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Abstract: Seafood is a source of nutrients in human diet but also of environmental contaminants
and its consumption could pose a risk to consumers’ health. A survey regarding the exposure to
cadmium, lead and mercury through the consumption of bivalve mollusks, gastropods and sea
urchins collected on Italian coasts was carried out among central Italian population over a period
of three years. A limited number of samples exceeds the threshold set by legislation (6 samples)
and the average level of contamination was low in all the species considered. The contribution
Acceptable Daily Intake (ADI) was higher for cadmium (9.17%) than lead (1.44%) and mercury
(0.20%). The benefit-risk evaluation suggests that the bivalve mollusks and sea urchins consumption
(Benefit Risk Quotient < 1) could be increased without health detrimental effects.
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1. Introduction

Heavy metals are known for adverse toxicological effects in humans and food products are
considered to be their main source of exposure for general population [1–4]. Chronic cadmium (Cd)
intake is responsible for different organ systems toxicity with reproductive and fertility impairments,
skeletal damage, urinary and cardiovascular disorders, central and peripheral nervous deficiency,
kidney disease and cancer [5–7]. Mercury (Hg) toxicity in nervous, motor, renal, cardiovascular,
reproductive, and immune system is reported even at low dose [4,8]. Lead (Pb) is responsible for
negative effects on hematopoietic, renal, cardiovascular, reproductive and skeletal systems [3,9,10].

Fish and seafood are regarded as one of the main food sources of these three contaminants as
they live in marine environment that could be contaminated by these ubiquitous molecules, which are
prone to high distribution in spite of their anthropic or natural origin [11], and they can accumulate
Cd, Hg and Pb in their tissue even to a high level [12–14].

Maximum limits in various fish and shellfish species are set for these contaminants in different
countries [15–18] and, therefore, monitoring their levels in seafood is of utmost importance [11].
Nonetheless, taking into account the consumers’ habits, a risk based approach to heavy metals
exposure has to be considered [2–4,19–21] for the different seafood available on the market, the ingested
dose and the potential beneficial health effects of seafood consumption. Especially, shellfish are
considered a valuable source of unsaturated n3 fatty acids such as eicosapentaenoic acid (EPA) and
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docosahexaenoic acid (DHA) [22,23]. These compounds are proved to exert beneficial effects on human
health [24,25], and fish and shellfish consumption could represent a valuable strategy to enhance their
dietary intake [26–28].

The production of bivalve mollusks is considered a sustainable practice as it has a low
environmental impact due to limited exploitation of natural resources and to low maintenance
costs [29]. Furthermore, Italy is characterized by a wide availability of coastlines which could be more
extensively destined to seafood production. Moreover, although the consumption of this products in
Italy is already noticeable (17.7% of the economic value of all the fish products consumed in 2018) [30],
it could be potentially increased in order to favor the dietary intake of valuable nutrients [31]. In this
context a risk-benefit evaluation related to the consumption of seafood, can be considered of utmost
importance for the fish sector as well as for consumers public health [32].

The aims of this work were the definition of Cd, Hg ad Pb contamination level in marine
shellfish, gastropods and sea urchins harvested along the Italian coastline; the assessment of central
Italy population exposure; and the benefit-risk evaluation associated to the consumption of these
selected products.

2. Materials and Methods

2.1. Data Source

The analytical results for Cd, Hg and Pb in shellfish (N = 2207 after data cleaning) collected along
the Italian coastline, from January 2017 until December 2019, were retrieved from SINVSA (Sistema
informativo Nazionale Veterinario per la Sicurezza Alimentare), the Platform for Food Safety of the
Department for Veterinary Public Health, Nutrition and Food Safety of the Ministry of Health.

SINVSA is a web application, created by the CSN (Centro Servizi Nazionale—Istituto
Zooprofilattico Sperimentale dell’Abruzzo e del Molise) and it has been designed to collect information
useful for risk assessment in feed and food along the whole production chain, making available all the
information related to the industries registry, the official control and the analytical results. It includes
all the data on national companies producing food for human consumption and animal feed including
the transport and sub-products sector.

