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Freshwater wetlands are a major source of the greenhouse gas methane but at the same
time can function as carbon sink.Their response to global warming and environmental pol-
lution is one of the largest unknowns in the upcoming decades to centuries. In this review,
we highlight the role of sulfate-reducing microorganisms (SRM) in the intertwined element
cycles of wetlands. Although regarded primarily as methanogenic environments, biogeo-
chemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain
rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction,
which frequently occurs at rates comparable to marine surface sediments, can contribute
up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduc-
tion is thermodynamically favored relative to fermentative processes and methanogenesis,
it effectively decreases gross methane production thereby mitigating the flux of methane
to the atmosphere. However, very little is known about wetland SRM. Molecular analyses
using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] as marker
genes demonstrated that members of novel phylogenetic lineages, which are unrelated
to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the
dsrAB-containing wetland microbiota. These discoveries point toward the existence of so
far unknown SRM that are an important part of the autochthonous wetland microbiota. In
addition to these numerically dominant microorganisms, a recent stable isotope probing
study of SRM in a German peatland indicated that rare biosphere members might be highly
active in situ and have a considerable stake in wetland sulfate reduction.The hidden sulfur
cycle in wetlands and the fact that wetland SRM are not well represented by described
SRM species explains their so far neglected role as important actors in carbon cycling and
climate change.
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INTRODUCTION
Freshwater wetlands (from here on referred to as wetlands) com-
prise diverse habitats ranging from peatlands with and without
permafrost (e.g., ombrotrophic bogs and minerotrophic fens),
freshwater marshes (e.g., the Everglades or the Okavango delta),
freshwater swamps including riparian zones, constructed wetlands
for waste water treatment, and agricultural wetlands (Mitsch et al.,
2009; Kögel-Knabner et al., 2010; Vymazal, 2010). All wetlands
have in common that they are periodically or permanently water-
saturated soil environments with a characteristic vegetation and a
water table at or close to the soil surface (Mitsch and Gosselink,
2007). As a consequence, they are characterized by steep gradi-
ents in soil redox conditions that sustain a complex pattern of
biogeochemical cycling of elements (Limpens et al., 2008; Kögel-
Knabner et al., 2010). Natural wetlands can act as a net sink of
carbon depending on wetland type, age, and location as well as the
prevailing climate and environmental conditions (Blodau, 2002;
Bridgham et al., 2006; Kayranli et al., 2010). Over the past mil-
lennia, they accumulated up to one third of the terrestrial organic

carbon just considering peatlands (Limpens et al., 2008), which
represents half of the carbon that is in the atmosphere as carbon
dioxide (Dise, 2009). At the same time, anthropogenic wetlands
such as rice paddies are maintained for agriculture to provide food
for more than 50% of the world’s population (http://beta.irri.org).

Organic carbon degradation in wetlands is catalyzed by differ-
ent functional guilds of aerobic and anaerobic microorganisms,
whose competition for electron donors or syntrophic cooperation
determines how much of the carbon loss from wetlands proceeds
through the emission of carbon dioxide or the more potent green-
house gas methane (Clymo, 1984; Yao et al., 1999; Dedysh et al.,
2001; Frolking et al., 2001; Conrad, 2002; Horn et al., 2003; Loy
et al., 2004; Beer et al., 2008; Hamberger et al., 2008; Küsel et al.,
2008; Wüst et al., 2009). Although natural and anthropogenic wet-
lands together cover just 7% of Earth’s land surface (Batzer and
Sharitz, 2006; Limpens et al., 2008; Kögel-Knabner et al., 2010),
they are made responsible for 30–40% of the global emission of
methane (Houweling et al., 1999; Wuebbles and Hayhoe, 2002).
It is currently not clear how the carbon balance of wetlands will
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change in the upcoming decades to centuries due to global warm-
ing, which is connected to rising atmospheric carbon dioxide
levels and changes in precipitation amount and frequency (IPCC,
2007; Dise, 2009). Such variations of environmental conditions on
short- and long-term scales have important implications for the
biogeochemical cycling of elements in wetlands and govern tran-
sitions between synergistic and antagonistic trophic interactions
among wetland microorganisms, which ultimately also determine
the extent of carbon mineralization that is channeled through
methanogenesis.

Sulfur cycling in wetlands has been studied since the 1980s,
revealing that sulfate reduction operates at rates that are com-
parable to marine surface sediments, where this process is the
most important anaerobic degradation pathway for organic mat-
ter (Jørgensen, 1982 and references in Table 1). Nevertheless, the
importance of sulfate reduction for wetland biogeochemistry has
remained underestimated because standing pools of sulfate are
typically in the lower micromolar-range and were thus generally
interpreted to be too low to sustain sulfate reduction over longer
periods of time. This perception was perpetuated by the fact that
known taxa of sulfate-reducing microorganisms (SRM) were usu-
ally not detected at all or constituted only a very minor fraction of
the wetland microbiota (Costello and Schmidt, 2006; Dedysh et al.,
2006; Kraigher et al., 2006). However, a series of studies provided
cumulative evidence for a hidden sulfur cycle that contributes to
rapid recycling of sulfide to sulfate in low-sulfate environments

and thus sustains the observed high sulfate reduction rates (SRR;
Wieder and Lang, 1988; Jørgensen, 1990; Elsgaard and Jørgensen,
1992; Wind and Conrad, 1997; Mandernack et al., 2000; Heitmann
and Blodau, 2006; Blodau et al., 2007; Heitmann et al., 2007; Knorr
and Blodau, 2009; Knorr et al., 2009).

Because SRM couple sulfate dissimilation with heterotrophic
carbon degradation or carbon dioxide fixation, sulfate reduction
directly influences the carbon cycle in wetlands. SRM are known
to be metabolically versatile and are able to utilize a great variety
of substrates ranging from hydrogen, short-chained fatty acids,
and other degradation intermediates like ethanol and lactate up to
monosaccharides, amino acids, aromatic compounds, alkanes, and
alkenes (Rabus et al., 2006; Muyzer and Stams, 2008). In contrast,
organic polymers such as cellulose, proteins, or DNA and RNA
are typically not degraded by known SRM (Muyzer and Stams,
2008). Of importance is that SRM are energetically favored in the
competition for substrates with microorganisms involved in the
methanogenic degradation pathways, resulting in a considerable
diversion of the carbon flow from methane to carbon dioxide
(Gauci et al., 2004). This mitigating effect of sulfate reduction on
the methane flux from wetlands is expected to become even more
pronounced in the near future (Gauci et al., 2004). Despite success-
ful efforts to reduce aerial sulfur pollution in developed countries,
global SO2 emission is predicted to increase in the next decades
due to increasing untreated combustion of coal and other fossil
fuels in developing countries situated mainly in Asia (Smith et al.,

Table 1 | Summary of sulfate reduction rates in environments with low-sulfate concentrations (μM-range) as determined with

35SO2−
4 -radiotracer methods.

