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Abstract: In the present study, an anti-bacterial film (Carr/POM film) was prepared through the
incorporation of Wells-Dawson polyoxometalate K6[Mo18O62P2] into κ-carrageenan-based polymers
using the tape-casting method. The mechanical properties, thermal stability, and morphology of the
prepared film were characterized. The obtained results showed that incorporation of K6[Mo18O62P2]
significantly affected the morphology and structure of the films. Moreover, the polyoxometalate-
based film demonstrated desirable bactericidal activity against Escherichia coli (Gram-negative) and
Staphylococcus aureus (Gram-positive). Carr/POM (@8 mg/mL) film resulted in an obvious inhi-
bition zone around the film in Kirby-Bauer disk diffusion test, which could also remove 99% of
S. aureus and E. coli on plastic, glass, and stainless steel. In addition, this anti-bacterial film also
demonstrated good biodegradability, which could be decomposed in soil in around 1 week. In
conclusion, the polyoxometalate-based film showed good anti-bacterial property against food-borne
pathogenic microbes, suggesting the prepared film has great potential to be developed as promising
food packaging.

Keywords: polyoxometalate; kappa-carrageenan; anti-bacterial film; biodegradable

1. Introduction

Microbial contamination poses a substantial threat to human health and causes huge
economic losses in food industry [1,2]. According to a report from the World Health
Organization (WHO), more than 600 million people worldwide suffer from microbial
foodborne illnesses annually, resulting in a more than $95 billion loss [3]. Packaging is
an essential component in the food industry, which can be used to maintain the integrity,
quality, freshness, and safety of foods. It could protect the food products from microbial
contamination, appearance damage, changes in color and texture, and reduce the incidence
of foodborne diseases [4].

In the past decades, development of novel anti-bacterial food packaging has drawn
great attention of scholars [5]. Especially, with the rise of ecological concerns, biodegradable
food packaging made from various biopolymers appeals to many researchers [6,7]. Among
the commonly used biopolymers, carrageenan is abundant in nature. Particularly, κ-
carrageenan has been widely adopted for the preparation of bio-based packaging materials
because of its excellent film-forming properties. Meanwhile, a number of studies have
shown incorporating anti-bacterial agents into carrageenan-based films is a promising
strategy to improve the anti-bacterial effect [8]. For instance, Nouri et al. [9] reported the κ-
carrageenan films containing 3% zataria multiflora plant extract could effectively inhibit the
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growth and reproduction of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Bacillus
cereus (B. cereus), and Pseudomonas aeruginosa (P. aeruginosa). Moreover, Duan et al. [10]
also reported that the κ-carrageenan/konjac glucomannan film containing 7% TiO2 nano-
particles showed an obvious anti-bacterial effect on Penicillium viridicatum, and the anti-
bacterial rate reached 79%. Furthermore, anti-bacterial packaging is one of the most
important active packaging, which can be used to preserve the quality and prolong the
shelf life of food products. For example, Abdillah et al. [11] successfully extended the shelf
life of cherry tomatoes to 10 days by iota-carrageenan-based film containing arrowhead
starch. Zhang et al. [12] also reported that polylactic acid film containing chitosan could
delay spoilage of fish fillets for 3 days by inhibiting the growth and reproduction of E. coli
and S. aureus.

