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Introduction

Alzheimer disease, cognitive loss, novel cellular pathways. For 
the population in the United States, the National Institute on 
Aging estimates that almost five million people have Alzheimer’s 
disease (AD). Furthermore, more than twenty-four million 
people suffer from AD, pre-senile dementia, and other disorders 
of cognitive loss worldwide. If one then includes other related 
degenerative disorders of the central nervous system (CNS), the 
scope of these illnesses approach 370 million people throughout 
the globe. With these disorders of cognition, the cost of physician 
services, hospital and nursing home care, and medications con-
tinues to rise dramatically. In addition, the medical costs parallel 
a progressive loss of economic productivity with rising morbid-
ity and mortality, ultimately resulting in an annual deficit to the 
economy that is greater than $400 billion. Interestingly, the most 
significant portion of this economic loss is composed of only a 
few neurodegenerative disease entities, such as ischemic disease 
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and AD. The annual cost per patient with AD is estimated at 
greater than $174,000 with an annual population aggregate cost 
of $100 billion.1,2

Despite the current understanding of the cellular pathways 
that modulate CNS injury during AD and cognitive disorders, 
complete therapeutic prevention or reversal of neurovascular 
injury during AD or dementia is not achievable. As a result, 
identification of novel therapeutic targets for the treatment of 
neurovascular injury would be extremely beneficial to reduce or 
eliminate disability from diseases that lead to cognitive loss or 
impairment. Current studies have begun to focus on pathways 
of oxidative stress that involve a variety of cellular pathways 
in the neurovascular systems. Here we describe the capacity of 
intrinsic cellular mechanisms that may offer novel therapy for 
disorders such as AD. Oxidative stress leads to apoptotic injury 
that involves early loss of cellular membrane asymmetry as well 
as the eventual destruction of genomic DNA. These dynamic 
stages of oxidative stress and apoptosis can be governed by 
cytokines such as erythropoietin (EPO) and transcription fac-
tors such as forkhead. Further understanding of these pathways 
may provide new insight for novel strategies that can treat AD 
and cognitive disorders as well as the complications associated 
with these disorders.

Oxidative stress and neurovascular injury. Release of reactive 
oxygen species (ROS) that consist of oxygen free radicals and 
other chemical entities can result in the development of oxida-
tive stress in the body. Oxygen free radicals can be generated in 
elevated quantities during the reduction of oxygen and lead to 
cell injury. ROS can involve superoxide free radicals, hydrogen 
peroxide, singlet oxygen, nitric oxide (NO) and peroxynitrite.3-5 
Most species are produced at low levels during normal physio-
logical conditions and are scavenged by endogenous antioxidant 
systems that include superoxide dismutase (SOD), glutathione 
peroxidase, catalase and small molecule substances such as vita-
mins C and E. Other closely linked pathways to oxidative stress 
may be tempered by different vitamins, such as vitamin D

3
,6 and 

the amide form of niacin or vitamin B
3
, nicotinamide.7-13

Oxidative stress leads to the destruction of multiple cell types 
through apoptotic pathways.14-16 Apoptotic induced oxidative 
stress in conjunction with processes of mitochondrial dysfunc-
tion17-19 can contribute to a variety of disease states such as diabe-
tes, ischemia, cognitive loss, Alzheimer’s disease and trauma.3,20-23 
Oxidative stress can lead to apoptosis in neurons, endothelial 
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Approximately five million people suffer with Alzheimer disease 
(AD) and more than twenty-four million people are diagnosed 
with AD, pre-senile dementia, and other disorders of cognitive 
loss worldwide. Furthermore, the annual cost per patient with 
AD can approach $200,000 with an annual population aggre-
gate cost of $100 billion. Yet, complete therapeutic prevention 
or reversal of neurovascular injury during AD and cognitive 
loss is not achievable despite the current understanding of the 
cellular pathways that modulate nervous system injury during 
these disorders. As a result, identification of novel therapeu-
tic targets for the treatment of neurovascular injury would 
be extremely beneficial to reduce or eliminate disability from 
diseases that lead to cognitive loss or impairment. Here we 
describe the capacity of intrinsic cellular mechanisms for the 
novel pathways of erythropoietin and forkhead transcription 
factors that may offer not only new strategies for disorders 
such as AD and cognitive loss, but also function as biomarkers 
for disease onset and progression.
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organs of EPO production and secretion are the kidney, liver, 
brain and uterus. EPO production and secretion occurs foremost 
in the kidney.75