Habitat Site description Sulfate

(μM)

Sulfate reduction rate

(nmol cm−3 day−1)

Turnover of

sulfate pool (day)

Reference

Peatlands Schlöppnerbrunnen fen II, Germany 25–100 0–340 1.2–1.6 Knorr and Blodau (2009),

Knorr et al. (2009)

Big Run Bog, VA, USA 10–198 ∼3–7 1.1 Wieder and Lang (1988)

Bleak Lake Bog, AB, Canada 61 5 12.2a Vile et al. (2003b)

Oceán Bog, Czech Republic 417 170 2.5a

Cervené Blato, Czech Republic 832 180 4.6a

McDonalds Branch watershed, NJ, USA 10–150 1–173 Spratt et al. (1987)

Ellergower Moss, UK 28–127 2–15 Nedwell and Watson (1995)

Big Run Bog, VA, USA >0–350 2.5–1568 1.5b Wieder et al. (1990)

Buckle’s Bog, VA, USA >0–300 0.2–1883 5.8b

Everglades Water Conservation Area 2A, site F1, FL, USA ∼950 ∼120 7.9a Castro et al. (2002)

Water Conservation Area 2A, site U3, FL, USA ∼300 ∼30 10.0a

River floodplain Seine estuary freshwater mudflat, France 8–354 0–259 Leloup et al. (2005)

Great Ouse estuary, freshwater site 1, UK 0–1900 14–170 Trimmer et al. (1997)

Colne river estuary, freshwater site, UK 100–190 76–106 Kondo et al. (2007)

Rice paddies Bulk soil, Vercelli, Italy 4–150 12–97 0.3–0.5a Wind and Conrad (1997)

Rice rhizosphere, Vercelli, Italy 13–99 200–500 0.1–0.2a

Lake sediments Lake Constance, Germany 10–300 90–1800 0.1b Bak and Pfennig (1991a)

Wintergreen Lake, MI, USA <34 18–171 0.1b Smith and Klug (1981)

Little Rock Lake, WI, USA 6–62 0–70 0.3–1.3 Urban et al. (1994)

Lake Mendota, WI, USA 100–220 83–554 0.4–1.0 Ingvorsen et al. (1981)

aCalculated from data of the original study.
bReported mean.
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2005; Ward, 2009). Subsequent sulfuric acid deposition on wet-
lands by acid rain is predicted to stimulate sulfate reduction and
thus to cause a suppression of global wetland methane emission
by up to 15% (Gauci et al., 2004).

Here, we provide an overview on the process of sulfate reduc-
tion in wetlands, with a focus on ombrotrophic and minerotrophic
peatlands, river floodplains, and rice paddies. The first part of
this review highlights the biogeochemistry of sulfate reduction in
such wetlands, with insights into possible mechanisms that could
sustain rapid sulfur cycling. The second part summarizes current
knowledge on the identity and activity of SRM in wetlands, includ-
ing a meta-analysis of all sequences of the marker genes dsrAB that
were recovered from wetland microorganisms.

BIOGEOCHEMISTRY OF SULFATE REDUCTION IN
FRESHWATER WETLANDS
SULFATE REDUCTION IN FRESHWATER WETLANDS AND ITS IMPACT
ON CARBON CYCLING AND GREENHOUSE GAS EMISSION
Sulfate concentrations in natural wetlands and rice paddy soils are
typically in the micromolar-range and are thus often considered to
be too low to sustain long-term sulfate reduction. However, δ34S
values and the fact that wetlands can function as sulfate sink despite
their often low anion exchange capacity indicate that sulfate reduc-
tion is occurring over long time periods in these low-sulfate envi-
ronments (Spratt et al., 1987; Alewell and Gehre, 1999; Groscheova
et al., 2000; Alewell and Novak, 2001; Jacks and Norrström, 2004;
Novak et al., 2005; Paul et al., 2006; Alewell et al., 2008). Even
more striking, measured SRR can vary dramatically over time
and space in freshwater wetlands, ranging from non-detectable
to >100 nmol cm−3 day−1 and in extreme cases reaching even
values of >1.000 nmol cm−3 day−1 (Table 1). Often these rates
are in the same order of magnitude as observed SRR in marine
surface sediments, which are characterized by much higher sul-
fate concentrations (mM-range) and where sulfate reduction was
shown to be the most important anaerobic degradation process
(Jørgensen, 1982; Howarth and Jørgensen, 1984; Skyring, 1987).
These high SRR in freshwater wetlands initially raised concerns
about the reliability of such measurements, because these num-
bers would indicate a very rapid turnover of the complete sulfate
pools within hours to days and necessitate a rapid recycling of
sulfate. In many studies, SRR in low-sulfate environments were
measured by the 35S-radiotracer assay, where 35S-labeled sulfate is
added to either intact soil or sediment cores or to slurries thereof
(Jørgensen, 1978; Chapman and Davidson, 2001; King, 2001).
Thereafter, the turnover of labeled sulfate to sulfide is analyzed
after a given time interval (e.g., 90 min). The produced sulfide
either stays in solution as hydrogen sulfide or rapidly reacts to var-
ious forms of metal mono- or disulfides (mostly in combination
with iron) or to elemental sulfur. Therefore, the 35S-label is recov-
ered from the sum of these inorganic reduced sulfur species and
used in combination with the initial amount of 35S-sulfate tracer,
the overall sulfate pool, and the incubation time to calculate SRR
(for details see Kallmeyer et al., 2004). Although regarded as the
most reliable method to determine SRR, there are indeed a num-
ber of caveats (Jørgensen, 1978; Moeslund et al., 1994; Kallmeyer
et al., 2004; Canfield et al., 2005). For example, an overestimation
of sulfate concentrations, 35S-isotope exchange between sulfate

and more reduced sulfur species (S2−, S2−
n , S0), and a stimulation

of SRM by the added 35S-sulfate could lead to an overestima-
tion of the measured SRR. However, sulfate concentrations can
be reliably measured down to 0.15 μM (Tarpgaard et al., 2011),
35S-isotope exchange between sulfate and the more reduced sulfur
species was shown not to occur within 144 h (Fossing and Jør-
gensen, 1990), which is much longer than the typical incubations
times of 30–90 min (Wind and Conrad, 1997; Knorr and Blodau,
2009; Knorr et al., 2009) or the sometimes extended incubations
times of up to 48 h (e.g., Vile et al., 2003b), and the added tracer
(1 nmol per injection of ca. 50 kBq 35SO2−

4 , Kallmeyer et al., 2004)
represents a negligible fraction of the total sulfate pool, even at
wetland sulfate concentrations of only 1 μM. Also impurities in
commercially supplied 35SO2−

4 , which can constitute up to 0.05%
of the total radioactivity and co-extract with reduced sulfur com-
pounds during turnover measurements (Kallmeyer et al., 2004),
would not explain the high SRR measured in wetland samples.
On the contrary, an underestimation of SRR in freshwater wet-
lands is often more likely, especially when prolonged incubations
times are used (several hours to days), because of (i) re-oxidation
of reduced sulfur compounds to sulfate under anoxic conditions
(Jørgensen, 1990; Elsgaard and Jørgensen, 1992; Fossing, 1995), (ii)
35S-tracer back flux from sulfide to sulfate due to the reversibility
of enzyme reactions within the sulfate reduction pathway (Holler
et al., 2011), and (iii) the possible incorporation of reduced sulfur
species and thus of tracer into organic matter (Wieder and Lang,
1988; Wind and Conrad, 1997; Chapman and Davidson, 2001),
which would not be detected by the standard 35S-radiotracer assay
(Canfield et al., 1986; Fossing and Jørgensen, 1989; Kallmeyer et al.,
2004).

