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Abstract

Background/Aims: Recently, next-generation sequencing-based technologies have enabled DNA methylation profiling at
high resolution and low cost. Methyl-Seq and Reduced Representation Bisulfite Sequencing (RRBS) are two such
technologies that interrogate methylation levels at CpG sites throughout the entire human genome. With rapid reduction of
sequencing costs, these technologies will enable epigenotyping of large cohorts for phenotypic association studies. Existing
quantification methods for sequencing-based methylation profiling are simplistic and do not deal with the noise due to the
random sampling nature of sequencing and various experimental artifacts. Therefore, there is a need to investigate the
statistical issues related to the quantification of methylation levels for these emerging technologies, with the goal of
developing an accurate quantification method.

Methods: In this paper, we propose two methods for Methyl-Seq quantification. The first method, the Maximum Likelihood
estimate, is both conceptually intuitive and computationally simple. However, this estimate is biased at extreme
methylation levels and does not provide variance estimation. The second method, based on Bayesian hierarchical model,
allows variance estimation of methylation levels, and provides a flexible framework to adjust technical bias in the
sequencing process.

Results: We compare the previously proposed binary method, the Maximum Likelihood (ML) method, and the Bayesian
method. In both simulation and real data analysis of Methyl-Seq data, the Bayesian method offers the most accurate
quantification. The ML method is slightly less accurate than the Bayesian method. But both our proposed methods
outperform the original binary method in Methyl-Seq. In addition, we applied these quantification methods to simulation
data and show that, with sequencing depth above 40–300 (which varies with different tissue samples) per cleavage site,
Methyl-Seq offers a comparable quantification consistency as microarrays.
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Introduction

DNA methylation is an epigenetic regulatory mechanism im-

plicated with various human diseases [1,2]. cytosine nucleotides

in DNA molecules, primarily in the CpG context, may be methy-

lated, and the changes in DNA methylation status can modulate

expression levels of genes [3,4,5,6,7] and therefore phenotype

[8,9,10,11].

In the past, measurement of DNA methylation was only feasible

and affordable for a small number of individuals at a limited number

of sites. Recently, genome-scale technologies have been developed

for profiling DNA methylation status of individuals, including

sequencing-based technologies that can survey DNA methylation

levels genome-wide with base-pair resolution [12,13,14].

With the advancement of sequencing technology, the cost

of large-scale sequencing has dropped considerably. Therefore,

genome-wide epigenetic association studies may soon become

feasible in large cohorts. At present, however, genome-wide

sequencing of methylation is most economical when the DNA

samples are first enriched with target regions by genome partition

techniques. There are a number of such technologies available

to investigators. See recent reviews [12,13] for the experimental

aspects of these technologies. In this work, we focus on Methyl-Seq

[15] and RRBS [16], two leading high resolution next-generation

sequencing-based technologies.

In Methyl-Seq [15], genomic DNAs from the same biological

sample are digested by enzymes MspI and HpaII, respectively.

MspI cleaves all 59-CCGG-39 sites; while HpaII cleaves only

unmethylated 59-CCGG-39 sites. The digested fragments are then

subject to size-selection, which acts to enrich the CpG-containing

regions in the fragment library. Afterwards, the selected frag-

ments are sequenced on the next-generation sequencing platform.

Sequence tags in MspI digestions delineate ‘‘assayable’’ sites, while

sequence tags in HpaII digestion identify unmethylated sites

specifically. Thus the methylation level at each assayable site can

be inferred by the presence or absence of HpaII tags. In RRBS,

genomic DNAs are also first enriched for CpG contents by MspI

digestion. However, the methylation status of sites is probed by
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bisulfite sequencing. Bisulfite treatment of DNA converts un-

methylated cytosine nucleotides into uracils (and read out as ‘T’s),

and the methylation status of a site can be inferred by comparing

the sequence tag to the reference genomic sequence. Methyl-seq

and RRBS technologies are different in the way methylation

signals are measured. The Methyl-Seq performs methylation-

specific digestion and thus only reads out signals at 59-CCGG-39

sites, while RRBS performs bisulfite sequencing which reads

out signals at all cytosine nucleotide positions in the selected

fragments.