Interestingly, increased levels of EPO in the fetal plasma and 
amniotic fluid during gestation may function as a biomarker of 
intrauertine hypoxia.76 For biological systems, a “biomarker” 
can consist of any entity that occurs in the body and that can 
be measured to predict the diagnosis, onset or progression of a 
disease process.77 Novel pathways that involve the cytokine and 
growth factor EPO may indicate that the increased presence of 
this agent during periods of oxidative stress may lead to cellular 
mechanisms to protect against ROS.74,78,79 Recent studies have 
demonstrated that EPO is not only required for erythropoiesis, 
but also functions in other organs and tissues, such as the brain, 
heart and vascular system that can be relevant for the treat-
ment of AD40,80-84 (Fig. 1). EPO production is believed to occur 
throughout the body5,74,85 and can be detected in the breath of 
healthy individuals.86 In addition, it has been suggested that EPO 
may provide developmental cognitive support. In experimental 
animal models, EPO may reduce apoptotic pathways during 
periods of hyperoxia in the developing brain.87,88 Furthermore, 
clinical disorders may have periods of hyperoxia followed by cere-
bral hypoperfusion and hypoxia that can lead to cerebral injury 
with associated oxidative stress.89 In these circumstances, EPO 
also may be protective since it can promote neurite outgrowth90 
and also may regulate hemoglobin levels that have recently been 
associated with cognitive decline.91 In other work, elevated EPO 
concentrations during infant maturation have been correlated 
with increased Mental Development Index scores92 and EPO may 
prevent toxic effects of agents used to control cognitive function 
such as haloperidol.93

In addition, knowledge that EPO and its receptor are pres-
ent in the neurovascular systems has generated great enthusiasm 
for the potential clinical applications of EPO for AD and related 
cardiac insufficiency94,95 and cardiac transplantation.96,97 In the 
nervous system, primary sites of EPO production and secretion 
are in the hippocampus, internal capsule, cortex, midbrain, cere-
bral endothelial cells (ECs) and astrocytes.73,74,98,99 Further work 
has revealed several other organs as secretory tissues for EPO that 
include peripheral ECs,100 myoblasts,101 insulinproducing cells102 
and cardiac tissue.74,75 The EPOR also is expressed in primary 
cerebral ECs63,103 as well as in human umbilical veins, bovine 
adrenal capillaries and rat brain capillaries.100,104

Despite the fact that EPO is a critical modulator of erythro-
poiesis, the presence of a diminished oxygen tension is required 
rather than a low concentration of red blood cells.5,78,79,105 Gene 
transcription of EPO is mediated by the transcription enhancer 
located in the 3'-flanking region of the EPO gene that specifically 
binds to hypoxia-inducible factor 1 (HIF-1).73,74 Yet, hypoxia is 
not the only condition that can alter the expression of EPO and 
the EPOR. A variety of cellular disturbances may lead to either 
increased or decreased EPO expression through the control of 
HIF, such as hypoglycemia, cadmium exposure, raised intracel-
lular calcium, or intense neuronal depolarizations generated by 
mitochondrial ROS.99,106,107 Anemic stress, insulin release and 
several cytokines, including insulin-like growth factor, tumor 

cells (ECs), cardiomyocytes and smooth muscle cells that involve 
separate as well as overlapping pathways.21,24-28