The seafood species considered in the survey were bivalve mollusks, gastropods and echinoderms
(grouped in classes as reported in Table 1) collected from the coasts of 12 Italian regions (Figure 1).

Data management and descriptive statistical analyses were carried out using Excel datasheet
(Microsoft) and Stata 11®.
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Table 1. Seafood classes and species considered.

Classes Species Scientific Name

Bivalve mollusks
Mussel Mytilus galloprovincialis

Mytilus edulis
Modiolus barbatus

Clam Ruditapes decussatus
Ruditapes phylippinarum

Chamelea gallina
Venus verrucosa

Oyster Ostrea edulis
Crassostrea gigas

Crassostrea angulata
Scallop Flexopecten glaber

Pecten spp.
Mimachlamys varia

Chlamys spp.
Brown venus Callista chione
Razor clam Solen siliqua
Other bivalves Arca noae

Cardium edule
Cerastoderma spp.
Donax trunculus

Marine Gastropods
Gastropods Hexaplex trunculus

Nassarius mutabilis
Muricidae

Bolinus brandaris
Buccinum undatum

Echinoderms
Sea urchins Paracentrotus lividus

2.2. Data Collections

The shellfish analyzed to assess heavy metals contamination were collected by local official
competent authority in charge of bivalve mollusks production areas, during classification and
monitoring activities compliant to EU regulation [33,34]. Pb, Cd and Hg, were analyzed by official
laboratories following UNI CEI EN ISO/IEC 17025 accredited analytical methods [35] and Regulation
333/2007/EC [36] as far as sampling protocols and analytical performances are concerned.

Pb, Cd, Hg were analyzed in 1 g of sample after microwave digestion with 6 mL HNO3 (67–69%,
v/v), 2 mL H2O2 (30%, v/v), and 100 mL HF (40%, v/v).

The appropriately diluted solutions were analyzed by inductively coupled plasma mass
spectrometry (ICP-MS) in standard mode using specific mass-to-charge ratios (m/z) for each element
(206 + 207 + 208 Pb, 111 Cd, 202 Hg). Internal standards (i.e., 103Rh) were used to normalize the
instrumental response and quantification was matrix-matched. The analytical methods were fully
validated in intra-laboratory reproducibility conditions. The LOQs (mg/kg) of the method were:
Pb = 0.015, Cd = 0.005, Hg = 0.025. Batch-to-batch precision and accuracy were evaluated by analyzing
certified reference materials (Mussel Tissue SRM 2976, NIST Canada).

2.3. Dietary Exposure and Risk Characterization

For the definition of contaminants concentration in foodstuff, the left censored data was handled
through substitution method. Therefore, when an element concentration was not quantified (<LOQ)
its value was assumed to be half of its LOQ according to the middle bound (MB) approach [24,37].

The population exposure to Cd, Hg and Pb was assessed by combining seafood classes and
contamination results (MB) with specific consumption data, obtained through a detailed questionnaire.
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Seafood consumption data was derived from a questionnaire administered to 611 residents in central
Italy, on both coastal and inland (almost 50 km far from the coast) sites. The participants were 357
females and 253 males; 310 records were obtained from consumers living along the coasts and 301 in
the inland. The age of targeted population ranged from 18 to 75 years. The questionnaire was designed
to obtain information on the bivalves and echinoderms consumption frequency and consumer’s
answers were combined with the food portion size data reported by Italian dietary surveys [38].
The questionnaires were returned anonymously, the participants did not receive any incentives and
their consent had been obtained prior to the survey.

The dietary exposure assessment was conducted as reported by Branciari et al. [39] taking
into consideration an average adult weighing 70 kg, all the seafood products and the three target
heavy metals.

In order to perform a risk characterization, the results of the exposure assessment were compared
to the reference health-based guidance values set for cadmium (Cd = 0.35 ug/kg bw/d) [40], lead
(Pb = 0.004 mg/kg bw/d) [41] and mercury (Hg = 0.571 ug/kg bw/d) [42]. This approach allows to carry
out a quantitative evaluation of the potentially harmful effects on consumers’ health in relevance to
the ingestion of these metals. The results of the risk characterization were expressed as percentage
contribution to the Acceptable/Tolerable Daily Intake (ADI/TDI), which represents the amount of a
substance in food that can be ingested on a daily basis over a lifetime without a significant health
risk [43].