Polyoxometalates (POMs) are a large group of discrete anionic metal-oxygen clusters
formed by the coordination of early transition metal atoms (usually in their highest oxida-
tion states) with oxygen atoms [13]. According to the ratio of center atoms to the hetero
atoms, the most prominent and commonly used polyoxometalates can be divided into
following types: Wells-Dawson, Keggin, Anderson, Waugh, Silverton, Lindqvist, Weakley,
Strandberg, Finke, and Preyssle [14]. The decades of polyoxometalates research have re-
vealed their great antimicrobial potential [15–18]. Particularly, Wells-Dawson and Keggin
polyoxometalates were found to be most potent in terms of sensitizing methicillin-resistant
S. aureus strains SR3605 and ATCC43300 among 76 tested POMs [19]. Moreover, in another
trial, Inoue et al. [20] reported Wells-Dawson polyoxometalates has stronger effects than
Keggin polyoxometalates in terms of sensitizing methicillin-resistant S. aureus. It is also
worth mentioning that besides its bactericidal activity, Wells-Dawson polyoxometalates
also showed great potential for food (especially the fruits and vegetables) preservation
due to its inhibitory effects on enzymatic browning. For instance, Lampl et al. demon-
strated that Wells-Dawson polyoxometalates could serve as tyrosinase inhibitors and
significantly slow down the browning of mushroom [21]. Similarly, Hu et al. also syn-
thesized a Wells-Dawson phosphotungstic polyoxometalate and confirmed its inhibitory
effects on mushroom tyrosinase [22]. Recent research also showed the polyoxometalates
could be used to prevent browning of apple slices [23] and lotus root slices [24]. Therefore,
Wells-Dawson polyoxometalates might be very promising anti-bacterial agents for food
preservation.

However, there is a notable paucity of literature describing the anti-bacterial films
based on the Wells-Dawson polyoxometalates. Therefore, in this study, research was carried
out to prepare an anti-bacterial film by incorporating Wells-Dawson polyoxometalate
K6[Mo18O62P2] into κ-carrageenan-based polymers with characterizing its physical and
mechanical properties. In addition, the anti-bacterial and degradation properties of the
film were also evaluated.

2. Materials and Methods
2.1. Materials and Methods

κ-carrageenan and glycerol were obtained from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China) Polyoxometalate (K6[Mo18O62P]) were synthesized according to the
previous literature [25]. Escherichia coli (E. coli) and Staphylococcus aureusin (S. aureus) were
purchased from China of Industrial Culture Collection (Beijing, China). LB broth and LB
broth with agar were ordered from Solarbio.
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2.2. Preparation of Carr/POM Film

κ-carrageenan powder (1%, w/v) and glycerol (0.05%, v/v) were dissolved in sterile
water at 80 ◦C and stirred magnetically for 30 min to obtain a clear, transparent, and
uniform film-forming solution. Wells-Dawson polyoxometalate K6[Mo18O62P2] powder
was dissolved in sterile water and then mixed with the film-forming solution with mag-
netic stirring at 60 ◦C for 20 min to obtain Carr/POM film-forming solutions at different
concentrations (0–8 mg/mL). Finally, the films were prepared by the tape-casting method
and dried in an oven with air circulation at 45 ◦C for 24 h. The prepared films were stored
at room temperature (25 ± 1 ◦C) and relative humidity of 50%.

2.3. Measurement of the Film Thickness

The film thickness was measured using a spiral micrometer (Guanglu 211-101). Ran-
domly selected 5 points on each film were determined and the obtained values were
averaged as the film thickness.

2.4. Measurement of Water Content in the Film

The film water content (WC) was measured by a TC-SFY-30 infrared fast moisture
tester (Beijing Tongde venture Technology Co., Ltd., Beijing, China). The film was placed
into the Infrared fast moisture tester and dried to constant weight. The weight loss was
recorded by the instrument as the water content of the film. Each film was measured three
times before the results were averaged.

2.5. Measurement of the Tensile Strength of the Film

The tensile strength (the maximum force value taken at rupture) of film was measured
according to the standard method described in ASTM-D638 [26]. The film samples were
cut into 1 cm × 5 cm in size and determined by fixing film strip on grips of AGS-J texture
analyzer (Shimadzu, Kyoto, Japan) with a crosshead speed of 0.5 mm/s and distance of
30 mm. Experiments were conducted in triplicate, and the tensile strength was calculated
as force (N) divided by the cross-sectional area (m2).