Apoptosis is a dynamic process that consists of both the early 
exposure of membrane phosphatidylserine (PS) residues and the 
late destruction of genomic DNA.29,30 Externalization of mem-
brane PS residues is an early event during cell apoptosis31,32 and 
can become a signal for the phagocytosis of cells.16,33,34 The loss 
of membrane phospholipid asymmetry leads to the exposure 
of membrane PS residues on the cell surface and assists micro-
glia to target cells for phagocytosis.13,26,35-37 This process occurs 
with the expression of the phosphatidylserine receptor (PSR) 
on microglia during oxidative stress.38,39 It has been shown that 
blockade of PSR function in microglia prevents the activation of 
microglia.36,40 Externalization of membrane PS residues occurs 
in neurons, vascular cells and inflammatory microglia in con-
junction with AD and cognitive loss during reduced oxygen 
exposure,16,41-44 β-amyloid (Aβ) exposure45,46 during AD progres-
sion, nitric oxide exposure,47-51 and during the administration of 
agents that induce the production of ROS, such as 6-hydroxy-
dopamine.52 Membrane PS externalization on platelets also has 
been associated with clot formation in the vascular system.53

The cleavage of genomic DNA into fragments43,54,55 usu-
ally occurs after membrane PS exposure56 and is considered to 
be a later event during apoptotic injury.26,55,57,58 Several enzymes 
responsible for DNA degradation include the acidic, cation inde-
pendent endonuclease (DNase II), cyclophilins, and the 97 kDa 
magnesium—dependent endonuclease.3,59 Three separate endo-
nuclease activities also have been found in neurons that include a 
constitutive acidic cation-independent endonuclease, a constitu-
tive calcium/magnesium-dependent endonuclease, and an induc-
ible magnesium dependent endonuclease.60,61

During oxidative stress, mitochondrial membrane transition 
pore permeability also is increased,12,26,62,63 a significant loss of 
mitochondrial NAD+ stores occurs, and further generation of 
superoxide radicals leads to cell injury.13,64 Mitochondria are a 
significant source of superoxide radicals that are associated with 
oxidative stress.3,65 Blockade of the electron transfer chain at 
the flavin mononucleotide group of complex I or at the ubiqui-
none site of complex III results in the active generation of free 
radicals which can impair mitochondrial electron transport 
and enhance free radical production.38,59 Furthermore, muta-
tions in the mitochondrial genome have been associated with 
the potential development of a host of disorders, such as hyper-
tension, hypercholesterolemia and hypomagnesemia.66,67 ROS 
also may lead to cellular acidosis and subsequent mitochondrial 
failure.20 Disorders, such as hypoxia,68 diabetes69,70 and exces-
sive free radical production61,71,72 can result in the disturbance 
of intracellular pH.

Erythropoietin (EPO) and its Receptor

EPO and the EPO receptor. The EPO gene is located on chro-
mosome 7, exists as a single copy in a 5.4 kb region of the genomic 
DNA, and encodes a polypeptide chain containing 193 amino 
acids. During the production and secretion of EPO, a circulatory 
mature protein of 165 amino acids is produced.73,74 The principal 
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factor.111,115,116 However, reliance on any single biomarker may be 
imperfect and lead to initially unpredicted outcomes78,79,117 or the 
onset of detrimental apoptotic programs with forkhead transcrip-
tion factors.30 A number of other pathways that occur in combi-
nation with a particular biomarker during oxidative stress also 
may also influence outcome. In the case of breast cancer, studies 
suggests that the release of androgens, cytokines or even changes 
in body mass and exercise can influence outcome as well as alter 
the predictability of a specific biomarker.118,119

FoxO proteins (FoxO1, FoxO3, FoxO4 and FoxO6) are 
present throughout the body and are expressed in tissues of the 
reproductive system of males and females, skeletal muscle, the 
cardiovascular system, lung, liver, pancreas, spleen, thymus and 
the nervous system.105,111,115,116,120-127 Post-translational control of 
FoxO proteins employs pathways associated with ubiquitylation 
and acetylation.128,129 IκB kinase (IKK) can phosphorylate and 
block the activity of FoxO proteins, such as FoxO3a.113,115 This 
leads to the proteolysis of FoxO3a via the Ubdependent protea-
some pathway.113,115,126,130,131 FoxOs also are acetylated by histone 
acetyltransferases that include p300, the CREB-binding pro-
tein (CBP), and the CBP-associated factor. FoxO proteins are 
deacetylated by histone deacetylases.115