2.4. EPA and DHA in Seafood and Benefits-Risks Assessment

Aiming to quantitatively estimate the health benefits of seafood consumption, the EPA and DHA
content in mollusks and echinoderms considered, was obtained from literature [32–44] (Figure 2).
The daily dietary intake of such nutrients in the target population was assessed with the same
methodology adopted for contaminants.Foods 2020, 9, x FOR PEER REVIEW 5 of 13 
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Furthermore, to esteem the risks and benefits related to the consumption of the targeted seafood
classes, the benefits-risks quotient (BRQ) approach was applied [20]. The benefit of seafood consumption
refers principally to the intake of EPA and DHA, recognized as protective factors in cardiovascular
diseases and defined as the contribution of the exposure values to the recommended Dietary Reference
Intake (RDI) of 250 mg/d for EPA + DHA [24]. Therefore, the contents of the mentioned polyunsaturated
fatty acids (PUFA) in the seafood classes considered (Figure 2), were combined with the consumption
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data. Risk factors were attributed to the ingestion of the targeted metals (Cd, Pb, Hg) which have been
proved to be toxic to humans.

The data was obtained from Prato et al. [32] for oyster, scallop, mussels, brown venus, razor clam,
clam and other bivalves, and from Rincón-Cervera et al. [44] for sea urchins and marine gastropods.

BRQ values estimate the benfit-risk of the simultaneous ingestion of PUFA and contaminants
through seafood species and were calculated according to the following equation [20]:

BRQ =
QFA

QT
(1)

QFA is defined as follows:

QFA =
RFA
CFA

(2)

where RFA (mg/d) is the recommended daily intake of EPA + DHA (RDI of 250 mg/d for a healthy
adult [24] was applied), while CFA (mg/g) represents the concentration of EPA + DHA in seafood.

The maximum allowable food consumption related to toxic effects (QT) can be calculated according
to the following equation:

QT =
R f D ∗ BW

c
(3)

where RfD (mg/kg bw/d) is the reference dose of a pollutant defined through the ADI/TDI of each
contaminant considered, BW is the standard bodyweight set, as mentioned above, at 70 kg, and c
(mg/g) is the concentration of each toxic molecule in the targeted food products.

BRQ values below 1 suggest that achieving the recommended intake of EPA + DHA poses no
evident risk to human health related to the simultaneous intake of the pollutant through seafood
consumption [19,20].

3. Results and Discussion

The results of Cd, Hg and Pb in shellfish, gastropods and echinoderms for the three-year
survey are presented in Tables 2–4. For Pb the concentration was always under the maximum limits
set by EU Regulation (MRL= 1.5 mg/kg) [16], for Hg 1 sample (1 sea urchin in 2017) exceeds the
maximum (MRL= 0.50 mg/kg) and for Cd 5 samples (1 mussel in 2017 and 4 gastropods in 2018)
exceed maximum level (MRL= 1.0 mg/kg). Scallops and brown venus samples were always above
LOQ for Cd, nonetheless, the other classes have only few samples below LOQ. Cadmium levels were
higher in oysters (average middle bound MB = 0.218 mg/kg) and gastropods (MB = 0.217 mg/kg)
followed by scallops (MB = 0.117 mg/kg). These results may be explained in respect to the different
filtering capacity of the species, the specific living environment and, therefore, their accumulation
abilities [45,46]. The values recorded in the present survey are similar to those referred for shellfish
by other authors [43,47,48], even though other shellfish species, collected in different environmental
conditions, showed higher levels on specific sites [49]. However, higher Cd values are registered in
gastropods and oyster [44,48]. A relevant factor influencing the bivalves capacity in accumulating
Cd, particularly oysters, is their position in the water column. Indeed oysters, growing at the bottom,
can accumulate Cd up to 10 times higher than oysters growing in the same site, in baskets placed in
the surface of the water [45]. As reported in literature, Cd concentration tends to be higher in deeper
waters and decreases in surface water [50]. Concerning gastropods, the possible factors implicated in
Cd accumulation could be their living environment (they generally live buried in fine sediments [51])
and the presence of Cd-binding proteins (metallothioneins) in their body, which are involved in shell
formation [52,53].
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Table 2. Cadmium (Cd) levels (mg/kg) in selected seafood in the three-year period.