A number of peatland studies reported excess carbon dioxide
over methane production under anoxic conditions; results that
could not be explained by methanogenesis as the sole terminal
degradation process (Segers and Kengen, 1998; Vile et al., 2003a;
Yavitt and Seidmann-Zager, 2006; Blodau et al., 2007; Keller and
Bridgham, 2007; Wüst et al., 2009). It was hypothesized that the
excess carbon dioxide may stem from fermentation (Vile et al.,
2003a,b), but the typically lacking accumulation of fermentation
products (such as hydrogen or short chain fatty acids) lead to
the hypothesis that this carbon dioxide may stem from alternative
anaerobic degradation processes such as sulfate reduction, iron
reduction, organic matter reduction, or a combination thereof
(Wieder et al., 1990; Segers and Kengen, 1998; Blodau et al., 2007;
Küsel et al., 2008; Limpens et al., 2008). This was supported by the
fact that high SRR prevailed even under prolonged anoxic peri-
ods (16–228 days) and under depletion of the sulfate pools below
a detection limit of about 0.5 μM in large peat soil mesocosms
in the laboratory as well as in field plots (Figures 1A–D; Knorr
and Blodau, 2009; Knorr et al., 2009). The actual contribution of
sulfate reduction to anaerobic carbon mineralization in wetlands
has not yet been conclusively elucidated and so far mostly relies
on incubation assays rather than on in situ measurements. Never-
theless, for peatlands current estimates range from 0 to 50% using
inhibition assays of SRM by the addition of molybdate, which
functions as an intracellular competitor to sulfate (Blodau et al.,
2007; Keller and Bridgham, 2007), and from 1 to 36% using the
35S-radiotracer assay (Vile et al., 2003b).
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FIGURE 1 | Compilation of sulfate reduction rates from large peat soil

mesocosms [60 cm in diameter and 60 cm in depth; left column (A,C,E);

Knorr and Blodau, 2009] and from field samples [right column (B,D,F);

Knorr et al., 2009] of the German peatland Schlöppnerbrunnen II. Both,
data from mesocosm and field samples demonstrate decreasing maximum
sulfate reduction rates with increasing exposure to water logging, which
represents anoxic conditions (A,B). Maximum sulfate reduction rates

depended on prevailing sulfate concentrations (C,D) and a similar wide span
in sulfate reduction rates was observed above and below the water table with
the water table representing the transition zone between oxic to anoxic
conditions (E,F). Time spans in the legend represent the incubation time
(days) of soils below the water table (WT). Negative and positive values on
the abscissa (x -axis) in subfigure (E) and (F) represent relative positions
above and below the water table, respectively.

From a thermodynamic point of view, SRM typically out-
compete microorganisms involved in the methanogenic degra-
dation pathways such as primary and secondary fermenters,

homoacetogens, and methanogens for substrates (Muyzer and
Stams, 2008), thus diverting anaerobic carbon mineralization away
from methanogenesis to carbon dioxide production. However,
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SRM are also known to grow in syntrophic association with
hydrogen-scavenging methanogens or can themselves consti-
tute the hydrogen-scavenging partner in syntrophic associations
(Rabus et al., 2006). Especially under sulfate-limiting conditions,
it has been proposed that such syntrophic associations play an
important role in organic matter degradation, with hydrogen-
utilizing methanogens being replaced by hydrogen-utilizing SRM
(Muyzer and Stams, 2008). Indeed, SRM were shown to effec-
tively compete with methanogens for hydrogen and acetate at the
naturally occurring low sulfate and substrate concentrations in
different freshwater habitats ranging from peat and rice paddy
soil to lake sediments (lower micromolar-range of sulfate and
acetate and nanomolar-range for hydrogen; Lovley and Klug,
1983; Achtnich et al., 1995; Watson and Nedwell, 1998). At the
same time, molybdate inhibition assays of different peat soils
revealed that SRM and methanogens do not always compete but
can also form syntrophic associations as revealed by co-inhibition
of sulfate reduction and methanogenesis upon molybdate addi-
tion (Watson and Nedwell, 1998; Blodau et al., 2007), with the
inhibition of methanogenesis being reversible when additional
hydrogen was supplied (Watson and Nedwell, 1998). If anaero-
bic oxidation of methane (AOM) coupled to sulfate reduction,
an important process in anoxic marine environments that is cat-
alyzed by syntrophic consortia of archaeal methanotrophs and
SRM (Knittel and Boetius, 2009), takes also place in freshwater
wetlands is not completely clear. From a thermodynamic point
of view, AOM coupled to sulfate reduction would yield a ΔG of
−14 to −19 kJ/reaction under the substrate concentrations occur-
ring in wetlands (Smemo and Yavitt, 2011), which overlaps with
energy yields of AOM observed in marine sediments (ΔG = −18
to −35 kJ/reaction, Thauer, 2011). There are a few studies that
found hints for AOM in wetlands, however, with no clear con-
nection to sulfate reduction (Smemo and Yavitt, 2011). Adding to
these intertwined relationships between SRM and methanogens
in freshwater wetlands, seasonal shifts in the dominance of sulfate
reduction over methanogenesis and vice versa were observed for
two peatlands in the UK (Nedwell and Watson, 1995; Watson and
Nedwell, 1998). When combining the carbon flow through sulfate
reduction and methanogenesis (but not taking other anaerobic
degradation processes into account), the contribution of sulfate
reduction ranged from 6–96%. However, it was not clear whether
the dominance of sulfate reduction was an effect of higher natural
sulfate concentrations (up to 700 μM), lower temperatures during
winter time, or a combination of both (Nedwell and Watson, 1995;
Watson and Nedwell, 1998).

On the scale of field manipulation studies, deposition or exper-
imental addition of sulfate has been shown to reduce net methane
emissions from natural wetlands (Dise and Verry, 2001; Gauci
et al., 2002, 2004) and rice paddies (Lindau et al., 1993; Yagi et al.,
1997; van der Gon et al., 2001) for prolonged time periods span-
ning from several weeks to 2 years. In this respect, it should be
noted that not only stimulated sulfate reduction might have led to
a suppression of methanogenesis but also increased plant growth
by a fertilization effect of added sulfur in sulfur-deficient soils such
as nitrogen/phosphorous-fertilized rice paddies or ombrotrophic
peatlands. For rice plants, it was suggested that this fertiliza-
tion effect would lead to a redirection of photosynthate to grain

production, accompanied by reduced rhizospheric carbon leakage
and thus reduced root-derived substrate supply to methanogen-
esis (Gauci et al., 2008). Also in ombrotrophic peatlands, a large
fraction of sulfur deposited by rain was repeatedly observed to be
scavenged by the living plant layer (Urban et al., 1989; Steinmann
and Shotyk, 1997; Blodau et al., 2007; Bottrell et al., 2010). How-
ever, if this directly influences peatland methane gross production
or emission has not been investigated in detail so far.

SULFUR CYCLING IN WETLANDS: SPATIOTEMPORAL DIFFERENCES OF
REDOX CONDITIONS AND A HIDDEN ANOXIC SULFUR CYCLE
Ongoing sulfate reduction in wetlands, which can be observed over
long time periods despite small pool sizes, needs either an effec-
tive recycling mechanism for sulfate to prevent rapid depletion of
the sulfate pool and/or a constant external input of sulfate, e.g.,
through atmospheric deposition, groundwater flow, and/or the
overlaying water. Reported turnover times of sulfate pools were
often as short as hours to days (Table 1) and only a fraction thereof
could be explained by externally supplied sulfate (Wieder and
Lang, 1988; Urban et al., 1994; Nedwell and Watson, 1995; Wind
and Conrad, 1997). This has led to the suggestions that recycling
of reduced sulfur compounds to sulfate is the main mechanisms
that drives sulfate reduction in wetlands (Wieder and Lang, 1988;
Jørgensen, 1990; Wieder et al., 1990; Urban et al., 1994; Nedwell
and Watson, 1995; Wind and Conrad, 1997; Blodau et al., 2007).

Recycling of reduced sulfur compounds to sulfate can be com-
plex and may occur at different spatiotemporal scales as well as
under oxic and anoxic conditions. On large spatial scale, modeling
studies suggest that water movement and mixing in the capillary
fringe (i.e., the soil layer in which groundwater seeps up from
the water table to fill soil pores by capillary action) and shallow
groundwater (Reeve et al., 2006) as well as different flow paths
of water through wetland soils (Fleckenstein et al., 2011) may
be important for creating redox gradients and for the provision
and recycling of electron acceptors. Also a temporal decoupling of
sulfate reduction and re-oxidation of reduced sulfur compounds,
such as during short-term (Deppe et al., 2009; Knorr and Blodau,
2009) or seasonal water table fluctuations (Alewell and Novak,
2001), which influences the transition zone from oxic to anoxic
conditions, is possible. This is supported by experimental evi-
dence, where recycling of sulfur compounds along an elevational
transect through a North American peatland (Mandernack et al.,
2000) and heterogeneous distribution of sulfate reduction and
sulfide re-oxidation on the range of tens to hundreds of meters
in a small catchment in Central Europe (Alewell et al., 2006) was
observed over the course of different seasons by δ34S signatures
and 35S-sulfate incubations.