In addition to acetylation, and ubiquitylation, post-trans-
lational modulation of FoxO proteins also involves pathways 

necrosis factor-α (TNFα),108 interleukin-1β (IL-1β) and interleu-
kin-6 (IL-6)109 also can lead to increased expression of EPO and 
the EPOR73,74 and may provide a feed-back loop that is regulated 
by EPO such as TNFα.110

FoxO Transcription Factors

FoxO proteins and their regulation. Mammalian forkhead tran-
scription factors of the O class (FoxOs) function to either block or 
activate target gene expression.111 At least 100 forkhead genes and 
19 human subgroups that range from FOXA to FOXS are now 
known to exist since the initial discovery of the fly Drosophila 
melanogaster gene forkhead.112 The original nomenclature for 
these proteins, such as forkhead in rhabdomyosarcoma (FKHR), 
the Drosophila gene fork head ( fkh) and Forkhead RElated 
ACtivator (FREAC)-1 and -2, has been replaced.113 The current 
nomenclature for human Fox proteins places all letters in upper-
case, otherwise only the initial letter is listed as uppercase for the 
mouse, and for all other chordates the initial and subclass letters 
are in uppercase.114

FoxO proteins also may function as biomarkers. The activa-
tion of FoxO transcription factors during tumor invasion may 
suggest the initiation of cell pathways that are attempting to 
restrict neoplastic growth and represent a positive prognostic 

Figure 1. Erythropoietin (EPO) regulates the intracellular trafficking of the forkhead transcription factor FoxO3a in endothelial cells (ECs) during 
oxygen glucose deprivation (OGD). EPO (10 ng/ml) was administered to ECs 1 hour prior to exposure of OGD for an 8 hour period. Immunofluo-
rescent staining for FoxO3a at 6 hours following OGD was performed with primary rabbit anti-FoxO3a antibody followed by Texas red conjugated 
antirabbit secondary antibody. Nuclei of ECs were counterstained with DAPI. Control cells were untreated and not exposed to OGD. In control 
cells, FoxO3a remains primarily in the cytoplasm of cells with the nuclei visible in merged images and indicated by the white arrows. In contrast, OGD 
activates FoxO3a to translocate to the nucleus demonstrating FoxO3a in the cytoplasm and nuclei of these cells in merged images. However, EPO pre-
vents nuclear translocation of FoxO3a by retaining FoxO3a in the cytoplasm similar to control cells with nuclei visible in merged images and indicated 
by the white arrows.
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EPO, FoxOs, Nervous System Metabolism and  
Cognitive Impairment

Both EPO and FoxOs play a significant role during brain metab-
olism and metabolic disorders that can alter the progression of 
AD, such as during diabetes mellitus (DM). DM is a significant 
health concern for both young and older populations.153,154 Patients 
with DM can develop immune dysfunction,155 cognitive disor-
ders,155,156 hepatic dysfunction,157 renal disease,158 hematological 
disease,159 neurodegenerative disorders4,105,160 and cardiovascular 
disease.160,161 Interestingly, the development of insulin resistance 
and the complications of DM can be the result of cellular oxida-
tive stress.153,160 Furthermore, acute glucose swings in addition to 
chronic hyperglycemia can trigger oxidative stress mechanisms, 
illustrating the importance for therapeutic interventions during 
acute and sustained hyperglycemic episodes.153,160

In regards to EPO during metabolic disorders, EPO admin-
istration has been shown both in diabetics as well as non-dia-
betics with severe, resistant congestive heart failure to decrease 
fatigue, increase left ventricular ejection fraction, and signifi-
cantly decrease the number of hospitalization days.162 In vitro 
studies with vascular cells exposed to elevated glucose also have 
demonstrated that EPO can significantly improve EC survival 
in a 1.0 ng/ml range.163 EPO administration in patients also can 
significantly increase plasma levels of EPO well above this range 
of 1.0 ng/ml that has been associated with potential EPO cellular 
protection in patients with cardiac or renal disease,164,165 suggest-
ing that the effects of EPO observed during in vitro studies may 
parallel the cellular processes altered by EPO in patients with 
metabolic disorders.92 Furthermore, EPO during elevated glucose 
and similar to other models of oxidative stress can block neuronal 
degeneration166 and apoptotic DNA degradation in ECs in vas-
cular cell models.63,80,81,83,167 Protection by EPO also is related to 
the maintenance of mitochondrial membrane potential (ΔΨ

m
). 