2.6. Measurement of Color and Transparency of the Film

The transparency of film was measured as previously reported by Sood et al. [27].
The film samples with a size of 1 × 5 cm were attached to the inner wall of cuvette. The
absorbance value (at 600 nm) was measured using a UV-Vis spectrophotometer (Mapada
Instrument Co., Ltd., Shanghai, China). Experiments were conducted in triplicate. The
opacity of the film is calculated as absorbance at 600 nm divided by the film thickness (mm)

The surface color indices (L, a, b values) of the film were measured using a colorimeter
(CM-5, Konica Minolta), which was calibrated using a white color standard. The total color
difference (∆E) was calculated using the ∆L*, ∆a*, and ∆b* values as follows:

∆E =

√
(∆L)2 + (∆a)2 + (∆b)2 (1)

2.7. Scanning Electron Microscopy (SEM)

SEM was used to determine the surface microstructure of the films. In brief, the film
was cut into a round piece with a diameter of 6 mm. The pieces mounted on a cylindrical
aluminum specimen holder were scrutinized under a JEOL JSM-6380lv scanning electron
microscope (JEOL Ltd., Tokyo, Japan).

2.8. Fourier-Transform Infrared Spectroscopy (FT-IR)

The molecular interaction between K6[Mo18O62P2] and κ-carrageenan was examined
by FT-IR. In short, the dried film was mixed and ground with dried potassium bromide
powder, and the tablet was prepared by the tablet-pressing method. The FT-IR spectra in
the range of 500–4000 cm−1 were then recorded and analyzed.
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2.9. Thermogravimetric Analysis

The thermal stability of Carr/POM film was tested by DSC/DTA-TG (STA449C/6/G,
NETZSCH Group). In brief, 3 mg of Carr/POM film was heated from 25 ◦C up to 600 ◦C at
a heating rate of 10 ◦C/min under a nitrogen gas flow.

2.10. Determination of Bactericidal Activity of Carr/POM Film
2.10.1. Kirby-Bauer Disc Diffusion Method

The experiment was carried out as reported by Yu et al. [28]. In short, the bacteriostatic
film was cut into small discs with a diameter of 6 mm. Then, they were pasted on the
surface coated with E. coli and S. aureus culture medium respectively. They were cultured
for for 24 h at 37 ◦C, removed, their bacteriostatic diameter was recorded, and photos
were taken.

2.10.2. Carrier Surface Disinfection Test

The experiment was performed using the method described by MSc et al. [29]. E. coli
and S. aureus bacterial solution were inoculated dropwise on stainless steel, glass, and
plastic respectively, and then Carr/POM anti-bacterial film was applied onto the carrier
surface for 30 min at 37 ◦C. The bacteria on both carrier surface and film were recovered
and enumerated using the plate colony count method.

2.11. Determination of Film Degradability in Soil

The film degradability was measured by adapting the experimental method reported
by Rech et al. [30]. In brief, the prepared films were wrapped with gauze and buried in the
soil with a depth of 10 cm at 25 ◦C, 80% humidity, and were taken out and photographed
every day to observe the degree of degradation.

2.12. Statistical Analysis

All experimental measurements were conducted at least in triplicate. The quantitative
results were presented as mean ± standard deviation. SPSS 26 software (IBM, Chicago, IL,
USA) was used to analyze the significance by Duncan multiple-range test (* p < 0.05).

3. Results and Discussion
3.1. The Effects of Polyoxometalate Concentration on the Thickness of the Film

The effects of polyoxometalate incorporation on the thickness of the Carr/POM film
were investigated. As illustrated in Figure 1A, the thickness of κ-carrageenan film without
polyoxometalate incorporation was 0.020 ± 0.003 mm, while the addition of polyoxomet-
alate at low concentration (≤4 mg/mL) had little impact on the thickness of the films.
However, further addition of polyoxometalate (8 mg/mL) resulted in a significant increase
in the film thickness (* p < 0.05). This may be attributed to increases in solid content or the
internal gap between the polymer chain and glycerol in the film matrix as a consequence of
polyoxometalate incorporation [31]. Indeed, this finding is consistent with a number of pre-
vious studies [9,32]. For example, the incorporation of bee pollen extract [33] and hazelnut
extract [34] into κ-carrageenan-based films also resulted in the increase in film thickness.
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Figure 1. Effect of polyoxometalate (POM) concentration on thickness (A), water content (B), and
tensile strength (C) of Carr/POM anti-bacterial films. Different lowercase letters represent significant
differences, and the same lowercase letters represent no significant differences (p < 0.05).