Year Classes Analyzed
Samples

Above LOQ
Samples (%) Min Max Average (MB) 1

2017 Mussel 152 137/(90) 0.030 1.150 0.099
Clam 260 226/(87) 0.010 0.140 0.035

Oyster 7 7/(100) 0.130 0.530 0.240
Scallop 37 37/(100) 0.050 0.370 0.100

Brown venus 36 36/(100) 0.010 0.060 0.030
Razor clam 1 1/(100) 0.003 0.003

Other bivalves 28 9/(32) 0.010 0.270 0.024
Gastropods 59 56/(95) 0.010 0.770 0.228

Echinoderms 1 0/(0) 0.003

2018 Mussel 301 287/(95) 0.010 0.880 0.105
Clam 308 267/(87) 0.010 0.170 0.044

Oyster 47 46/(98) 0.070 0.840 0.235
Scallop 38 38/(100) 0.050 0.400 0.110

Brown venus 36 36/(100) 0.010 0.080 0.040
Razor clam 16 16/(100) 0.010 0.060 0.020

Other bivalves 30 6/(20) 0.010 0.350 0.028
Gastropods 44 43/(98) 0.010 1.880 0.303

Echinoderms 9 9/(100) 0.020 0.300 0.060

2019 Mussel 265 239/(90) 0.020 1.000 0.108
Clam 276 232/(84) 0.010 0.180 0.034

Oyster 40 38/(95) 0.060 0.880 0.181
Scallop 25 25/(100) 0.060 0.400 0.140

Brown venus 26 26/(100) 0.020 0.070 0.030
Razor clam 25 20/(80) 0.010 0.340 0.033

Other bivalves 24 2/(8) 0.010 0.280 0.014
Gastropods 17 17/(100) 0.010 0.470 0.120

Echinoderms 8 8/(100) 0.020 0.080 0.050
1 MB = middle bound.

Regarding Hg, the number of samples above LOQ was lower than those recorded for Cd and Pb;
the number of above LOQ samples for Hg recorded in gastropods and brown venus was higher than
in the other species analyzed. Samples of razor clam revealed the highest level of Hg contamination
(an average of MB = 0.087 mg/kg), followed by gastropods and mussels (an average of MB = 0.036 and
0.024 mg/kg, respectively).

The data is compliant to that reported in literature and show a relatively low Hg contamination in
shellfish [32,45,49,54]. It is well known that Hg, as a result of its bioaccumulation and biomagnification
capacity in marine environment, tends to reach higher levels in predator fish which are the most
relevant food exposure source to humans [4,54–56].

The selected seafood always shows a prevalence of samples above LOQ close to 100% for Pb.
The highest average bivalve mollusks values were detected in sea urchins (0.203 mg/kg) followed by
scallops (0.191 mg/kg) and mussels (0.174 mg/kg). Similar results are reported for different shellfish
harvested in the north Adriatic Sea [32,45] and in the South of Spain [47], but they are higher than
on some specific sites on the East African coast (i.e., the Gulf of Suez) [50]. Even echinoderm can
accumulate Pb and other heavy metals present in the marine environment [57]. Among echinoderms,
the purple sea urchin is considered a bio-indicator for the monitoring of metal pollution along the
Mediterranean and Atlantic coasts [58,59] as it is able to concentrate the pollutants to a greater extent
than all the other shellfish. Consequently, sea urchins remarkably contribute to transfer heavy metals
and other pollutants to higher trophic levels [60].
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Table 3. Mercury (Hg) levels (mg/kg) in selected seafood over the three-year period.