Both Methyl-Seq and RRBS data involve methylation-sensitive

tag counts and are likely to benefit from statistical methods for the

quantification of methylation levels, rather than direct read

counting. For Methyl-Seq, Brunner et al. [15] used the binary

call of methylation level. However, since most experiments involve

heterogeneous mixtures of tissues or cells with different methyl-

ation levels, ideally the methylation proportionmshould be treated

as a continuous variable between 0 and 1 that reflects the

percentage of methylated molecules in the mixture of cells from

which the DNA was sampled. Moreover, Brunner et al.[15] ’s

estimation is only based on HpaII tag counts whereas MspI tag

counts are merely used to delineate ‘‘assayable’’ regions and HpaII

tag counts are used to make a binary call. It would be reasonable

that combining the tag count information of MspI and HpaII

naturally contribute to proportion estimate in the methylation

quantification. For RRBS, the natural quantification of methyl-

ation level at CpG dinucleotides would be the number of tags with

C divided by the total number of tags. For both Methyl-Seq and

RRBS, due to the random sampling nature of shotgun sequencing,

the coverage at different sites varies and thus the variance of the

estimates for the methylation level can be large and heteroge-

neous. It would be desirable in this sequence-based technology to

estimate the variance of methylation level, which is potentially

useful for further epigenetic association studies. Since the Methyl-

Seq technology was developed very recently, there have been very

few methods developed for statistical quantification for Methyl-

Seq and RRBS data. Recently, the MetMap program developed

by Singer et al. [17] infers site-specific methylation probabilities by

a statistical graphic model. This program primarily focuses on the

setting where paired-end HpaII fragment libraries without

corresponding MspI libraries are sequenced, resembling the

methylation sensitive cut counting approach [18]. In addition,

the MetMap program infers strongly unmethylated islands with a

hidden markov model like structure.

In this work, we study the statistical issues relating to the

quantification of methylation levels by next-generation sequencing

technologies: Methyl-Seq and RRBS. Since the quantification of

RRBS is relatively straightforward, we mainly focus on Methyl-

Seq. Unlike MetMap, we assume that both the MspI-digested and

the HpaII-digested libraries are available, and we do not assume

paired-end information. We present two new methods to quantify

methylation levels for Methyl-Seq data: one maximum likeli-

hood estimate and the other in a Bayesian hierarchical model

framework. Our Bayesian method, based on a Poisson thinning

process [19], can accommodate varying sequencing depth among

different genomic regions. We compare the performances of our

models with both simulated and real data.

In addition to algorithm development, we investigate a few

experimental design questions regarding quantification of meth-

ylation levels in next-generation sequencing. We compare the site-

level versus the region-level quantification. Moreover, we estimate

the necessary sequencing depth, at which Methyl-Seq can offer

a comparable quantification consistency as microarray. Finally,

although the quantification for RRBS is more straightforward

than Methyl-Seq, we reveal an important difference of the va-

riances of these two technologies.

Methods

2.1 Background on Methylation estimation in Methyl-Seq
(Brunner et al.)

Using next-generation sequencing, Methyl-Seq assays over

250,000 methylation-sensitive restriction enzyme cleavage sites

grouped into over 90,000 regions. In their original paper, Brunner

et al. [15] demonstrated the Methyl-Seq technology by analyzing

the methylation pattern for 13 human tissue types. In their ex-

periments, one control sample of HCT116 tissue type was digested

by MspI and 13 different tissue samples were digested by the

methylation-sensitive enzyme HpaII. Because of some technical

replicates, one MspI library and 15 HpaII libraries were generated

(see Supplementary Table 2 of Brunner et al. [15] for details).

These digested fragments undergo fragment size selection, and

most fragments are of length 35–75 bps. Because the enzyme

cleavage sites 59-CCGG-39 contain a CpG sites and CpG sites are

known to be clustered, the size selection process will enrich the

presence of CpG sites in the library. After size-selection, these

libraries were subjected to next-generation sequencing, resulting

approximately 3 million tags (sequencing reads) per HpaII library

and 10 million tags for the MspI library.

The following bioinformatics processing was conducted to

obtain tag counts at each digestion site. First, all reads were

mapped to the reference human genome sequence. Not all CCGG

sites in the human genome are covered by sequencing reads due to

the fragment size selection and various sequencing biases. In

practice, only those digestion sites that are covered by four or more

MspI reads in either forward or backward direction were deemed

as ‘‘assayable’’ sites. For assayable sites, the tag counts in both

forward and backward directions for each library were recorded.