3.2. The Effects of Polyoxometalate Concentration on the Water Content of the Film

As illustrated in Figure 1B, compared with the control group, the addition of polyox-
ometalate in the prepared film led to an overall declining trend of the water content. The
κ-carrageenan film showed the highest water content (27.4% ± 8.4%), while the lowest
water content (10.1% ± 1.4%) was recorded in Carr/POM (@8 mg/mL) film among all
tested films. The possible causes of decreases in water content of Carr/POM films might
be newly-formed hydrogen bonds between polyoxometalate and κ-carrageenan/glycerol,
which reduced the formation of hydrogen bonds between κ-carrageenan/glycerol and
water, and therefore decreased the water content of the film [35,36].

3.3. The Effects of Polyoxometalate Concentration on the Tensile Strength of the Film

Tensile strength is an important mechanical property of packing materials [37]. Figure 1C
demonstrated that the tensile strength of prepared films showed a decreasing trend with
increasing polyoxometalate incorporation. The decreased mechanical properties of the
Carr/POM films may result from the formation of micropores on the film matrix as well as
the decrease in the intermolecular and intramolecular interactions between κ-carrageenan
polymer chains upon incorporation of polyoxometalates [32].

3.4. The Effects of Polyoxometalate Concentration on the Color and Opacity of the Film

Surface color and opacity of Carr/POM films are presented in Table 1 and Figure 2.
The film without polyoxometalate incorporation was nearly transparent without color,
while the Carr/POM films showed blue and light green (Figure 2A), as reflected by the
increases in the L and b values of Carr/POM films (Table 1). Notably, the film with 8 mg/mL
polyoxometalate incorporation showed less blue than films with polyoxometalate at lower
concentrations. This phenomenon might result from the different pH values of the forming
solution containing K6[Mo18O62P2] at different concentrations since research has already
revealed that polyoxometalates could be pH-responsive dyes [38].
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Table 1. Effect of the concentration of POM on the opacity and color of Carr/POM anti-bacterial
films.

Concentration
(mg/mL) Opacity L a b ∆E

0 22.704 ± 5.4115 a 20.960 ± 2.588 a 114.353 ± 5.542 a −41.59 ± 2.326 a 123.509 ± 5.455 a

1 23.028 ± 0.260 b 20.857 ± 2.051 a 115.267 ± 5.832 a −41.817 ± 2.353 a 124.405 ± 5.827 a

2 36.968 ± 2.980 b 23.423 ± 2.319 a 119.523 ± 9.984 a −43.720 ± 4.720 a 129.412 ± 11.189 a

4 90.031 ± 4.783 c 34.433 ± 4.702 b 90.787 ± 7.040 b −33.263 ± 3.178 b 102.779 ± 6.176 b

8 82.047 ± 2.024 c 40.653 ± 1.620 c 54.393 ± 1.747 c −18.927 ± 1.234 c 70.526 ± 0.816 c

Different lowercase letters represent significant differences, and the same lowercase letters represent no significant
differences (p < 0.05).
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anti-bacterial films incorporated with K6[Mo18O62P2] at different concentrations.

Meanwhile, the difference in transparency between neat carrageenan film and polyox-
ometalate incorporated films was also obvious. In general, the addition of polyoxometalate
significantly increased the opacity of the film (* p < 0.05). This may be because the addition
of the polyoxometalates hinders the transmission of light [39].
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3.5. The Effects of Polyoxometalate Concentration on the Microstructures of the Film