Year Classes Analyzed
Samples

Above LOQ
Samples (%) Min Max Average(MB) 1

2017 Mussel 185 71/(38) 0.030 0.300 0.038
Clam 260 64/(25) 0.030 0.140 0.024

Oyster 7 2/(29) 0.030 0.110 0.029
Scallop 37 0/(0) 0.013

Brown venus 36 13/(36) 0.030 0.070 0.022
Razor clam 1 0/(0) 0.010

Other bivalves 28 9/(32) 0.030 0.170 0.028
Gastropods 59 51/(86) 0.030 0.100 0.045

Echinoderms 55 1/(20) 0.063 0.024

2018 Mussel 302 104/(34) 0.030 0.190 0.032
Clam 308 89/(29) 0.030 0.180 0.023

Oyster 47 17/(36) 0.030 0.260 0.026
Scallop 38 0/(0) 0.013

Brown venus 36 27/(75) 0.030 0.090 0.041
Razor clam 16 13/(81) 0.070 0.210 0.108

Other bivalves 29 1/(3) 0.040 0.013
Gastropods 44 34/(77) 0.030 0.100 0.034

Echinoderms 10 1/(10) 0.040 0.015

2019 Mussel 265 34/(13) 0.030 0.170 0.017
Clam 276 70/(25) 0.030 0.130 0.022

Oyster 40 7/(18) 0.030 0.110 0.019
Scallop 25 0/(0) 0.013

Brown venus 26 19/(73) 0.030 0.060 0.033
Razor clam 25 14/(56) 0.700 0.230 0.084

Other bivalves 24 1/(4) 0.040 0.014
Gastropods 17 8/(47) 0.030 0.100 0.030

Echinoderms 10 2/(20) 0.030 0.040 0.018
1 MB = middle bound.

Table 4. Lead (Pb) levels (mg/kg) in selected seafood over the three-year period.

Year Classes Analyzed
Samples

Above LOQ
Samples (%) Min Max Average(MB) 1

2017 Mussel 152 138/(91) 0.040 0.560 0.128
Clam 260 223/(86) 0.020 0.350 0.078

Oyster 7 7/(100) 0.090 0.400 0.190
Scallop 37 37/(100) 0.020 0.500 0.150

Brown venus 36 36/(100) 0.030 0.260 0.110
Razor clam 1 0 0.008

Other bivalves 28 25/(89) 0.030 0.450 0.117
Gastropods 59 44/(75) 0.020 0.170 0.032

Echinoderms 4 4/(100) 0.050 0.370 0.190

2018 Mussel 302 285/(94) 0.020 0.740 0.180
Clam 308 267/(87) 0.020 0.740 0.114

Oyster 47 47/(100) 0.030 0.780 0.150
Scallop 38 37/(97) 0.030 0.420 0.175

Brown venus 36 36/(100) 0.050 0.360 0.150
Razor clam 16 16/(100) 0.040 0.180 0.100

Other bivalves 29 27/(93) 0.030 0.260 0.103
Gastropods 44 37/(84) 0.020 0.410 0.052

Echinoderms 10 10/(100) 0.040 0.400 0.200
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Table 4. Cont.

Year Classes Analyzed
Samples

Above LOQ
Samples (%) Min Max Average(MB) 1

2019 Mussel 265 236/(89) 0.020 1.070 0.215
Clam 276 232/(84) 0.020 1.080 0.136

Oyster 40 38/(95) 0.030 0.370 0.124
Scallop 18 16/(89) 0.020 0.660 0.250

Brown venus 26 26/(100) 0.070 0.430 0.230
Razor clam 25 24/(96) 0.070 0.590 0.212

Other bivalves 24 24/(100) 0.040 0.530 0.130
Gastropods 17 16/(94) 0.020 0.310 0.104

Echinoderms 10 10/(100) 0.020 0.520 0.220
1 MB = middle bound.