We downloaded the tag count data from the Myers lab website at

HudsonAlpha (http://myers.hudsonalpha.org/content/protocols.

html). Since methylation levels at nearby sites are typically

highly correlated, Brunner et al. [15] grouped digestion sites in

neighboring 35–75 bps into a ‘‘region’’ and methylation levels

were called at the region level. Brunner et al.[15] ’s methylation

estimate was binary: a region in a library is either methylated or

unmethylated. Specifically, in a region containing n sites, they used

the HpaII tag counts at the i-th site, which is defined as yi. After

grouping sites into previously determined assayable regions, each

region’s methylation level was called based on the average HpaII

tag count�yy. Regions with �yy .1 were called unmethylated, the

methylation level m~0; otherwise were called methylated m~1.

To validate the Methyl-Seq technology, Brunner et al.[15]

compared the Methyl-Seq tag counts with the results of the

Infinium Human Methylation 27 BeadChips (Illumina), a stan-

dard technology for quantification of DNA methylation levels. For

each of the CpG sites represented on this array, the beta value,

calculated based on the intensities of the relevant probes, estimates

the percent of DNA molecules being methylated. The comparison

between Methyl-Seq and the microarray experiment was based on

four tissue sample libraries: HCT116, H9 hESC, H9 endoderm and

adult liver with overall 160 matching regions.

As a quantitative measure of the consistency between Methyl-

seq and Infinium microarray, Brunner et al.[15] use the Receiver

Operating Characteristic (ROC) curve. Basically, they dichoto-

mize microarray beta values as the gold-standard (.0.6 as

methylated and ,0.6 as un-methylated), and consider average

HpaII tag counts as the predictor. As a result, average HpaII tag

Statistics of Methylation Sequencing
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counts in Methyl-Seq has an area under the ROC curve (AUC)

0.944 (Figure 1C in Brunner et al. [15]).

2.2 Methyl-Seq Data Processing and Observations
In the present work, we use the Brunner et al. data set and

discuss statistical issues relevant to Methyl-Seq. Due to this some-

what complicated experimental procedure, it may be beneficial

to first review a few decisions made during the data processing,

before presenting our observations on the issue of statistical quan-

tification.

In a Methyl-Seq data set, there are two tag reads at each site,

one on the forward strand and one on the reverse strand. While

Brunner et al. used the larger of the forward and reverse tag counts,

it can be tempting to use the tag counts for both forward and

reverse reads. Ideally, If paired-end read libraries were used such

as in [17], i.e., a pair of reads from both ends of a fragment, one on

the forward strand and one on the reverse strand, are sequenced, it

is possible to keep track of all fragments. However, when paired-

end reads are not available it is not a simple problem to infer all

fragment information. Moreover, under ideal conditions, the

forward and the reverse tag counts at site i should be equal, as they

both represent the digestion at that site. In reality, these forward

and reverse counts may not be equal: it could simply be a

reflection of the fact that site i-1 is further away from site i than site

i+1, and it is sequenced less easily. In fact, when the next site is too

far away, site i would only have reads from one strand. This gets

even more complex with HpaII, as the distance to the next site is

determined by the distance to the next unmethylated site. In the

extreme, there will be no site for many kilobases, and the fragment

will only be sequenced in one direction, so the forward reads will

be present and the reverse reads absent (or nearly so). Therefore,

for HpaII digestion, simply counting both forward and reverse

reads will inflate the tag count at sites that are between two other

nearby unmethylated sites. While a full treatment of the

directionality of reads may be possible with a much more

complicated model with explicit representation of fragments, we

follow Brunner et al. [15] in this work and use the larger of the

forward and reverse read counts.

Also, like Brunner et al. [15], we use the Infinium microarray

experiment data as gold-standard reference. In addition to the

microarray data used in Brunner et al. [15], we also use two

new tissue sample libraries: BG02 hESC and BG02 EB-derived

cells. We implemented a new background normalization

procedure to the microarray data to improve the quantifica-

tion. This involved subtracting the median of the negative

control probes on each array from the red and green color

channels, and recalculated methylation levels as b/(a+b),

where b is the background-subtracted intensity from the

methylated probe and a is the background-subtracted intensity

from the unmethylated probe. We identified 151 regions in 6

tissue libraries matched between Methyl-Seq and microarray

experiments. After eliminating 9 missing values within the

newly generated microarray data, the comparison is based on

897 methylation beta values. The AUC of Methyl-Seq tag

counts in our data set is 0.9556, slightly higher than that in the

Brunner et al, [15] analysis.