The apparent morphology of the film was next determined by scanning electron mi-
croscope. As illustrated in Figure 2B, the surface of film without polyoxometalate was
smooth and uniform, indicating κ-carrageenan has good compatibility with glycerol with-
out phase separation. Similarly, SEM images also showed no obvious difference between
the film surface of Carr/POM (@1 & 2 mg/mL) films and that of neat carrageenan film,
suggesting that the polyoxometalate could bind to the film matrix well at low concentra-
tions (≤2 mg/mL). However, with the further increase in polyoxometalate incorporation,
increased surface roughness or even some cracks appeared on the surface of the film,
especially at high concentrations (8 mg/mL). This phenomenon may result from the ag-
gregation of K6[Mo18O62P], making the surface less smooth. Similar results were also
reported, i.e., that incorporation of anti-bacterial agents (e.g., lycium barbarum extract [40],
mulberry anthocyanin extract [26]) into the κ-carrageenan films obviously affect the surface
smoothness. Indeed, these observations might also support the findings that incorporation
of polyoxometalates led to the increase in film thickness and decrease in tensile strength.

3.6. FTIR Spectroscopic Analysis of Carr/POM Film

FTIR spectroscopic analysis was performed to analyze the intermolecular interactions
of Carr/POM films, as illustrated in Figure 3. The FTIR spectrum of carrageenan film
has multiple characteristic peaks in the range of 500–4000 cm−1. At 3414 cm−1, a wide
and large absorption peak was attributed to the stretching vibration of O-H-O [26]. The
absorption peaks at 3114 cm−1, 2939 cm−1, 1160 cm−1, 1043 cm−1, 916 cm−1, and 847 cm−1

were due to O-H stretching, C-O stretching vibration, sulfate bonds, glycosidic bonds
in C-O mode, C-O stretching vibration, and C-O-SO3, respectively [40,41]. Additionally,
the peaks at 1641 cm−1 and 1420 cm−1 represented the bending of bound water. When
introducing the polyoxometalate into the film, changes in position and intensity of the
FT-IR peak were observed. For instance, the new appeared peak at 769 cm−1 was due to
Mo-Oc-Mo stretching vibration. In addition, it could also be found that the absorption
peaks of Carr/POM(@8 mg/mL) films changed from narrow to wide at 1043 cm−1 and
916 cm−1, which might be caused by Mo-Od and Mo-Ob-Mo, respectively [42].
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3.7. Thermogravimetric Analysis of Carr/POM Anti-Bacterial Film

The effect of polyoxometalate concentration on the thermal stability of the films was
analyzed by thermogravimetric analysis. The TGA and DTG profiles of κ-carrageenan



Foods 2022, 11, 586 8 of 14

control film and Carr/POM films are shown in Figure 4. All films exhibited three thermal
decomposition stages. The first thermal decomposition stage ranging from 30 to 90 ◦C is
due to the hydrophilicity of carrageenan, resulting in the evaporation of the water [43].
The second thermal decomposition stage was at 130–220 ◦C, mainly caused by the degra-
dation of glycerol [44]. Notably, the weight loss of Carr/POM (at 2 and 4 and 8 mg/mL)
films in this stage became not obvious. The third thermal decomposition stage occurred
at 210–250 ◦C, which mainly results from the thermal degradation of carrageenan ma-
trix [10]. In general, the TGA curves of κ-carrageenan control film and Carr/POM films
showed a high similarity, though the second and third stages of thermal decomposition
of Carr/POM films occurred at a relatively lower temperature compared with the control
film, revealing that polyoxometalates might reduce thermal stability of the films resulting
from the decreased interactions between polyoxometalates/glycerol and the κ-carrageenan
matrix [45]. Indeed, these observations might also support the finding that incorporation
of polyoxometalates led to the decrease in tensile strength of the films.
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3.8. Bactericidal Activity of Carr/POM Anti-Bacterial Film