As far as the risk characterization is concerned, the contribution to ADI of the various shellfish
studied is reported in Figure 3. The average contribution of each product to ADI of the population
considered was extremely low for Hg and Pb, with values always below 1%, but higher for Cd,
with values not exceeding 4%. The contribution to ADI for the three metals was higher for mussels
followed by clams, oysters and scallops. Regarding Cd, a contribution to ADI of 2% was recorded
in gastropods: this value is relatively low, but it is higher than for shellfish and echinoderms.
The consumption frequency and the portion size surely affect these results: mussels are the most
frequently eaten shellfish included in the present survey (average consumption of 8.88 g/kg bw/die
for mussels and 9.12 g/kg bw/die for clams, respect to 1.09 g/kg bw/die for oysters, 1.44 g/kg bw/die
for scallops, 1.27 g/kg bw/die for brown venus, 1.44 g/kg bw/die for razor clams and other bivalves
2.56 mg/kg bw/die).

The contribution to ADI by sea urchins is limited as a result of a very low consumption (1.25 g/kg
bw/die). On the other hand, gastropods, although modestly consumed (1.82 g/kg bw/die), contribute
to Cd ADI to a higher extent than other species considered, due to their accumulation capacity.
The contribution of each species to ADI provides a measure of safety during long-term exposure
upon consumption [43], therefore, the reported results (Figure 3) suggest a negligible public health
risk of exposure to metals through the consumption of the seafood species taken into consideration.
These results are in accordance with other authors [57] who state that there is no significant health
risk of humans’ exposure to Cd, Hg and Pb upon consumption of shellfish. Furthermore, the bio
accessibility for metals like cadmium in cooked shellfish is reduced and thus further mitigates health
risk [61].

The overall mean contribution to the ADI of the three targeted metals upon the above seafood
species consumption, dividing the population in respect to their geographical distribution (inland or
coastal), is reported in Figure 4.

The results confirm a higher contribution to the reference value (ADI) in case of Cd in comparison
to that of Pb and Hg. The Cd contribution to ADI registered in coastal consumers was greater, probably
due to a higher seafood consumption. This uneven contribution was not observed in the other heavy
metals subject of the present study (Figure 4).

In this research, the benefit-risk quotient was applied in order to evaluate the simultaneous effect
on human health of EPA and DHA ingestion and metal contaminants present in seafood products.
As shown in Table 5, the BRQ for most of the groups of seafood analyzed was <1, ranging between 0.00
and 0.57. This result implies that healthy consumers potentially eating enough sea products to achieve
the RDI for EPA + DHA, would not be exposed to an increased health risk due to the simultaneous
exposure to the toxic metals analyzed.
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Table 5. BRQ for Cd, Hg and Pb in the selected seafood.

Cd Hg Pb

Mussel 0.33 0.01 0.05
Clam 0.31 0.01 0.08
Oyster 0.57 0.00 0.04
Scallop 0.33 0.00 0.05
Brown venus 0.23 0.01 0.10
Razor clam 0.13 0.03 0.07
Other bivalves 0.13 0.00 0.00
Gastropods 3.46 0.00 0.00
Echinoderms 0.12 0.00 0.06

The unique exception to this pattern is gastropods, registering a BRQ of 3.46 for Cd, meaning that
for this seafood species the risk associated with the exposure to this metal prevails over the benefits of
polyunsaturated fatty acids intake. In spite of the moderate consumption of gastropods registered
by the questioned population, this outcome is likely due to the combination of the low content of
EPA+DHA (Table 1) and the relatively high concentration of metals associated with these marine
species, due to their major route of trace metal uptake tracking [62].

However, as reported by other authors in different environments, these results confirm that the
benefits of sea products intake should outweigh the associated risks, when considering the average
healthy population [57].

4. Conclusions

The average levels of Cd, Hg and Pb detected in mollusks and sea urchins from the Italian coastline
are low and, therefore, the exposure of the targeted adult population to these metals is moderate, even
when higher shellfish portions are consumed, as it is the habit of the coastal population. Benefit-risk
evaluation revealed that the frequency of the above seafood consumption could be enhanced with the
aim to increase EPA + DHA intake, without adverse effects.
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