To conduct a statistical analysis of the Methyl-Seq data, we

define the following notations. For an assayable CCGG site i, we

use xi denoting its MspI tag count and yi denoting its HpaII tag

count. Following Brunner et al.[15], we use the larger of the

forward and reverse tag counts at each site in a region. Also, we

assume that all CCGG sites in a region have the same methylation

level and we will quantify the methylation level for each region. In

the present work we consider one HpaII library at a time, although

there might be correlation of methylation levels among different

libraries at the same site.

With this setup, we have the following observations on this data

set. First, Brunner et al.[15] ’s estimation only includes the HpaII

tag counts information, whereas MspI tag counts are only used to

delineate ‘‘assayable’’ regions. We understand that it is not the

primary interest of Brunner et al. to give a continuous estimate of

the methylation percent. However, with the MspI tag count

information, it is possible to make proportional estimates between

Figure 1. Correlation of 16 Tissue Sample Libraries. Spearman correlations among tag counts in MspI (X) library and 15 HpaII libraries (Y1–Y15).
doi:10.1371/journal.pone.0021034.g001
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0 and 1 for the Methyl-Seq data, which reflect the percentage

of methylated molecules from which DNA was sampled. The

naı̈ve proportional estimate for the HapII library j would be

1{
PK

i~1 yij

.PK
i~1 xi, where K is the total number of sites in a

region.

Second, due to the random sampling nature of sequencing, for a

given region in MspI and HpaII library sample j, the HpaII tag

count
PK

i~1 yij of all K sites is not always smaller than the MspI

tag count
PK

i~1 xi. Therefore, the simple proportional estimate

1{
PK

i~1 yij

.PK
i~1 xi may be negative and thus the estimate has

to be revised.

Third, certain genome-wide correlation structures exist among

the tag counts in these libraries (Figure 1). Primarily, the control

Library (X: HCT 116 - MspI) digested with MspI has spear-

man correlation 0.11,0.21 with libraries digested by HpaII

Yj ,j~1,2,:::15. This correlation results from sequence-specific

biases in the library construction process and the sequencing

process, together with methylation effect. These effects are difficult

to disentangle, but we can simply model them by introducing

certain correlation between X andYj . Besides, all pairs of libraries

digested by HpaII show a high correlation (spearman correlation

r(Yk,Yl)§0:60, where k, l stands for any pair of HpaII libraries).

This reflects the basal pattern of methylation that is unchanged

among different cell types. Moreover, HpaII libraries from the

same tissue samples (such as Y3–Y9 from H9) have generally an

even higher correlation (spearman r(Yk,Yl)§0:83), suggesting

tissue-specific methylation profiles. Finally, technical replicates

typically have the highest correlation. This is the case for Y1 and

Y2 (spearman r(Y1,Y2)~0:91), and for Y11 and Y12 (spearman

r(Y11,Y12)~0:90).

To allow for a statistical analysis of the Methyl-Seq data, we

explore some assumptions pertaining to the distribution of tag

counts. Assuming genome-wide uniform sequencing depth, the

MspI and HpaII tag counts along the genome can be appro-

ximated by Poisson distribution, where the tag counts’ Poisson

mean l is the sequencing depth of MspI library [20]. However,

since the sequencing depth is not constant throughout the whole

genome, instead of using a constant depth parameter l in Poisson

distribution for the whole genome, our analysis uses dynamic

sequencing depth parameter li for each cleavage site i’s MspI

library tag count: xi*Poisson(li) where xi stands for the MspI

library tag count for each cleavage site i. Moreover, Ji et al.[21]

suggest that the ChIP-Seq tag counts can be better fitted with a

negative-binomial distribution. A negative-binomial distribution

can be modeled as a continuous Gamma-Poisson mixture

structure [22], that is, we can fit xi*Negbin(ri,pi) with the

hierarchical model xi*Poisson(li) and the Poisson rate li

conditional on pi and ri: li ri,pij *Gamma(ri,(1{pi)=pi), where

pi is a proportion parameter, and ri is the over-dispersion

parameter. In this way, Poisson assumption is a special case

nested in the Negative-binomial assumption. Our analyses

considered both assumptions and used the Gamma-Poisson

mixture framework. We also define a constant Beta-value, the

methylation level m for each HpaII library in a specific region.

