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Abstract

Background: The African buffalo (Syncerus caffer) is an important role player in the savannah ecosystem. It has
become a species of relevance because of its role as a wildlife maintenance host for an array of infectious and
zoonotic diseases some of which include corridor disease, foot-and-mouth disease and bovine tuberculosis. To
date, no complete genome sequence for S. caffer had been available for study and the genomes of other species
such as the domestic cow (Bos taurus) had been used as a proxy for any genetics analysis conducted on this
species. Here, the high coverage genome sequence of the African buffalo (S. caffer) is presented.

Results: A total of 19,765 genes were predicted and 19,296 genes could be successfully annotated to S. caffer
while 469 genes remained unannotated. Moreover, in order to extend a detailed annotation of S. caffer, gene
clusters were constructed using twelve additional mammalian genomes. The S. caffer genome contains 10,988
gene clusters, of which 62 are shared exclusively between B. taurus and S. caffer.

Conclusions: This study provides a unique genomic perspective for the S. caffer, allowing for the identification
of novel variants that may play a role in the natural history and physiological adaptations.
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Background
The African buffalo (Syncerus caffer) is the largest bovid
species in the African savannah ecosystem. Buffalo are of
great ecological importance because of their role as bulk
feeders in the grazing hierarchy. Due to their size they are
able to process taller and coarser grasses than most other
species [1], playing an important facilitative role for the
smaller grazers [2]. They inhabit zones with almost all
vegetation types, provided a permanent water source is
present. In addition, they are an important prey species
and have high economic value in the ecotourism and
hunting industries [3]. The African buffalo also hosts a
vast array of nematodes, pathogens and infectious diseases
and plays an important role in the maintenance and trans-
mission of economically important livestock diseases such
as foot-and-mouth disease (FMD), bovine brucellosis,
corridor disease and bovine tuberculosis (BTB) [4, 5]. For
numerous other diseases, buffalo may act as amplifier or

incidental hosts, as is the case with ehrlichiosis, Rift Valley
fever and anthrax [6]. It is assumed that the African buf-
falo, unlike some domestic bovids (e.g. cattle), may exhibit
partial resistance to some of these diseases, highlighting
the importance of understanding the genetic mechanisms
at work.
Advances in methods for characterizing the genetic vari-

ation in individuals, populations and species have revolu-
tionized ecological research. Population genetic diversity,
inbreeding, hybridization, species designations, dispersal
patterns and evolutionary processes are just a few of the
applications of genetic data in the conservation and man-
agement of wildlife [7, 8]. One of the greatest challenges
of working with non-model species is the lack of availabil-
ity of genome variation data with which to design these
studies [9]. The assembly of an accurate genome for im-
portant non-model study species provides an invaluable
resource for research. Complete and accurate reference
genome information prevents the erroneous identification
of polymorphisms, and misalignments [10]. In the absence
of a complete reference genome, a related species can be
used as a proxy reference to facilitate the identification of
various single nucleotide variants (SNVs), but the amount
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of sequence that can be accurately mapped may be insig-
nificant [11].
The identification of novel genetic variants in an im-

portant species such as the African buffalo may help to
provide answers to numerous genetic and other re-
search questions, including disease susceptibility, that
have heretofore been unattainable [12]. Previously, we
aligned buffalo short reads obtained from high-
throughput sequencing to the B. taurus genome as-
sembly to facilitate SNV discovery [13]. Here, we
present the first complete de novo assembled full-
length genome for the African buffalo with an assem-
bled N50 contig size reaching 43 kilobase pairs (kbp)
and an N50 scaffold length of 2.4 Mb, which repre-
sents the first fully sequenced and de novo assembled
sequence of the African buffalo. We carried out a
number of additional analyses, including evolutionary
analyses and genetic content. Our results will signifi-
cantly aid in understanding the genetics of the African
buffalo and contribute to the fields of molecular ecol-
ogy, population genetics and disease susceptibility,
ultimately supporting conservation and management
efforts.