Loss of ΔΨ
m
 through the opening of the mitochondrial perme-

ability transition pore represents a significant determinant for cell 
injury and the subsequent induction of apoptosis.22,65 EPO has 
the capacity to prevent the depolarization of the mitochondrial 
membrane that also affects the release of cytochrome c.47,80,168

Additional work suggests that proteins derived from the 
Drosophila Wingless (Wg) and the mouse Int-1 genes may be 
associated with cellular metabolic complications.30 The Wnt 
proteins are secreted cysteine-rich glycosylated proteins that can 
control cell proliferation,169,170 differentiation, survival and tum-
origenesis.39,171 These genes are present in several cellular popu-
lations,172 such as neurons, cardiomyocytes, endothelial cells, 
cancer cells and preadipocytes.4 Abnormalities in the Wnt path-
way, such as with transcription factor 7-like 2 gene, may impart 
increased risk for type 2 diabetes in some populations173-175 as well 
as have increased association with obesity.176 Yet, intact Wnt fam-
ily members may offer glucose tolerance and increased insulin 
sensitivity177 as well as protect glomerular mesangial cells from 
elevated glucose induced apoptosis.178 These observations sug-
gest a potential protective cellular mechanism for EPO through 
Wnt signaling. Cell culture studies demonstrate that the Wnt1 
protein is necessary and sufficient to impart cellular protection 

associated with phosphorylation.113,115,126,130,131 Protein phospho-
rylation is a critical pathway in the scheme for protein regula-
tion.132 Akt is a primary mediator of phosphorylation of FoxO1, 
FoxO3a and FoxO4 that can block activity of these proteins.113,133 
Akt phosphorylation of FoxO proteins not only retains these 
transcription factors in the cytoplasm, but also leads to ubiq-
uitination and degradation through the 26S proteasome.129,130 
Interestingly, activation of Akt in pathways that involve EPO 
or FoxOs is usually cytoprotective, but may mediate other pro-
cesses. For example, Akt either alone or through EPO can lead 
to cell proliferation,134 blood-brain barrier permeability,135 or 
cell protection during inflammation,136,137 neurodegeneration,138 
hyperglycemia,139 hypoxia,80 Aβ toxicity,45,140-143 excitotoxicity,144 
cardiomyopathy,145 cellular aging146 and oxidative stress.24,26,36 In 
addition, Akt can prevent cellular apoptosis through the phos-
phorylation of FoxO proteins.5 Posttranslational phosphorylation 
of FoxOs, such as during EPO administration, will maintain 
FoxO transcription factors in the cytoplasm by association with 
14-3-3 proteins and prevent the transcription of pro-apoptotic 
target genes74,81 (Fig. 1).

