithms, FMA surpassed them all with respect to the
percentage of functions in which the algorithm successfully
found the global optima. FMA was able to find the global
optima in 16 out of 20 functions tested (shown in bold
typeface in Table 3). FA found the global optima of 9 out of
20 test functions. It failed to find the global optima of test
functions 𝑓3, 𝑓4, 𝑓6, 𝑓8, 𝑓10, 𝑓12, 𝑓13, 𝑓14, 𝑓15, 𝑓17, and 𝑓18.
ALC-PSO found the global optima of test functions 𝑓6, 𝑓8,
and 𝑓10 but failed to find the global optima of test functions𝑓1, 𝑓2, 𝑓5, 𝑓7, 𝑓9, and 𝑓13. COA found the global optima of
test functions 𝑓1, 𝑓2, 𝑓6, 𝑓7, 𝑓10, and 𝑓20 but failed to find the
global optima of test functions 𝑓4, 𝑓5, 𝑓9, 𝑓12, 𝑓13, and 𝑓19.
MCPSO found the global optima of test functions 𝑓1 and 𝑓2
but failed to find the global optima of test functions 𝑓5, 𝑓7,𝑓9, 𝑓10, 𝑓12, and 𝑓18. LWGSODE and MPSODDS were not
able to locate the global optima in any of the functions tested.
DFOA successfully found the global optimum of only 1 out of
10 functions tested. SHPSOS found the global optima of test
functions 𝑓1, 𝑓2, 𝑓3, 𝑓6, 𝑓7, 𝑓8, and 𝑓16 but failed to find the
global optima of test functions 𝑓4, 𝑓9, 𝑓10, 𝑓12, 𝑓13, 𝑓17, and𝑓18. LSA found the global optima of test functions 𝑓6 and 𝑓20
but failed to find the global optima of test functions𝑓1,𝑓2,𝑓4,𝑓5, 𝑓7, 𝑓9, 𝑓10, 𝑓12, 𝑓13, and 𝑓19. MPDPGA found the global
optima of test functions 𝑓1, 𝑓7, and 𝑓11 but failed to find the
global optima of test functions 𝑓5, 𝑓9, and 𝑓10. DE found the
global optima of test functions 𝑓1, 𝑓2, 𝑓5, 𝑓6, 𝑓7, 𝑓10, and 𝑓20
but failed to find the global optima of test functions 𝑓4, 𝑓9,

𝑓12, and 𝑓13. DFOA successfully found the global optimum
of only 1 out of 9 functions tested.

Besides being very effective, FMA also has good con-
vergence performance. Table 4 shows the comparative con-
vergence performance of FMA and FA on the following 2
aspects: the average number of iterations to reach the global
optimum (in the case that an algorithm has found it) and
the success rate (the number of times that an algorithm was
able to find the global optimum divided by the total number
of trials). “N/A” denotes that the algorithm was unable to
find the optimal solution for that function. By examining
the results, the following are summaries of the finding. First,
FMA achieved 100% success rate for 15 out of 16 functions
in which FMA found the global optima. This means that
FMA almost always found the global optimum regardless of
the difference in the initial population of each experimental
trial. Second, as mentioned earlier, FMA was able to find the
global optima in 16 out of 20 functions while FA only found
9. Therefore, only eight functions (𝑓1, 𝑓2, 𝑓5, 𝑓7, 𝑓9, 𝑓11, 𝑓16,
and 𝑓20) in which both FMA and FA found the global optima
have been analyzed. Out of the 8 functions, FMA can achieve
the global optima with far fewer iterations than FA for the
functions 𝑓2, 𝑓7, 𝑓9, 𝑓11, 𝑓16, and 𝑓20, while FA has better
convergence rate for the functions 𝑓1 and 𝑓5.

The distinct advantage of FMA is the rich diversity of
offspring that it generates. Two main causes for this kind of
diversity are that FMA enables fireflies to perform multiple
mating and that the level of female pheromone that a male
senses depends not only on the distance between them but
also on the wind speed and direction which is randomly
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selected for each iteration. As a result, FMA is better able to
converge to a global optimum of a function that has a wide
and complex search space.

8. Conclusion

In this paper, a newmating pair selection technique, inspired
by the mating behavior of fireflies in nature, is proposed
and incorporated into the original firefly algorithm and
genetic algorithm. The performance of FMA was tested with
sixteen 30-dimensional benchmark functions and four 2-
dimensional functions against several widely accepted algo-
rithms.The test results showed that it was able to converge to
the global optima in 16 of them. Moreover, compared to the
firefly algorithm, FMA required fewer numbers of iterations
for most of the functions tested. Because of this initial
success, FMA is worth further investigation and application
to combinatorial optimization problems.
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