Recycling of reduced sulfur compounds does also occur on a
smaller scale of millimeters and a number of mechanisms have
been identified to chemically or microbiologically re-oxidize sul-
fide to sulfate, thiosulfate, or elemental sulfur (Kelly et al., 1997;
Wind and Conrad, 1997; Canfield et al., 2005; Friedrich et al.,
2005; Gregersen et al., 2011). A common feature of sedges and
graminoids in wetlands and also of rice plants is the formation
of aerenchymatic tissues to provide oxygen to their rooting sys-
tem (Wind and Conrad, 1997; Brune et al., 2000; Pezeshki, 2001).
Therefore, root surfaces of aerenchymatic plants have been shown
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to provide highly reactive interfaces of oxic and anoxic conditions
that allow for rapid recycling of electron acceptors, such as reduced
iron and sulfides (Roden and Wetzel, 1996; Wind and Conrad,
1997; Segers and Leffelaar, 2001). In addition, electric currents in
marine sediments, which were proposed to be mediated by bac-
terial pili (nanowires), were shown to span from the sulfidic zone
over a 12-mm distance to the oxic surface layers, thereby fueling
sulfide re-oxidation at depth and effectively extending the zone,
in which electron acceptor resupply can fuel ongoing respiratory
activity (Nielsen et al., 2010). This surprising finding has so far not
been described for freshwater wetlands but there is no reason why
this phenomenon should be limited to marine surface sediments.

Recycling of sulfides to oxidized sulfur species may also occur
in the absence of oxygen, which is often not evident at first
sight. However, high SRR that proceed over long time periods
(>100–200 days) under anoxic conditions as observed, e.g., in
peat monoliths and in field studies of the minerotrophic peat-
land Schlöppnerbrunnen II in Central Europe (Knorr and Blodau,
2009; Knorr et al., 2009; Figures 1A,B,E,F), can only be explained
by an anoxic sulfur cycle. Although there is no final proof yet
how this anoxic recycling proceeds, there is cumulating evidence
that iron minerals and redox-active organic matter might play a
role in the first step of sulfide oxidation to either elemental sul-
fur/polysulfide or thiosulfate (Figure 2). In marine sediments, it
has been demonstrated that sulfides react with iron oxides to form
Fe(II) (Canfield, 1989). The sulfides in this reaction are oxidized
mainly to elemental sulfur and to a smaller extend to thiosulfate
as inferred from incubations mimicking environmental condi-
tions but free of microorganisms (Pyzik and Sommer, 1981). This
process is strongly dependent on the reactivity of the present iron

oxides and their surface properties (Canfield et al., 1992; Peiffer
and Gade, 2007) and subsequent formation of iron sulfides, Fe(II)
sorption, and associated surface passivation of iron minerals could
limit this process over time (Elsgaard and Jørgensen, 1992; Roden
and Urrutia, 2002). In rice paddy soil and iron-rich peatlands, for-
mation of Fe(II) under anoxic conditions was repeatedly observed
and often attributed solely to microbial iron reduction (Yao et al.,
1999; Küsel et al., 2008; Knorr et al., 2009; Hori et al., 2010). How-
ever, Fe(II) formation could, at least partially, also be attributed
to sulfide re-oxidation on iron oxides since this is a fast process
taking place in the order of minutes to days (Peiffer and Gade,
2007). Therefore, it could be implied that not only in marine sed-
iments but also in iron-rich wetland soils there is a competition
between microbial Fe(III) reduction and chemical reduction of
Fe(III) mediated by sulfide oxidation. The interaction of iron and
sulfur has so far not been adequately investigated in wetlands and
further investigations about the complex geochemistry of iron and
sulfur in organic rich soils are needed.

From diagenetic studies it is known that sulfides may react with
organic matter and form organic forms of sulfur also during early
stages of diagenesis (Brown, 1986; Ferdelman et al., 1991; Bottrell
et al., 2010), e.g., by addition of sulfur to quinone moieties, poly-
sulfide bonds, formation of thiol-groups (S-H), or sulfate esters
(Vairavamurthy et al., 1992; Ghani et al., 1993; Kertesz, 2000; Per-
linger et al., 2002). Sulfate esters of small molecular size have been
demonstrated to be utilized as alternative terminal electron accep-
tor by some SRM (Lie et al., 1996, 1998; Visscher et al., 1999), thus
also supporting SRM activity in absence of inorganic sulfate. More
recently, it has been demonstrated that humic substances can also
mediate re-oxidation of sulfides and thus fuel an anoxic sulfur cycle

FIGURE 2 | Schematic overview of the proposed sulfur cycle in freshwater wetlands. Abbreviations: DOM-Q, quinone moieties of dissolved organic
matter, R − O − SO−

3 , organic sulfate esters, TRIS, total reactive inorganic sulfur, CBS, carbon bonded sulfur.
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(Heitmann and Blodau, 2006; Heitmann et al., 2007). Although
the electron transfer capacity of dissolved organic matter toward
sulfides was relatively low in the study of Heitmann et al. (2007),
advances in methodological approaches such as electrochemical
determination of electron accepting capacities of dissolved organic
matter (Aeschbacher et al., 2010) or including the solid phase
material (Roden et al., 2010) may reveal a greater contribution
of organic matter to total electron accepting capacities. Therefore,
natural organic matter may be a key to an anoxic cycling of sul-
fur (Blodau et al., 2007). However, it needs to be kept in mind
that the addition of sulfur to organic matter also provides a sink
for sulfur and thus reduces the amount of sulfur to be recycled.
One may thus hypothesize that during longer exposure to anoxic
conditions, SRR tend to decrease possibly also because of a loss of
sulfur into the organic fraction (e.g., Figure 1A). Indeed, a large
part of sulfur in peatlands and rice paddy soils (25 to >80%) is
bound to the organic fraction (Wieder and Lang, 1988; Urban et al.,
1989; Steinmann and Shotyk, 1997; Wind and Conrad, 1997; Man-
dernack et al., 2000) and investigations of stable sulfur isotopes
support that a large fraction of non-humic organosulfur com-
pounds (e.g., S-containing fulvic acids) are formed by reactions
of microbiologically produced sulfides and organic matter, while
humic organosulfur may preferentially originate from plant mate-
rial (Bottrell et al., 2010). If non-humic organosulfur compounds
are transformed to humic acid-bound sulfur during diagenesis or
if this sulfur is mainly released again as inorganic sulfur available
for re-oxidation, as observed in estuarine sediments (Brüchert,
1998), is yet poorly understood.