Results
Twelve mate-pair libraries with different insert sizes were
prepared using DNA from a 2-year old male buffalo and
sequenced to a high (60-fold) coverage on an Illumina Hi-
Seq 2000 and assembled de novo. Following data filtration
and the removal of low quality reads, a total of 242.39
Gbp of usable sequence (equating to 89.78-fold coverage
of the whole genome) and an average read length of
78.67 bp was obtained (Additional file 1: Table S1). The
total length of the genome assembly equated to 2.68 Gbp
and a total of 1235 scaffold contigs made up 90% of the
genome assembly and 97.9% of the estimated length (Add-
itional file 2: Table S2). It was estimated that the genome

size of S. caffer is 2732 Mbp (Additional file 3: Figure
S1). A total of 19,765 genes were predicted and of these
a total of 19,296 genes were annotated to S. caffer while
a total of 469 genes could not be annotated (Table 1).
Data analysis and annotation of the non-coding RNA
identified a large number of miRNA and tRNA (31,940
and 36,163 respectively). The estimated heterozygosity
ratio of the sequenced buffalo was 0.6 × 10−3 (Additional
file 4: Figure S2) and we estimated 1,639,766 heterozygous
SNVs.
To extend a detailed annotation, the S. caffer genome,

gene clusters were constructed using twelve additional
mammalian genomes (Felis catus, Rattus norvegicus, Pan
troglodytes, Canis familiaris, Equus caballus, H. sapiens,
S. scrofa, O. aries, T. truncatus, B. taurus, Copelatus
ferus and M. musculus). The S. caffer genome contains
10,988 orthologous gene clusters and a total of 7321 are
shared among four species (Table 2; Fig. 1a). A total of 62
predicted gene clusters are shared exclusively between
S. caffer and B. taurus and 179 are unique to S. caffer
(Fig. 1a). It was determined that the divergence time
between S. caffer and B. taurus is 5.7–9.3 million years
ago (MYA) (Additional file 5: Figure S5).
To investigate signatures of selection we obtained a

total of 2236 1:1 orthologous gene sets in S. caffer, B.
taurus, C. ferus, O. aries, S. scrofa and T. truncates and
this was based on the gene family results. Finally, we in-
ferred 120 genes which contain positive selected sites in
buffalo. These include ubiquitin carboxyl-terminal
hydrolase 26 (UCHL26), Interleukin 19 (IL19) and Cyc-
lin B (CCNB). Based on the comparison of orthologous
gene families among the 12 mammalian species, the S.
caffer genome has 538 expanded and 2251 contracted
gene families when compared to B. taurus as a common
ancestor (Fig. 1b). The expanded genes were coupled to
a large variety of GO terms, including G-coupled protein
and olfactory receptors.

Table 1 Assembly and annotation of the S. caffer genome

Feature Size Source

SOAP de novo assembly – Supplementary Table 1

Estimated genome size (assembly and 17mer) 2732 Mb –

N50 contigs 43. kbp Supplementary Table 2

N50 scaffolds 2.4 Mb Supplementary Table 2

Average GC content 0.417 Supplementary Table 2

Coding genes a. 19,296 annotated 430.18 Mb –

b. 469 unannotated

Non-coding RNA (70,595 loci) a. 31,940 micro RNA 3.25 Mb Data not shown

b. 1593 small nuclear RNA 184.60 kbp

c. 36,163 transport RNA 2.64 Mb

d. 899 ribosomal RNA 93.94 kbp

Repetitive elements (37.21%) Tandem repeats 972.19 Mb Supplementary Table 3, 4, 5
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Discussion
The African buffalo has become a species of great inter-
est in recent years because it serves as maintenance host
for numerous infectious and zoonotic diseases such as
FMD, corridor disease and bovine tuberculosis [5]. In
addition, its high economic value in the ecotourism and
trophy hunting industries make this species invaluable
to game ranchers and breeders [4, 5, 14]. The African
buffalo is one of only three main species of buffalo
found in the world. The other two include the American

Bison (Bison bison) and the domesticated Asiatic buffalo
(Bubalus bubalis). Reference genomes of 2.82 Gbp and
2.77 Gbp have been assemble d for these respectively, but
are not publically available [15, 16]. The Bubalus bubalis
genome was found to encode 21,550 protein coding genes,
which is comparable to the African buffalo genome we re-
port here, which is 2.73 Gbp in size with a total of 19,765
predicted protein coding genes and of these 19,296 were
annotated. Moreover, the annotation of non-coding RNA
identified unexpectedly large numbers of miRNA and