As shown in Figure 5, the κ-carrageenan film as well as Carr/POM (at 1 and 2 mg/mL)
films showed little bactericidal effects against E. coli and S. aureus. In contrast, the
Carr/POM (@4 mg/mL) resulted in an obvious inhibition zone around the film in the
Kirby-Bauer disk diffusion test. The inhibition zone diameter further enlarged when the
polyoxometalate concentration increased to 8 mg/mL. Meanwhile, the results obtained
from the Kirby-Bauer disk diffusion test also suggested that the killing effects of Carr/POM
films against S. aureus were obviously stronger than E. coli. Indeed, the outer membrane
of Gram-negative bacteria has been proven to be the main reason for resistance to a wide
range of antibiotics (e.g., macrolides, glycopeptides, rifamycins, etc.) [46–48], which might
also explain the difference in the killing effects of Carr/POM films against E. coli and S.
aureus. Notably, it was also observed that the films containing polyoxometalates faded upon
incubation with bacteria for 24 h, therefore, we speculated that the release of embedded
polyoxometalates may greatly contribute to the antibacterial activity of the films.
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with K6[Mo18O62P2] at different concentrations (C). Different lowercase letters represent significant
differences, and the same lowercase letters represent no significant differences (p < 0.05).

Additionally, the application potential of Carr/POM films to clean the bacterial con-
taminated surface was explored. As shown in Figure 6, the Carr/POM anti-bacterial films
showed obvious bactericidal effects on S. aureus and E. coli on both stainless steel, glass,
and plastic. Compared with κ-carrageenan film, the sterilization rate of Carr/POM (at
8 mg/mL) film against E. coli and S. aureus on stainless steel, glass, and plastic could
reach 99%. Furthermore, similar to the observation in Kirby-Bauer disk diffusion test, the
Carr/POM exerted stronger killing effects against S. aureus compared with E. coli; while
the types of carriers also influenced the anti-bacterial activity of the films (glass > plastic >
stainless steel). This may be due to difference in the adhesion of microorganisms on various
material surfaces [49]. For instance, smooth surfaces (e.g., glass) often showed low level of
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bacterial adhesion, while rough surfaces may enhance the bacterial adhesion and reduce
the contact with the anti-bacterial film [50,51].
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3.9. Degradability of Carr/POM Anti-Bacterial Film in Soil

The biodegradability of the Carr/POM film was next explored. As shown in Figure 7A,
the κ-carrageenan film maintained intact in the first two days, gradually degraded after day
3, and finally become fully degraded on the day 7. Meanwhile, the Carr/POM (at 8 mg/mL)
film showed no breakage but gradually faded in the first two days; afterwards, obvious
cracks appeared, and the film finally completely degraded on the day 8 (Figure 7B). These
results suggested the Carr/POM films possess good biodegradability in soil, highlighting
their potential application as an environmentally friendly anti-bacterial material. This
observation was consistent with previous findings that the carrageenan-based films possess
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good biodegradability [52,53]. For instance, an edible film fabricated using iota-carrageenan
and arrowroot starch could be completely degraded in a week [11], while and κ-carrageenan
films containing curcumin-β-cyclodextrin could be degraded on day 7 [8].
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4. Conclusions

For a long time, polyoxometalates have been favored by researchers because of their
remarkable anti-bacterial properties, which are promising alternatives to the commercial
anti-bacterial agents [18,54,55]. In this work, an anti-bacterial film was prepared by in-
corporating the Wells-Dawson polyoxometalate into the κ-carrageenan matrix using the
tape-casting method. The prepared Car/POM film demonstrated good bactericidal proper-
ties against common foodborne bacteria including E. coli and S. aureus, as demonstrated in
both Kirby-Bauer disc diffusion assay and carrier surface disinfection tests. In addition,
our obtained results also suggested that addition of polyoxometalates at low concentra-
tion (≤4 mg/mL) only slightly changed the microstructure of films, while Carr/POM
(at 8 mg/mL) film showed desirable anti-bacterial activity with acceptable decreases in
the water content and tensile strength. Admittedly, further studies are needed before the
polyoxometalate-based film could eventually be used as commercial active food packaging
in the food industry. For instance, besides the mandatory safety assessment, it is also neces-
sary to assess the impact of this film on the appearance and texture of foods. In conclusion,
our current work suggested that polyoxometalates had great application potential as an
active agent to improve the anti-bacterial effect of the carrageenan film.
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