The known products of anoxic sulfide re-oxidation include ele-
mental sulfur, thiosulfate, or polysulfides (S2−

n , Jørgensen, 1990;
Canfield et al., 1992; Thamdrup et al., 1993; Heitmann and Blodau,
2006; Peiffer and Gade, 2007). Thiosulfate and elemental sulfur
are known to be used for energy generation by anaerobic microor-
ganisms including SRM. These sulfur compounds can be either
reduced back to sulfide, disproportionated to sulfate and sulfide,
or in the case of elemental sulfur and in the presence of Mn(IV) be
oxidized completely to sulfate (Bak and Cypionka, 1987; Tham-
drup et al., 1993; Lovley and Phillips, 1994; Rabus et al., 2006). For
freshwater sediments at neutral pH, 35S-radiotracer assays showed
that of all the sulfur that is anoxically recycled through thiosul-
fate 6% gets completely oxidized to sulfate, 50% gets completely
reduced to sulfide, and 44% gets disproportionated to sulfate and
sulfide (Jørgensen, 1990). Due to this large shunt of thiosulfate
directly back to sulfide, only 28% of the recycled sulfide ends up
again in the sulfate pool, which would only partially explain how
the high SRR are maintained in wetlands under anoxic conditions.
Comparable flux measurements do not exist for elemental sulfur
because of rapid exchange of isotopes between the pools of S0, S2−

n ,
H2S, and FeS (Fossing and Jørgensen, 1990). However, microbially
mediated disproportionation of elemental sulfur would lead to a
1:3 stoichiometry of produced sulfate to sulfide and would also
not explain sufficient replenishment of the sulfate pool.

An alternative explanation that could support a major flux from
sulfide to sulfate is through the intermediate elemental sulfur with
its complete oxidation being mediated by unknown oxidants (e.g.,
redox-active organic matter). That such a reaction is in princi-
ple possible is known from the complete oxidation of elemental

sulfur mediated by Mn(IV) as observed in enrichment cultures
(Lovley and Phillips, 1994) or by the stimulation of sulfate produc-
tion from sulfide by addition of nitrate to a bioreactor inoculated
with wetland soil and operating under anoxic, freshwater con-
ditions or to marine surface sediments (Elsgaard and Jørgensen,
1992; Haaijer et al., 2007). However, manganese and nitrate pools
are generally too small in wetland types such as peatlands and
rice paddies (Murase and Kimura, 1997; Yao et al., 1999; Alewell
et al., 2006; Koretsky et al., 2007) to sustain massive sulfur oxi-
dation over prolonged time periods. Minding the redox potential
of the MnO2/Mn2+ couple (E ′

0 = +390 mV), manganese could
theoretically function as a redox shuttle between reduced sulfur
compounds and electron acceptors with a higher redox potential
than manganese (e.g., oxygen). The insolubility of MnO2 in water
may nonetheless hamper the activity range of such a MnO2/Mn2+
redox shuttle. Also the idea of an NO−

3 /NH+
4 redox shuttle seems

unlikely because this would necessitate a close coupling of oxic
ammonia oxidation and anoxic nitrate ammonification under the
exclusion of competing processes such as denitrification of nitrate
to N2 and ammonia/nitrate uptake by plants, which both would
further deplete the inorganic N pool in wetland soils. On the other
hand, redox potentials and associated electron transfer capaci-
ties of humic acids, and probably also of other dissolved and
solid organic matter, span a wide range (> +150 to < −350 mV;
Aeschbacher et al., 2010) and may therefore especially in carbon
rich wetlands provide a significant electron accepting capacity.

Adding to the complexity of anoxic sulfate recycling, Schip-
pers and Jørgensen (2001) could show for marine sediments that
pyrite (FeS2), a major sulfur compound in sediments that forms
from the reaction of H2S or S2−

n with iron minerals such as FeS
(Schippers and Jørgensen, 2001; Holmkvist et al., 2011a and ref-
erences therein), is not a stable end product of sediment sulfur
transformations but can also be completely re-oxidized to sul-
fate in the presence of MnO2 as a terminal electron acceptor with
Fe(III)/Fe(II) functioning as a redox shuttle. Also the addition of
nitrate to pyrite-amended groundwater (Jørgensen et al., 2009)
and pure cultures of Thiobacillus denitrificans (Bosch et al., 2012)
triggered oxidation of pyrite to sulfate, further highlighting the
potential role of pyrite as an intermediate in sulfur cycling. Cur-
rently, it is not clear if similar processes also occur in freshwater
wetlands, possibly involving organic matter as alternative electron
acceptor to MnO2 and nitrate. In summary, several concepts have
been put forward how the observed high SRR can be maintained
over long periods of time under anoxic conditions. However, each
of these concepts needs further experimental validation.

DIVERSITY AND ACTIVITY OF SULFATE-REDUCING
MICROORGANISMS IN WETLANDS
THE IDENTITY OF SULFATE-REDUCING MICROORGANISMS IN
WETLANDS IS LARGELY UNKNOWN
Anoxic conditions, high sulfate concentrations (up to 28 mM),
and the large extent of marine surface sediments render sulfate
reduction a main driver of anaerobic carbon mineralization in
the oceans. Marine surface sediments are thus considered the
prime habitats for SRM. Consequently, numerous studies have
determined the microbial community structures in these habitats
through isolation and taxonomic description of sulfate-reducing
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strains and complementary molecular diversity surveys. We thus
know today that a dominant fraction (up to 20–40%) of the
microbial community in marine sediments consists of microor-
ganisms that are related to validly described SRM species (e.g.,
Ravenschlag et al., 1999; Musat et al., 2006; Uthicke and McGuire,
2007; Orcutt et al., 2011; Teske et al., 2011). This is in stark con-
trast to freshwater wetlands, where taxa including known SRM
are rarely detected or constitute only a minor fraction (<1%) of
the microbial community, if general molecular diversity surveys
based on bacterial or archaeal 16S rRNA gene clone libraries are
performed (e.g., Costello and Schmidt, 2006; Dedysh et al., 2006;
Kraigher et al., 2006; Lu et al., 2006; Jackson et al., 2009; Wil-
helm et al., 2011). Only the application of cultivation or targeted
molecular approaches revealed that members of recognized SRM
taxa are actually present in freshwater wetlands. First evidence for
the existence of SRM that thrive in low-sulfate environments were
provided by enrichments from lake sediments (Bak and Pfennig,
1991b; Ramamoorthy et al., 2006), rice paddy fields (Dalsgaard
and Bak, 1994; Wind and Conrad, 1995; Wind et al., 1999), per-
mafrost soil (Vatsurina et al., 2008), and constructed wetlands (Lee
et al., 2009) and included Desulfovibrio, Desulfobulbus, Desulfo-
tomaculum, and Desulfosporosinus spp. In parallel, taxa including
known SRM were also detected by targeted molecular analyses
such as (quantitative) PCR assays with taxa-specific 16S rRNA
gene-targeted primers (Scheid and Stubner, 2001; Stubner, 2002,
2004; Stahl et al., 2007) and/or with the DSR1F–DSR4R primer
variants targeting the functional marker genes dsrAB (Wagner
et al., 2005; Steger et al., 2011; Table 2). The latter genes encode the
alpha- and beta-subunits of dissimilatory (bi)sulfite reductase that
is used by SRM for energy conservation. Although a few horizontal
gene transfer events have slightly worsened the usefulness of dsrAB
as phylogenetic marker genes (Zverlov et al., 2005), the founda-
tion of these molecular 16S rRNA gene- or dsrAB-based diversity
studies is that an unknown environmental sequence can be phy-
logenetically assigned with high likelihood to a described taxon,
if the sequence branches unambiguously within this taxon. Using
this rationale, members of the families Desulfobacteraceae and
Syntrophobacteraceae and bacteria related to Desulfobacca acetox-
idans were identified in more than half of the wetlands listed in
Table 2. Members of other SRM families/family level lineages in
the Deltaproteobacteria and the Firmicutes can also be regularly
detected using these targeted approaches. Given their thermophilic
lifestyle, it is not surprising that bacterial SRM of the phylum Ther-
modesulfobacteria and the genus Thermodesulfovibrio or archaeal
SRM of the genera Archaeoglobus and Caldivirga have so far not
been found in freshwater wetlands.