Table 2 Summary of gene families of S. caffer and twelve other mammalian genomes

Species Total number of
orthologous genes

Number of
unclustered genes

Number of
gene families

Number of
unique families

Average number of
genes per family

F. catus 19,440 613 9549 14 1.97

R. norvegicus 22,656 432 9698 22 2.29

P. troglodytes 18,613 484 9580 25 1.89

C. familiaris 19,818 771 9508 16 2.00

E. caballus 20,372 229 9364 22 2.15

H. sapiens 22,214 371 9836 24 2.22

M. musculus 22,484 655 9718 45 2.25

S. scrofa 21,526 1860 9392 120 2.09

O. aries 20,786 523 9878 29 2.05

T. truncatus 16,476 245 9082 2 1.79

B. taurus 19,950 108 9552 1 2.08

S. caffer 19,292 1295 8888 52 2.02

C. ferusa 23,017 784 9269 16 2.40
aC. ferus genome was downloaded from NCBI(ftp.ncbi.nih.gov/genomes/Camelus_ferus), while all other genomes were download from
Ensemble release-78(ftp.ensembl.org/pub/release-78)
The figures in bold are intended to highlight the information obtained from the buffalo

Syncerus caffer

A B

Fig. 1 Analysis of orthologous gene families. a. Unique and shared gene families between the S. caffer genome and other species. b. Evolution of
ortholog gene clusters. The estimated numbers of ortholog groups in the common ancestral species are shown in the internal nodes. The
numbers of orthologous groups that have expanded or contracted in each lineage are shown on the corresponding branch, with + referring to
expansion and – referring to contraction. The S. caffer genome has 10,988 orthologous gene families and a total of 7321 are shared among four
species. A total of 62 are shared exclusively between S. caffer and B. taurus and 179 predicted genes that are unique to S. caffer. Both figures were
based on the comparison of orthologous gene families among thirteen mammalian species
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tRNA [17, 18]. The use of standard tools namely
tRNAscanner SE (version 1.23) as well as alignment
using BLAST and INFERNAL for de novo non-coding
RNA annotation consistently identified 31,940 miRNA
genes. The large number is implausible (data not
shown), suggesting the need for improved prediction
tools in some species including S. caffer.
Although big game species such as the African lion,

African elephant and the white rhino have been se-
quenced [19–21], the only suitable reference genome
publically available for the alignment of African buffalo
sequences was that of B. taurus [13]. S. caffer has 52
chromosomes [22] compared to the 30 chromosomes
found in B. taurus [23]. Our analyses here estimated
1,639,766 heterozygous SNVs in the sequenced buffalo,
compared to the 3,833,249 heterozygous variants identi-
fied in the Holstein B. taurus genome [24]. The African
buffalo is not an antecedent of the cow and their most
recent common ancestor is estimated to have existed ap-
proximately 5 - 10 MYA, at the time of divergence of the
sub-tribes Bubalina, which is composed of the Syncerus
and Bubalus genera and Bovina, comprising the Bos
and Bison genera [25, 26]. In previous work, we deter-
mined that only 19 to 23% of the low coverage buffalo
short reads mapped to the cow reference genome using
BWA and Bowtie, illustrating the need for a species-
specific reference [13].
We anticipate that the annotated African buffalo gen-

ome will facilitate our future genetic association studies
of susceptibility to BTB, which is a threat to conserva-
tion areas in South Africa [27]. Previously, we identified
novel SNVs by Sanger sequencing conserved regions
across species, a process that was time-consuming and
often resulted in non-specific amplification [28]. Alterna-
tively, we had to rely on short reads mapped to an unsuit-
able reference genome [13]. It will now be possible to
design species-specific primers for susceptibility genes of
interest, based on the gene annotation completed here.
Low coverage genome sequencing of additional buffalo
will allow us to establish a SNV database, which would
also be a resource for future population genetic and
disease association studies [29].
Several of the genes that were substantially expanded

and contracted in the African buffalo compared to other
mammals are involved in immunity. This includes the
contracted genes Chemokine (C-X-C motif ) ligand 2
(CXCL2) and complement component 8 alpha subunit
(C8A) as well as the expanded genes T cell receptor
gamma variable 3 (TRGV3) and Killer immunoglobulin-
like receptor KIR3DL splice variant 3 (KIR3DL). In total
it is estimated that there are 175 genes involved in im-
mune responses in the African buffalo and these are
possible candidate genes to investigate in disease suscep-
tibility studies.