Modulation of Akt activity also controls apoptotic pathways 
of caspases that may offer an alternative mechanism to regulate 
FoxO proteins.116 Caspases are a family of cysteine proteases 
that are synthesized as inactive zymogens that are proteolyti-
cally cleaved into subunits at the onset of apoptosis.38,147,148 The 
caspases 1 and 3 have been linked to the apoptotic pathways of 
genomic DNA cleavage, cellular membrane PS exposure and 
activation of inflammatory cells.40,56,63 Caspase pathways may be 
tied to the forkhead transcription factor FoxO3a since increased 
activity of FoxO3a can result in cytochrome c release and caspase-
induced apoptotic death.81,149-151 Pathways that can inhibit caspase 
3 appear to offer a unique regulatory mechanism. For example, 
studies suggests that cell death pathways that rely upon FoxO3a 
also appear to involve caspase 3 activation.46 FoxO3a activity pro-
motes caspase-induced apoptotic death,81,149-151 but inhibition of 
caspase 3 also can maintain the phosphorylated “inactive” state 
of FoxO3a to prevent cell injury.81,149,150 Other work has shown 
that caspase 3 activity and cleavage is promoted during trans-
fection of a triple mutant FoxO3a expression in which three 
phosphorylation sites have been altered to prevent inactivation 
of FoxO3a.152 Furthermore, FoxO3a may control early activation 
and subsequent apoptotic injury in microglia during Aβ exposure 
through caspase 3.46 Since Aβ exposure can facilitate the cellular 
trafficking of FoxO3a from the cytoplasm to the cell nucleus to 
potentially lead to “pro-apoptotic” programs by this transcription 
factor,46 one program in particular that may be vital for apoptotic 
injury appears to involve the activation of caspase 3. Aβ exposure 
leads to a rapid and significant increases in caspase 3 activity with 
6 hours following Aβ administration, but that this induction of 
caspase 3 activity by Aβ requires FoxO3a, since loss of FoxO3a 
through gene silencing prevents the induction of caspase 3 activ-
ity by Aβ.
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its protective capacity through two separate mechanisms of post-
translational modification of FoxO3a. Nicotinamide not only 
can maintain phosphorylation of FoxO3a and inhibit its activity, 
but also preserve FoxO3a integrity to block FoxO3a proteolysis 
that can yield pro-apoptotic amino-terminal fragments.150

EPO, FoxOs and Neurovascular Survival

EPO and FoxO proteins can directly govern cell survival that 
can affect the progression of AD and cognitive loss. With EPO, 
it can prevent cell injury during AD and Aβ cell injury,45,143,191,192 
hypoxia,40,80,193-196 excitotoxicity,197-199 parasitic disease,200-202 
endotoxin shock,203,204 free radical exposure,47,63,198 cardiac dis-
ease,205,206 amyloid toxicity143,192 and pulmonary disease.207,208 
EPO also represents a potential option for the prevention of 
retinal degeneration or neovascularization209-212 as well as glau-
coma.213 In the CNS, systemic application of EPO also can 
improve functional outcome and reduce cell loss during spinal 
cord injury,214,215 traumatic cerebral edema,216 cortical trauma217 
and epileptic activity.82,218,219

EPO also can reduce cytokine gene expression in endothelial 
cells exposed to tumor necrosis factor,167 prevent ulcer progres-
sion in cases of scleroderma,220 reduce inflammation in murine 
arthritis models,221 and block primary microglial activation and 
proliferation24,26,33 during oxidative stress40,143 to prevent phago-
cytosis of injured cells through pathways that involve cellular 
membrane PS exposure, protein kinase B,24 and the regulation 
of caspases.40,63,222 EPO can directly inhibit several pro-inflam-
matory cytokines, such as IL-6, TNFα and monocyte chemoat-
tractant protein 1,74,223 and reduce leukocyte inflammation.224 
EPO also may foster the preservation of microglial cells for neu-
ronal and vascular restructuring by preventing apoptotic injury 
in microglia.34,225

In contrast to EPO cytoprotection, FoxO transcription factors 
usually lead to apoptosis during oxidative stress.5 For example, 
forkhead transcription factors such as FoxO1 and FoxO3a must 
be present for oxidative stress to result in apoptotic cell injury.226 
FoxO3a in conjunction with JNK also has been shown to mod-
ulate an apoptotic ligand activating a Fasmediated death path-
way in cultured motoneurons,227 to lead to apoptosis through 
tumornecrosis-factor-related apoptosis-inducing ligand (TRAIL) 
and BH3-only proteins Noxa and Bim in neuroblastoma cells,151 
and to promote pro-apoptotic activity of p53.228 In addition, loss 
of FoxO expression during oxidative stress is protective to cells. 
Protein inhibition or gene knockdown of FoxO1 or FoxO3a can 
lead to reduction in ischemic infarct size in the brain,229 mediate 
protection of metabotropic glutamate receptors during vascular 
injury,149 enhance pancreatic β-cell or neuronal survival through 
NAD+ precursors during oxidative stress,150 and provide trophic 
factor protection with EPO81 and neurotrophins.230