However, inferring ecophysiological properties of the detected
SRM taxa in wetlands is notoriously difficult because even main
metabolic properties of SRM, such as complete versus incomplete
organic substrate mineralization, substrate utilization preferences,
and alternative options for energy conservation such as fermen-
tation or syntrophy with methanogens cannot be clearly inferred
from phylogenetic analyses of 16S rRNA genes or dsrAB (Stahl
et al., 2007; Loy et al., 2008). For many of the wetland microor-
ganisms that belong to known SRM taxa and were detected using
cultivation-independent approaches, it even remains unknown if
they are truly capable of dissimilatory sulfate reduction. This is due

to exceptions of the generally close correlation of sulfate-reducing
metabolism and 16S rRNA and/or dsrAB phylogeny. For example,
the butyrate-utilizing marine syntroph Algorimarina butyrica is
not capable of reducing sulfate but, based on 16S rRNA phylogeny,
is a member of the deltaproteobacterial family Desulfobacteraceae
(Kendall et al., 2006), which has been long thought to exclusively
consist of SRM. Furthermore, some syntrophs related to sulfate-
reducing Desulfotomaculum spp., such as members of the genera
Pelotomaculum and Sporotomaculum, are not able to anaerobically
grow with sulfate as electron acceptors but harbor dsrAB (Zverlov
et al., 2005; Imachi et al., 2006).

UNCULTURED FAMILY LEVEL LINEAGES DOMINATE DIVERSITY OF
DISSIMILATORY (BI)SULFITE REDUCTASE GENES IN WETLANDS
Pure snapshot analyses of dsrAB diversity in the environment have
low informative value regarding the ecophysiology of the microor-
ganisms carrying these genes, especially if contextual information
such as biogeochemical process data is missing. Nevertheless, the
dsrAB approach has allowed important insights into the nat-
ural diversity of microorganisms carrying these genes and has
revealed, for various environments, the presence of many dsrAB
sequences that are not closely related to dsrAB from known
SRM (Figure 3). We have performed a comprehensive phyloge-
netic re-analysis of all phylogenetically novel dsrAB sequences
retrieved from different freshwater wetland habitats (Table 3)
in combination with representative sequences from other envi-
ronments (see legend of Figure 3 for methodological details).
The novel dsrAB sequences from yet uncultivated microorgan-
isms formed 10 monophyletic lineages (which we designated
“uncultured dsrAB lineage 1 to 10”; Figure 3), each corre-
sponding to a new family in the consensus tree and empha-
sizing the large diversity of elusive microorganisms harboring
these genes. Besides uncultured dsrAB lineages 5, 6, and 7 that
formed independent branches close to the root, a further level
of monophyletic clustering was apparent in the consensus DsrAB
tree that we followed to tentatively designate three phylogenet-
ically stable “superclusters,” each having high bootstrap support
and comprising at least two uncultured dsrAB family level lin-
eages and/or known SRM families. Two of the superclusters
harbor cultured representatives and were thus named accord-
ingly. The “Deltaproteobacteria supercluster” includes all dsrAB
sequences from deltaproteobacterial species (please note that the
deep-branching D. acetoxidans lineage is tentatively considered
part of this supercluster despite weak bootstrap support), lat-
erally acquired, Deltaproteobacteria-like dsrAB from Firmicutes
and Thermodesulfobacteria (Zverlov et al., 2005), uncultured
dsrAB lineage 1, and other environmental dsrAB. The Ther-
modesulfovibrio supercluster includes dsrAB of Thermodesulfovib-
rio spp., uncultured dsrAB lineage 10, and other environmental
dsrAB. The third supercluster consists exclusively of environmental
dsrAB sequences from yet uncultivated microorganisms, includ-
ing uncultured dsrAB lineages 8 and 9, and was therefore named
“environmental supercluster 1”. The consensus tree provides some
indication for another supercluster, including dsrAB from recog-
nized bacteria in the Firmicutes, uncultured dsrAB lineages 2,
3, and 4, and other environmental dsrAB. However, the mono-
phyletic origin of this supercluster is not supported by bootstrap
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FIGURE 3 | DsrAB consensus tree showing the affiliation of dsrAB

sequences from freshwater wetlands (sequences and lineages marked in

green). Environmental DsrAB sequences not affiliated with sequences from

cultured microorganisms were grouped into an “uncultured dsrAB lineage”
on the approximate family level if at least two sequences with ≥64% amino

(Continued)
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FIGURE 3 | Continued

acid identity formed a monophyletic cluster and contained no sequence that
was ≥64% identical to a sequence outside this lineage. The conservative
64% limit was inferred from DsrAB of cultured representatives belonging to
10 known families with a minimum intra-family amino acid sequence identity
of 64–89%. Bootstrap support for identified clusters is shown by split circles
(right: maximum likelihood, 1000 re-samplings; left: maximum parsimony, 100
re-samplings) at the respective branches with black indicating ≥90% support,
gray indicating ≥70% support, and white/absence of circles indicating <70%
support. Family level DsrAB lineages were summarized to superclusters if
their monophyletic origin was supported by bootstrap values of ≥70%. The
color code of environmental DsrAB sequences or of dots behind uncultured
family level DsrAB lineages indicates the habitat where the respective
sequences were retrieved from (this data is not provided for recognized
families). For phylogenetic inference of deduced DsrAB amino acid
sequences, insertions and deletions were removed from the data set by
using an alignment mask (indel filter), which resulted in 502 amino acid

positions for comparative analyses. Distance matrix (Neighbor Joining with
PAM as amino acid replacement model), maximum likelihood (RAxML with
PAM as amino acid replacement model), and maximum-parsimony algorithms
were used as provided in the ARB software package (Ludwig et al., 2004) to
determine the phylogenetic relatedness of the analyzed DsrAB sequences.
Reverse DsrAB of sulfur-oxidizing bacteria were used as outgroup (Loy et al.,
2009). A strict consensus tree was constructed from the individual trees
obtained with the different algorithms using the Phylip (Felsenstein, 1989) and
ARB (Ludwig et al., 2004) software packages. Branch lengths of the
consensus tree were inferred by the Fitch algorithm using a Jukes–Cantor
derived distance matrix (Phylip), the scale bar represents 10% estimated
sequence divergence. Affiliation of short DsrA or DsrB sequences (<542
amino acids) retrieved from freshwater wetlands was inferred using the
consensus tree and the quick-add-parsimony tool within ARB. Uncultured
family level DsrAB lineages that comprise such short DsrA and DsrB
sequences but no near full-length DsrAB sequences from freshwater
wetlands are colored green but are not marked with a green dot.

analysis and is also not evident in other previously published
DsrAB trees (Pester et al., 2010; Steger et al., 2011). We have
thus not named this putative supercluster because its members
and their relative branching orders currently remain unresolved
(Figure 3).

With the exception of uncultured dsrAB lineages 3 and 4, dsrAB
sequences from freshwater wetlands are present in eight of the
ten uncultured family level lineages. There is additional evidence
of dsrAB novelty in wetlands through individual (or groups) of
wetland dsrAB sequences, but these did not meet our criteria to
designate them as a novel “uncultured dsrAB lineage” (Figure 3).
Overall, dsrAB belonging to lineage 6 (branching off close to
the root), lineage 8 (environmental supercluster 1), and lineage
10 (Thermodesulfovibrio supercluster) were most often detected
in freshwater wetlands (Table 3). In addition, dsrAB sequences
not affiliated to any of the uncultured family level lineages but
belonging to the Deltaproteobacteria supercluster, the Thermod-
esulfovibrio supercluster, and the putative, phylogenetically unsta-
ble supercluster also contributed to the dsrAB diversity in most
analyzed freshwater wetlands.