Conclusions
In summary, the African buffalo genome offers unique
insight into the phylogenetic history and adaptation of an
ecologically important species. Additionally, the availabil-
ity of a complete reference genome allows for improved
mapping of short reads, thereby aiding in novel SNV
discovery and future genetic studies.

Methods
Buffalo blood was obtained from a number of S. caffer
individuals from the southern section of the Kruger
National Park, South Africa for other projects. Based on
the quantity and quality of the DNA available and to meet
the sequencing requirements, the DNA from a 2-year
old male was chosen for DNA sequencing. DNA was
extracted from whole blood using the salt-chloroform
extraction method [30]. No ethics approval was re-
quired as the DNA was collected and extracted for a
previous study, under the directive of South African
National Parks (SANParks), and its use in the present
study is incidental.

Genome assembly for S. caffer
All libraries were sequenced using an Illumina Hi-Seq
2000 instrument. The sequencing libraries were con-
structed with insert sizes of 170 bp, 500 bp, 800 bp, 2
kbp, 5 kbp and 10 kbp respectively. S. caffer genome
scaffolds (1235 scaffolds; N50 contig: 43 kbp, N50 scaf-
fold: 2.4 Mb) were aligned to the reference B. taurus
genome assembly. The protein coding genes in S. caffer
were determined through the integration of annotations
from homology-based methods as well as de novo gene
assembly. For homology-based prediction, proteins from
B. taurus, Homo sapiens, Mus musculus, Ovis aries, Sus
scrofa, Tursiops truncatus were mapped to the S. caffer
genome using TblastN [31] and were then submitted to
GeneWise version 2.2.0 [32] in order to obtain gene
models. For de novo prediction, two software programs
were used: SNAP [33] and AUGUSTUS [34].

Genome size evaluation
The genome size of an individual can be estimated from
the K-mer frequency of the read data. Importantly, the K
should be large enough that most of the genome can be
distinguished. For most eukaryotic genomes, a K-mer
value of 17 is used (K = 17). For the present study, a total
of 74 Gb (approximately 30X) of the data could be
retained for 17-mer analyses. Simulations were done to
estimate the heterozygosity ratio.

Genome assembly
The short reads were assembled using the latest version of
SOAPdenovo (http://soap.genomics.org.cn/soapdenovo.html),
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a genome assembler that has been developed for specific
use with next generation short read sequences [35].
SOAPdenovo uses the de Bruijn graph algorithm, which is
sensitive to sequencing errors and for this reason, only
high-quality, filtered data were used for the de novo as-
sembly. Gaps in the initial assembly were filled using Gap-
closer [35]. Short reads from fragmented small insert-size
libraries (<500 bp) were assembled into contigs using se-
quence overlap information. Contigs were not extended
into regions in which repeat sequences created ambiguous
associations. The resulting assembly contained a small
contig N50 with a length of 43 kbp and a scaffold N50
length of 2.4 Mbp.

GC content and sequencing depth analysis
The completeness of the genome assembly was evalu-
ated by aligning sequence reads to the newly generated
genome assembly and subsequently determining the per-
centage of total aligned reads. High quality reads i.e.
reads with a percentage of high quality bases that satis-
fies a user-specific cutoff, with an average coverage of
38-fold were aligned to the S. caffer genome using
BWA-MEM [36]. A total of 99.93% reads were aligned
to the assembly.
Variable GC content difference is a primary determin-

ant for the non-random distribution of sequencing depth
[37]. Moreover, the distribution of GC content vs. se-
quencing depth is a means of ascertaining sequencing
bias or contamination (Additional file 6: Figure S3 and
Additional file 7: Figure S4). Regions with very low GC
contents (<20%) or very high GC contents (>80%) will
have a low sequencing depth. Should specific regions of
the genome have a GC content that is significantly dif-
ferent from that predicted, it is reasonable to assume
that there may be bacterial, viral or fungal contamin-
ation in the sample and reads should be eliminated by
additional alignment. For the purposes of this study, two
sequencing depth distribution blocks were obtained; one
with an average sequencing depth of 38X and the other
with a sequencing depth of 19X. The sample that was
sequenced was a male, and it is anticipated that hemizy-
gous regions will have lower coverage depth because
there is only one allelic counterpart on the Y chromo-
some. A total of 2825 sequences are found at low cover-
age (19X) (Additional file 7: Figure S4) and were
subsequently aligned to the X and Y chromosomes of B.
taurus. It was found that 99.85% of the sequences align
directly to the X and Y chromosome of B. taurus while
0.6 and 0.64% align to the fungi and bacterial databases
respectively. It was therefore concluded that this block
of low coverage region forms part of the sex chromo-
somes and would thus not adversely affect the de novo
assembly.