Furthermore, similar to pathways tied to EPO and Wnt, the 
canonical Wnt pathway231,232 that involves β-catenin39,171 also 
appears to link FoxO proteins and Wnt signaling together.30 For 
example, in relation to AD,233 Aβ is toxic to cells45,143,234 and is 
associated with the phosphorylation of FoxO1 and FoxO3a that 
can be blocked with ROS scavengers.235 A common denominator 

during elevated glucose exposure.163 EPO maintains the expres-
sion of Wnt1 during elevated glucose exposure and prevents loss 
of Wnt1 expression that would occur in the absence of EPO dur-
ing elevated glucose. In addition, blockade of Wnt1 with a Wnt1 
antibody can neutralize the protective capacity of EPO, illustrat-
ing that Wnt1 is a critical component in the cytoprotection of 
EPO during elevated glucose exposure.163

In regards to FoxO proteins, analysis of the genetic variance in 
FOXO1a and FOXO3a on metabolic profiles, age-related diseases, 
fertility, fecundity and mortality in patients have observed higher 
HbA

1c
 levels and increased mortality risk associated with specific 

haplotypes of FOXO1a.179 These clinical observations may coin-
cide with the demonstration in human endothelial progenitor 
cells that elevated glucose levels can reduce post-translational 
phosphorylation of FOXO1, FOXO3a and FOXO4 and allow for 
the nuclear translocation of these proteins to initiate an apop-
totic program in endothelial progenitor cells.180 In experimen-
tal models, FoxO proteins may prevent the toxic effects of high 
serum glucose levels.113,115 Interferon-gamma driven expression of 
tryptophan catabolism by cytotoxic T lymphocyte antigen 4 may 
activate Foxo3a to protect dendritic cells from injury in nonobese 
diabetic mice.181 Additional studies have demonstrated that adi-
pose tissue-specific expression of Foxo1 in mice improved glucose 
tolerance and sensitivity to insulin during an elevated fat diet.182 
FoxO proteins also may protect against diminished mitochon-
drial energy levels known to occur during insulin resistance such 
as in the elderly populations.153,154,160 In caloric restricted mice 
that have decreased energy reserves, Foxo1, Foxo3a and Foxo4 
mRNA levels were noted to progressively increase over a two year 
course.122 These observations complement studies in Drosophila 
and mammalian cells that demonstrate an increase in insulin sig-
naling to regulate cellular metabolism during the upregulation of 
FoxO1 expression.183

It should be noted that the ability for FoxO proteins to main-
tain proper physiologic controls over cellular metabolism might 
be limited and occur only during specific circumstances. For 
example, mice with a constitutively active Foxo1 transgene have 
increased microsomal triglyceride transfer protein and elevated 
plasma triglyceride levels.184 Studies in cardiomyocytes also sug-
gest detrimental results with enhanced FoxO activity. Increased 
transcriptional activity of FoxO1, such as by the Sirt1 activator 
resveratrol, can diminish insulin mediated glucose uptake and 
result in insulin resistance.185 Overexpression of Foxo1 in skeletal 
muscles of mice also can lead to reduced skeletal muscle mass 
and poor glycemic control,186 illustrating that activation of FoxO 
proteins also may impair cellular energy reserves. Other stud-
ies that block the expression of Foxo1 in normal and cachectic 
mice187 or reduce FoxO3 expression188 show the reverse with an 
increase in skeletal muscle mass or resistance to muscle atrophy. 
With this in mind, one potential agent to consider for the main-
tenance of cellular metabolism in patients is nicotinamide,13,38 an 
agent that also can inhibit FoxO protein activity.150 In patients 
with DM, oral nicotinamide protects β-cell function, prevents 
clinical disease in islet-cell antibody-positive first-degree relatives 
of type-1 DM, and can reduce HbA

1c
 levels.13,38,153 Nicotinamide, 

which is closely linked to cell longevity pathways,189,190 may derive 
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forth as new directions for treatment. Yet, these lines of investi-
gation are not without limitations, since chemical derivatives of 
EPO can become absent of clinical efficacy73,74 as well as possibly 
loose the ability to promote sustainable cytoprotective effects, 
such as neurogenesis248 and angiogenesis.249-252