The dsrAB diversity in wetlands is dominated by sequences
from lineages without cultivated microorganisms (Figure 3). Key
questions are (i) if each of these phylogenetically novel dsrAB
sequence variants is representative of an individual microorgan-
ism and (ii) if these genes potentially encode functional enzymes.
Functional marker genes can be present as different copies within
the same microorganism as is known, e.g., for the alpha subunit of
the particulate methane monooxygenase within type II methan-
otrophs (Tchawa Yimga et al., 2003; Baani and Liesack, 2008) and
the novel dsrAB types could likewise represent phylogenetically
different versions of dissimilatory (bi)sulfite reductases. However,
SRM that possess multiple dsr operons with significantly differ-
ent sequences have not been reported so far. The only exception
to this observation is the homoacetogen Moorella thermoacetica,
which is not known to perform dissimilatory sulfate reduction
but possesses two very distinct dsrAB copies (Loy et al., 2009).
In principle, the novel dsrAB types found in wetlands could also
be pseudogenes. However, no internal stop codons were found in
these sequences and a previous analysis revealed sequence con-
servation of the functional site in both, subunit A and B of the
enzyme, as well as a low rate of non-synonymous to synonymous

substitutions (Loy et al., 2004), indicating that these genes could
be expressed into functionally active proteins.

Although our dsrAB meta-analysis included data from geo-
graphically and biogeochemically distinct wetlands (comprising
minerotrophic and ombrotrophic peatlands, river floodplains,
freshwater marshes within the Florida Everglades, and rice paddy
fields), clear distribution patterns of major dsrAB lineages or
superclusters with geography or environmental parameters like
pH were not evident at this coarse level of phylogenetic reso-
lution. However, when the dsrAB diversity of various Central
European wetlands was analyzed at higher phylogenetic resolu-
tion by combined dsrB-fingerprinting and sequencing, signatures
of biogeographical distribution became apparent and were best
explained by soil pH and wetland type (Steger et al., 2011).

Thriving in freshwater wetland habitats seems to be a trait
that is widely distributed in the different cultivated and uncul-
tivated family level lineages of the DsrAB tree. Furthermore,
all of the uncultured dsrAB lineages that contained dsrAB from
freshwater wetlands also contained dsrAB from many other envi-
ronments (Figure 3). These environments include deep marine
methanogenic sediments (Leloup et al., 2007, 2009), which are
also characterized by low-sulfate concentrations and ongoing,
albeit very slow, dissimilatory sulfate reduction (Holmkvist et al.,
2011a,b). In addition to environments with low-sulfate concen-
trations, all of the uncultured family level dsrAB lineages that
contained dsrAB from freshwater wetlands also contained dsrAB
from habitats influenced by both low and high sulfate concen-
trations such as polluted coastal aquifers (Wu et al., 2009) and
estuarine sediments (Jiang et al., 2009) or habitats with per-
manently high sulfate concentrations comprising marine surface
sediments (Leloup et al., 2007, 2009), hydrothermal vents (Dhillon
et al., 2003; Mussmann et al., 2005), and hot springs (Fishbain
et al., 2003). This observation emphasizes the ubiquitous distrib-
ution of members of these uncultured dsrAB lineages, suggesting
that adaptation to different sulfate concentrations is not a trait
that leads to ecologically coherent dsrAB sequence groups at the
approximate taxonomic/phylogenetic rank of families.

Peatlands in the forested Lehstenbach catchment (Bavaria, Ger-
many) represent attractive model ecosystems for wetland SRM
studies due to the extensive characterization of their biogeochem-
istry and microbiota and the deposition of sulfur by acid rain
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FIGURE 4 | Relative abundances (as inferred from quantitative dsrA-

or 16S rRNA gene-targeted PCR analyses) of recognized and

putative SRM in the model peatland Schlöppnerbrunnen II. This
figure is based on data from Loy et al. (2004); Schmalenberger et al.
(2007); Pester et al. (2010); Steger et al. (2011). The abundance of the

large number of other dsrAB OTUs (including dsrAB related to
Desulfomonile and Desulfobacca spp.), which were also detected at
Schlöppnerbrunnen II, and their contribution to sulfate reduction is
currently unknown (Loy et al., 2004; Schmalenberger et al., 2007; Pester
et al., 2010; Steger et al., 2011).

during the second half of the last century (Alewell and Novak,
2001; Matzner, 2004; Novak et al., 2005; Alewell et al., 2006;
Schmalenberger et al., 2007; Küsel et al., 2008; Knorr and Blo-
dau, 2009; Knorr et al., 2009). They are currently also the best
studied wetlands with respect to the composition and environ-
mental dynamics of dsrAB-containing microorganisms (Loy et al.,
2004; Schmalenberger et al., 2007; Pester et al., 2010; Steger et al.,
2011). In particular, the fen Schlöppnerbrunnen II comprises at
least 53 different operational taxonomic units (OTUs) of dsrAB
at the approximate species level (Loy et al., 2004; Schmalenberger
et al., 2007; Pester et al., 2010; Steger et al., 2011). More than
half of these dsrAB OTUs (28 out of 53) belong to the uncul-
tured lineage 8 within the “environmental supercluster 1”. Based
on a dsrAB microarray analysis over a 6-year period, two species
level OTUs of lineage 8 (OTU 2 and 14) and two OTUs loosely
affiliated to D. acetoxidans (OTU 1 and 4) were shown to dom-
inate the dsrAB diversity in the Schlöppnerbrunnen fen II. A
parallel quantitative PCR analysis of OTU 1 and OTU 2 revealed
that microorganisms carrying the respective dsrAB each repre-
sent up to about 1–2% of the microbial community (Steger et al.,
2011; Figure 4). Given this relatively high abundance for a single
microbial species in soils, these microorganisms represent “core”
members of the autochthonous microbial community in this wet-
land and certainly have an important, albeit unknown function in
biogeochemical cycling (Pedrós-Alió, 2012). It would be tempt-
ing to speculate that these unknown microorganisms represent
novel SRM that are actively involved in sulfate reduction in situ.
However, dsrAB is present not only in SRM but also in microor-
ganisms capable of sulfite (e.g., Desulfitobacterium spp., Spring and
Rosenzweig, 2006) or organosulfonate reduction (e.g., Bilophila
wadsworthia, Laue et al., 2001). Furthermore, some microorgan-
isms harboring dsrAB can switch between a sulfate reducing and
syntrophic lifestyle or, in the extreme case, are not capable of sul-
fate/sulfite reduction at all. Members of the deltaproteobacterial

genus Syntrophobacter are prime examples for microorganisms
that can perform dissimilatory sulfate reduction for energy gen-
eration but prefer to release generated reducing equivalents to
syntrophically associated methanogens or other SRM (Wallraben-
stein et al., 1994, 1995; Harmsen et al., 1998). Even more intriguing
examples are Pelotomaculum spp. within the Desulfotomaculum
cluster I. These syntrophic microorganisms, which typically thrive
in anoxic, methanogenic environments, possibly lost the capabil-
ity for sulfate reduction due to the need to adapt to low-sulfate
conditions during the course of evolution. In accordance with
their physiological properties, dsrAB could not be detected by PCR
assays in most Pelotomaculum spp. – with one exception. The type
strain Pelotomaculum propionicicum MGP possesses dsrAB and
even transcribes these genes in the presence and, most astonish-
ingly, also in the absence of sulfate (Imachi et al., 2006). Since P.
propionicicum is an obligate syntroph (Imachi et al., 2007), this
exemplifies that the mere presence or even transcription of dsrAB
does not necessarily mean that the corresponding microorganisms
perform dissimilatory sulfate or sulfite reduction. Interestingly,
syntrophic dsrAB-containing non-sulfite/sulfate reducers, syn-
trophic SRM, and “bona fide” sulfite/sulfate reducers can be very
closely related, indicating an evolutionary association between the
ability to respire sulfite/sulfate and the syntrophic lifestyle.