Following Brunner et al.[15] ’s analysis on restriction enzymes,

each HpaII tag is an independent Bernoulli with parameter1{m.

To estimate the methylation level m, we propose two methods:

Truncated Proportional Estimate (TPE), and Bayesian Hierarchi-

cal method. Both methods are detailed below.

2.3 Truncated Proportional Estimate
We assume the following model for generating the tag counts in

Methyl-Seq experiment. For a region with K assayable CCGG sites,

the HpaII tag count at the i-th site in j-th technical replicates, yij, is

generated by first generating xi’ total sequencing tags, and then sub-

sampled by a fraction (1-m), where m is the methylation level of the

region. In another words, yijjx0i*Binomial(x0i,1{m), where x0i is the

corresponding unobserved MspI tag count sample, generated from

the same distribution as xi: Poisson(li) or Negbin(ri,pi). With either

Poisson or more general negative-binomial assumption, we can

deriveyij ’s marginal distribution respectively: yij*Poissonfli(1{m)g
or yij*Negbinfri,pi=(1{mzmpi)g. Regardless of the assumption

of Poisson or negative binomial distribution of tag counts, we can

use xi and yij ’s log-likelihood to derive the same maximum

likelihood estimate of m: max(1{
PK

i~1 yij

.PK
i~1 xi,0). We called

this estimate the Truncated Proportional Estimate (TPE): the termPK
i~1 yij

.PK
i~1 xi estimate the proportion of unmethylated DNA

and is consistent with the intuitive proportion between HpaII and

MspI tag counts; when this term exceed one, methylation estimate is

truncated to 0. TPE includes both MspI and HpaII sequence tag

counts information as well as their random sampling nature into the

estimation.

The TPE method is attractive since it is simple in calculation

and does not depend on specific assumptions. However, this

method cannot provide methylation levels’ variance estimate. On

the one hand, since sequencing coverage is not consistent among

the whole genome, the variance of the methylation level can be

large and heterogeneous. Therefore, estimation of the variance is

often desired in association studies. On the other hand, based on

Brunner et al.[15] ’s reported sequencing data, 77% of all 90,612

regions in the whole genome are composed of only two digestion

sites, and 95% of regions in the whole genome contain no more

than 5 digestion sites. Therefore, the sample size for methylation

estimate is small, and it may be not appropriate to use the

observed information matrix [23] of Maximum Likelihood

Estimation to approximate the estimates’ variance. Moreover,

because of the truncation toward 0 when
PK

i~1 yijw
PK

i~1 xi, the

proportional estimate is biased downward. To alleviate the lack of

estimates’ variance and the extreme bias at high HpaII count cases

(low methylation), we consider a Bayesian Hierarchical model

approach.

2.4 Bayesian Hierarchical Model
Bayesian hierarchical models have been successfully applied in

modeling ChIP-Seq data [24] and RNA-Seq data [25], because

they offer flexibility in modeling complex processes of generating

sequencing tag counts. Moreover, Bayesian hierarchical models

framework allow estimation of the posterior distribution of

parameters, and therefore their variances.

With the Poisson assumption of tag counts, the MspI tag

count xijli*Poisson(li), and each HpaII tag count is an

independent Bernoulli with parameter1{m, then the HpaII tag

countyi can be considered as the result of a Poisson thinning

process [19], and is distributed with yij(li,m)*Poissonfli(1{m)g:
If we assume the negative-binomial model of tag counts

and consider the Gamma-Poisson mixture, we can specify

the distribution of the sequencing depth li conditional on pi

and ri: lijri,pi*Gammafri,(1{pi)=pig where piis a proportion

with 0vpiv1, and ri with riw0 is over-dispersion parameter,

which reflects the extra variance of xi beyond the Poisson

assumption. When ri approaches infinity, the negative-binomial

assumption is equal to the Poisson assumption. For the final level of

the hierarchy, without any prior information of methylation level m,
piand ri, we use non-informative priors for these parameters. In

summary, our hierarchical model is:

Statistics of Methylation Sequencing
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xijli*Poisson(li), yij(li,m)*Poissonfli(1{m)g;

lijri,pi*Gamma fri,(1{pi)=pig, i~1,2, � � � ,K , where K is the

number of sites in a region,ri*uniform(0,200), where 200 is a

large number which stands for approximation to infinity;

pi*uniform(0,1),m*uniform(0,1):

Then the joint posterior density of li,ri,piandm can be expressed

as:

p(li,ri,pi,mjx,y)!P ifp(xijli):p(yijli,m):p(li ri,pij ):p(ri):p(pi)g:p(m)

In order to compute the posterior estimates and variance of

parametersli,ri,pi andm, we use the Markov Chain Monte Carlo

(MCMC) to generate posterior samples from the posterior

distribution of the parameters. In the following analysis, we fit

the Bayesian model using Winbugs software [26]. We ran three

different chains from independent initial values, and specify 500

iterations as burn-in. After convergence, there are 500 iterations to

generate posterior distribution for all parameters. Since there are

overall 3K+1 parameters to be estimated in the model and most of

regions are composed of small number of cleavage sites K, the

MCMC algorithm converges quickly. With the generated

posterior samples, we can compute posterior mean as methylation

estimate and its variance.

2.5 Flexible Structure to Adjust Sequencing Depth Bias
Within Brunner et al.[15] ’s data, sequencing is performed

generally deeper on MspI libraries than on HpaII libraries, and

the bias is different between HpaII libraries and regions. In

Brunner et al. ’s original analysis, since methylation binary call only

depends on the HpaII tag count, it is not a crucial problem.

However, the sequencing depth bias affects MspI and HpaII

libraries’ tag counts differently, and it should be adjusted for the

estimation of methylation levelmin our models. Lacking the bias

information for each region, we use genome-wide CGG tags

aligned to MspI sites (see Supplementary Table 2, last column, of

Brunner et al.[15]) as the reference, and define the ratio of MspI

library to each HpaII library to specify its sequencing depth bias

dj . Recognizing that this ratio combines the methylation effect

with sequencing depth bias, the adjustment is only approximate.

Both the Bayesian Hierarchical model and the TPE mo-

del provide flexible structures to adjust this known biases

dj . For instance, Bayesian method’s hierarchical distributions

change to: xijli*Poisson(li), yij j(li,m,dj)*Poissonflidj(1{m)g,
and other terms remain unchanged. Meanwhile, TPE ofmcan

also incorporate the sequencing depth bias, and changes to:

max(1{dj

P
i yij

�P
i xi,0).

Results

3.1 Evaluation Quantification by Simulation Study
We use simulation studies to evaluate the proposed Bayesian

estimate and the Truncated Proportional Estimate (TPE). We first

generate a methylation levelmfrom the empirical density of

Microarray beta value from Brunner et al.[15], and then generate

cleavage site number K of each region based on Methyl-Seq real

data’s empirical distribution of sites. In this way, simulated data

scenario is as similar to the real data example as possible. In

the simulation, we assume that MspI tag counts are Poisson

distributed, and design the sequencing depth to be a constant

value, such as 50. Meanwhile, we consider the same sequencing

depth of MspI and HpaII libraries, and thus there is no sequen-

cing depth bias. We generate each site’s MspI tag counts

xi*poisson(50), and HpaII tag counts yij*poissonf50(1{mj)g,
where j~1,2, � � � ,6: Overall, we simulated 6 tissue libraries’ tag

counts, across 155 regions, with total 930 methylation levels to be

estimated. In addition, to compare the quantification by Methyl-

Seq in different sequencing depths, we generated simulation data

for 9 different sequencing depths increasing from 40 to 350.

We applied TPE and Bayesian estimation methods to simu-

lation data. In Figure 2, we plot two different methods estimates

with sequencing depth 50 vs. the true methylation levels. It is

shown in the plots that TPE as well as Bayesian estimate has

increasing variance as methylation levelmdecreases. Moreover,

TPE shows a prominent truncation at zero at low methylation

level, which is not the case for Bayesian estimate. Overall,

Bayesian Hierarchical estimate correlate with true methylation

beta value better than TPE (t-test [27] for Pearson correlation

differences 0.007, p-values ,0.001).