Gene annotation

1. Repetitive element annotation
Tandem Repeats Finder (TRF) was used to identify
non-interspersed repetitive elements. Transposable
elements (TEs) were predicted in the homology
searches found in Repbase TE libraries using Repeat
ProteinMask and RepeatMasker (Additional file 8:
Table S3, Additional file 9: Table S4 and Additional
file 10: Table S5).

2. Non-coding RNA annotation
A total of four non-coding RNA (ncRNA) types
were annotated.
� micro RNA (miRNA)
� transfer RNA (tRNA)
� ribosomal RNA (rRNA)
� small nuclear RNA (sn-RNA)
All four of these RNA types were found in S. caffer
genome using the complete genome sequence.
Scanning for tRNA was performed using
tRNAscan-SE [38] by using a short interspersed
elements (SINEs) premasked genome to search for
reliable tRNA positions. The snRNAs and miRNAs
were identified by aligning with BLAST and
INFERNAL to search for putative sequences in
the Rfam database [39]. The rRNA fragments were
identified by aligning the rRNA template sequences
from the human genome using BlastN.

3. Gene prediction
The protein coding genes in S. caffer were
determined through the integration of annotations
from homology-based methods as well as de novo
gene assembly. For homology-based prediction,
proteins from B. taurus, H. sapiens, M. musculus, O.
aries, S. scrofa, T. truncates and mapped to the
buffalo genomes using TblastN [31] and were then
submitted to GeneWise [32] in order to obtain gene
models. For de novo prediction, two software
programs were used: SNAP [33] and Augustus [34]
with gene model parameters trained from H. sapiens,
and filtered partial genes and small genes that had
less than 150 bp coding length. This followed with
the alignment of the predictions to a TE protein
database using BlastP [31] with an E-value ≤ 1e-5
and filtered TE-derived genes that had more than
50% alignment rate (Additional file 11: Table S6).

Gene family construction
To determine the genetic evolution in S. caffer, gene cluster
analysis included the genomes of 13 mammals. Proteins of
all genes for each of the species chosen were analyzed
using Treefam [40]. All proteins sequences were aligned to
themselves using BlastP [31] with E-value cut-off of 1e-7
(Table 2).
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Phylogeny and divergence
A total of 1745 single copy gene clusters were identified
and were used to construct a phylogenetic tree of the 13
mammal species. MUSCLE [3] was used for alignment
and gaps removed by Gblocks [41]. A total of 2,265,138
(55.45%) remained and were used to construct the phyl-
ogeny. Moreover, the species divergence time was esti-
mated based on 195,689 fourfold degenerate sites via
Bayesian estimation approach using PAML [42]. The
phylogenetic relationship of S. caffer and twelve add-
itional mammals was predicted. The data can be
accessed using the following link: http://purl.org/phylo/
treebase/phylows/study/TB2:S20207?x-access-code=f3bd
b11f9f55ac0609abf60ab1c01255&format=html.

Gene family expansion and contraction
The evolutionary changes in the protein family size
(expansion or contraction) were analyzed using the
CAFÉ program [43]. This package assesses the protein
family expansion or contraction based on the topology
of the phylogenetic tree (Fig. 1).

Branch site positive selection
Orthologues were aligned using the PRANK alignment al-
gorithm available the GUIDANCE software program [44],
which can improve the performance of positive selection
inference by filtering out unreliable alignment regions.

Ka/Ks of S. caffer and B. taurus
The ratio of the total number of non-synonymous substi-
tutions per non-synonymous site (Ka) to the number of
synonymous substitutions per synonymous site (Ks), re-
ferred to as Ka/Ks, can be used as an indicator of selective
pressure acting on a protein-coding gene. In total, 19,994
orthologues from both S. caffer and B. taurus were chosen
using Reciprocal Best Hits (RBH) methodology [45] based
on the BLAST alignment. Subsequently, the coding re-
gions of the two species were aligned using webPRANK
[46] and unreliable regions were removed. Ka/Ks scores
were calculated using the KaKs Calculator [47].
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