Linking phylogenetic information obtained from a molecular
marker gene such as 16S rRNA or dsrAB with the physiological
capability for dissimilatory sulfate reduction is not straightfor-
ward. However, great progress has been made through develop-
ment of methods that combine molecular and isotope analysis to
identify microorganisms metabolizing a supplemented isotope-
labeled substrate under defined experimental conditions (Loy
and Pester, 2010). A recent DNA stable isotope probing study
of soil from Schlöppnerbrunnen fen II, using in situ concen-
trations of typical 13C-labeled carbon degradation intermediates
(mixture of lactate, acetate, formate, and propionate) found no
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differential labeling of novel dsrAB under sulfate-reducing ver-
sus methanogenic conditions, leaving it unexplained whether the
corresponding microorganisms were active under none or both
of the provided conditions (Pester et al., 2010). Therefore, it
still remains unresolved whether wetland microorganisms with
phylogenetically novel dsrAB types are SRM, syntrophs, or capable
of switching between both lifestyles.

THE RARE BIOSPHERE COULD CONTRIBUTE TO PEATLAND SULFATE
REDUCTION
Microbial communities in the environment are typically com-
posed of abundant or “core” taxa, which are considered to carry
out most ecosystem functions, and a very large number of highly
diverse but low abundance taxa (less than 0.1–1% of all bacte-
ria and archaea), which are referred to as the “rare biosphere”
(Pedrós-Alió, 2006; Sogin et al., 2006; Fuhrman, 2009). Other
than an inventory of their 16S rRNA genes very little is known
about the ecological role of the “rare biosphere,” which is also
true for freshwater wetlands. Experimental evidence is gathering
that rare microorganisms result from historical ecological change
with the potential to become dominant in response to shifts in
environmental conditions – the “microbial seed bank” concept
(Dethlefsen et al., 2008; Brazelton et al., 2010; Lennon and Jones,
2011) or that they simply result from random dispersal (Hubert
et al., 2009). In contrast to the majority of these dormant pop-
ulations, it was recently found that “rare biosphere” members
could also actively contribute to ecosystem functions and in this
particular case to peatland sulfate reduction and carbon cycling
(Figure 4). Comparative DNA stable isotope probing (Loy and
Pester, 2010) of Schlöppnerbrunnen fen II soil under sulfate-
reducing and methanogenic conditions showed that a Desulfos-
porosinus spp., which constitutes only a minor proportion of the
archaeal and bacterial community (0.006% relative 16S rRNA
gene abundance), could be an important SRM in this particu-
lar peatland. For the identified Desulfosporosinus population, a
high cell-specific SRR of up to 341 fmol SO2−

4 cell−1 day−1 was
estimated (Pester et al., 2010), which was comparable to the high-
est cell-specific rates reported for SRM in pure culture (Detmers
et al., 2001). Quantifying the Desulfosporosinus populations at dif-
ferent soil depths and relating the observed abundances to the
estimated cell-specific rates revealed that they had the potential
to reduce sulfate in situ at a rate of up to 4.0–36.8 nmol (g soil w.
wt.)−1 day−1 (Pester et al., 2010). This could explain a considerable
fraction of the radiotracer-measured SRRs of the same peatland,
which ranged from 0 to ca. 340 nmol (g soil w. wt.)−1 day−1 over
a depth profile of 0–30 cm and a 300-days period (Knorr and
Blodau, 2009; Knorr et al., 2009). Modeling of sulfate diffusion
to such highly active cells revealed sufficient sulfate supply even
at bulk concentrations as low as 10 μM (Pester et al., 2010). In
addition, apparent sulfate half-saturation concentrations, K m, for
sulfate reducers in pure culture (Pallud and Van Cappellen, 2006
and references therein) and in sediment slurries (Tarpgaard et al.,
2011) have been reported to be as low as 2–5 μM indicating no
kinetic limitation from the electron acceptor side as well. These
findings indicated that the identified peatland Desulfosporosinus
sp. has the potential to contribute considerably to peatland sulfate
reduction despite its very low abundance.

In the Schlöppnerbrunnen fen II, currently only one addi-
tional putative SRM, the Syntrophobacter-related dsrAB OTU 6,
has been shown by quantitative PCR to be a autochthonous mem-
ber of the “rare biosphere” (Figure 4; Steger et al., 2011). However,
based on microarray analysis, a large fraction of the analyzed
Schlöppnerbrunnen dsrAB OTUs were of low relative abundance
or below the detection limit (Steger et al., 2011) and it can be
assumed that a large part of the detected dsrAB diversity belongs
to microorganisms that are part of the “rare biosphere” as well.
However, in contrast to the rare peatland Desulfosporosinus spp.,
their contribution to peatland sulfate reduction is still unclear.

CONCLUSION AND PERSPECTIVES
It has long been known that dissimilatory sulfate reduction occurs
in freshwater wetlands, with pioneering studies dating back to
the 1980s (Table 1 and references therein). Although the mea-
sured rates were often comparable to or partly exceeded SRR in
marine environments (Jørgensen, 1982; Howarth and Jørgensen,
1984; Skyring, 1987), the importance of sulfate reduction to anaer-
obic carbon mineralization in wetlands is still often neglected.
This can be mainly attributed to the current inability to quantita-
tively explain how the small sulfate pools are rapidly replenished
to maintain the high SRR that can be repeatedly measured in
different wetland types and over prolonged periods of time. Sev-
eral concepts for this apparently hidden sulfur cycle, which is
not only occurring at oxic–anoxic interfaces but also in anoxic
soil layers, have been put forward but need further experimental
confirmation, especially in the context of the intertwined redox-
cycles of sulfur and iron compounds as well as of redox-active
organic matter (Figure 2). In particular, there is a need to sys-
tematically quantify the varying contribution of sulfate reduction
to overall anaerobic carbon degradation and to determine fluxes
of sulfur recycling through the proposed intermediates elemen-
tal sulfur and thiosulfate in the oxic–anoxic transition zone and
under completely anoxic conditions.

The identification of microorganisms responsible for sulfate
reduction in freshwater wetlands has just begun. Molecular surveys
have revealed that many members of the autochthonous wet-
land microbiota harbor diverse and novel variants of the marker
genes dsrAB. However, at the moment it is not known whether
these novel dsrAB-containing microorganisms perform dissimila-
tory sulfate reduction, are capable of alternative energy generation
through syntrophy with methanogens, or switch between these
different lifestyles depending on the prevailing environmental
conditions. Targeted cultivation and substrate-mediated isotope
labeling approaches thus need to be employed more systematically
to detect “true” SRM in wetlands. The identification of a peat-
land Desulfosporosinus spp. by stable isotope probing as an active
“rare biosphere” member with potentially high cell-specific SRR
(Pester et al., 2010) and the cultivation of SRM from rice paddy
soil (Wind and Conrad, 1995; Wind et al., 1999) provide exam-
ples for the success of such approaches. Comparative genomics of
SRM strains isolated from contrasting environments that differ in
biogeochemical parameters, such as sulfate concentration, avail-
ability of nutrients and/or pH, provide useful information on the
different genomic and metabolic features that SRM have evolved
to become a ubiquitously distributed microbial guild (Plugge et al.,
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2011; Zhou et al., 2011). Extending genome analyses to single cells
(Podar et al., 2007; Woyke et al., 2009, 2010) retrieved directly
from wetland soils could lay the foundation to identify microor-
ganisms that harbor the great diversity of novel dsrAB found
in wetlands and to get insights into their evolution and poten-
tial metabolic capabilities. Along with high-throughput amplicon
sequencing of dsrA/B- or 16S rRNA genes and their transcripts
in context with measurements of biogeochemical parameters and
processes, these approaches will be crucial to identify SRM and
understand their community dynamics and various life strategies
in such heterogeneous environments such as wetlands.
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