Other work also offers additional support for the use of FoxO 
proteins as biomarkers of neurovascular injury that can occur 
during AD and cognitive loss. Down regulation of the phos-
phatidylinositol 3 kinase and Akt pathways have been associ-
ated with increased transcript levels for FOXO1a and FOXO3a 
in cell loss scenarios.253 The known mutations in FoxO proteins 
that exist in several disease entities may provide novel insights 
for the new treatment strategies. Future analysis in larger pop-
ulations of patients with metabolic disease and cognitive loss 
could strengthen our understanding of the role of FoxO pro-
teins in these disorders. In addition, targeting the activity of 
FoxO1, FoxO3a or FoxO4 in vascular cells may prevent the 
onset of pathological neointimal hyperplasia that may result in 
atherosclerosis and cognitive loss. Recent studies also suggest 
that the utilization and combination of multiple biomarkers 
may improve risk assessment for patients suffering from a num-
ber of disorders.254 These studies illustrate that FoxO proteins 
may serve as biomarkers of disease activity such as in individu-
alswith imminent cardiac failure.255

As combined therapeutic entities and biomarkers, EPO and 
FoxO proteins share a number of pathways to offer novel thera-
peutic strategies for a broad range of disorders. Future studies 
that involve basic research as well as clinical trials are war-
ranted for EPO and FoxO proteins. Yet, critical to this process 
is the clear focus upon the intricate cellular pathways governed 
by EPO and FoxOs to uncover the benefits and risks of these 
agents for development of proper therapies to prevent the onset 
or progression of AD and cognitive loss.
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in the pathways linked to Aβ toxicity involves Wnt signaling45,236 
and β-catenin. β-catenin may increase FoxO transcriptional activ-
ity and competitively limit β-catenin interaction with members 
of the lymphoid enhancer factor/T cell factor family.237 This may 
lead to cell injury, since β-catenin has been demonstrated to be 
necessary for protection against Aβ toxicity in neuronal cells.45

However, not all conditions with FoxOs may lead to cell 
demise. Some studies suggest that the loss of FoxO1, FoxO3a 
and FoxO4 protein expression may actually lead to an increase in 
free radical release that can be responsible for oxidative stress.238 
In addition, FoxO proteins also may influence early apoptotic 
membrane PS externalization.25,34 The ability to regulate early 
apoptotic membrane PS exposure40 and inflammatory cell activ-
ity26 can ultimately affect cell survival since activated immune 
cells can lead to the phagocytic removal of injured cells.33,59 
Furthermore, FoxO proteins may be protective during aging and 
exercise, since FoxO3a activity may enhance vascular smooth 
muscle antioxidant properties in aged animals and be beneficial 
to the cardiovascular system during physical exertion.239

Future Perspectives

As biomarkers for disease onset and progression as well as candi-
dates for the treatment of numerous disorders, EPO and FoxO 
transcription factors generate excitement for the potential to 
yield new strategies for the treatment of neurovascular injury and 
cognitive disorders. Yet, some considerations for EPO exist. In 
addition to the problems associated with EPO abuse and gene 
doping,240-242 EPO has been correlated with the alteration of 
red cell membrane properties leading to a cognitive decrement 
in rodent animal models.73,74,223 Development of potentially det-
rimental side-effects during EPO therapy, such as for cerebral 
ischemia with increased metabolic rate and blood viscosity,243 
could also severely limit the use of EPO for neurovascular dis-
eases. As a result, alternate strategies have been suggested. New 
proposals examine the role of targeted bioavailability for EPO 
such as in bone marrow stromal cells genetically engineered to 
secrete EPO244 and controlled release of EPO from encapsulated 
cells.245,246 The passage of EPO entry into the CNS continues 
to attract significant interest247 as well as does the use of novel 
intranasal routes for EPO administration.196 The development 
of derivations of EPO to reduce erythropoietic activity and the 
potential associated vascular complications197 have also been put 
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