As another way to compare different methods’ estimates, we

follow Brunner et al. [15] and create estimates’ ROC curves. We

compare the estimates of the methylation level by the Brunner et

al. ’s HpaII tag count, TPE, and Bayesian methods with

dichotomized microarray beta values. Because of the dichotomi-

zation of microarray data, the ROC evaluation is not as sensitive

as correlation analysis. Still, ROC serves as an alternative

evaluation of quantification and a better estimation method

should have a higher area under the ROC curve (AUC). What we

found is that, consistent with the Pearson correlation result,

Bayesian Hierarchical estimate slightly outperforms the truncated

proportional estimate with a higher AUC (data not shown).

3.2 Evaluation of Quantification by Real Methyl-Seq Data
We next applied the Truncated Proportional Estimate (TPE)

and Bayesian estimate to quantify the methylation levels in

Brunner et al.[15] Methyl-Seq data set, which is introduced in

Methods section 2.2. In addition, we use the adjustment in

Methods section 2.5, with genome-wide CGG tags information to

specify the overall library-wide sequencing depth as mentioned in

Brunner et al.[15]. In Figure 3, we plot the TPE and the Bayesian

estimates against the microarray beta value. For both estimation

methods, most of data points cluster around lower-left (‘‘low-low’’)

and upper-right (‘‘high-high’’) corners. This indicates that the

Methyl-Seq estimates which coincide with microarray beta values

usually occur in high methylation (m is close to 1) or low

methylation levels (m is close to 0). However, a notable fraction of

Methyl-Seq estimates deviate from microarray beta values, visible

on the plots of Figure 3 as off-diagonal points, reflecting that either

of two estimates does not fit the microarray beta value as well as

the simulation study. Overall, the Bayesian estimates achieve a

correlation of 0.893 with the microarray beta values; while that

correlation for the TPE method is 0.889. This difference is

significant (t-test for correlation difference 461023, p = 0.013).

While this overall high correlation levels reflect the fact that

both TPE and Bayesian methods are capable of capturing the

binary ‘‘high-low’’ classification of methylation levels, it is worth-

while to investigate the detailed quantification performance at

‘‘high-high’’ and ‘‘low-low’’ regions. In Figure 3, if we consider the

‘‘low-low’’ region with both the TPE and Bayesian estimates, as

well as the microarray beta values all less than 0.5, the correlation

of Bayesian estimate is 0.207, while the correlation of TPE is

0.158. On the other end, if we consider the ‘‘high-high’’ region

with both the TPE and Bayesian estimates, as well as the

microarray beta value greater than 0.5, the correlation of Bayesian
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estimate is 0.415, while the correlation of TPE is 0.416. Moreover,

while TPE apparently truncated some points at zero, Bayesian

method eliminated these truncated estimates.

In fact the difference of quantification of TPE and the Bayesian

method is more pronounced than the overall correlation suggested

as shown in Figure 3. TPE’s estimates are sharply concentrated at

extreme values: zero and one. This is because that the truncation

acts in regions where HpaII tag counts exceed MspI tag counts

and thus forces the methylation estimates to 0, and in regions

devoid of HpaII tags and thus the methylation estimates are

exactly at 1. The Bayesian estimates do not show such sharp trun-

cations, and thus are more amicable for real-world applications.

It is also shown from the ROC curves comparison (Figure 4)

that TPE and Bayesian estimate have generally overlapping ROC

Figure 3. Performance of proposed estimates on Methyl-Seq real data. Comparison of the proposed estimates (TPE and Bayesian Estimate)
in real Methyl-Seq experiment and microarray methylation beta values. Bayesian estimate has significantly higher correlations than TPE
(p-value = 0.012, t test).
doi:10.1371/journal.pone.0021034.g003

Figure 2. Performance of proposed estimates on simulation data at sequencing depth 50. Comparison of the proposed estimates (TPE
and Bayesian Estimate) and the true methylation proportions in simulation. Bayesian estimate have significantly higher correlation (pearson r = 0.981)
than TPE (pearson r = 0.973) (p-value,0.001, t test).
doi:10.1371/journal.pone.0021034.g002
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curves, and have a higher AUC than Brunner et al. ’s HpaII tag

count. Moreover, the Bayesian estimate has a slightly larger AUC

than TPE.

3.3 Necessary Depth Required by Methyl-Seq to Offer a
Comparable Quantification Accuracy as Microarrays

The estimate of methylation level in Methyl-Seq, as a count-

based quantification, is more accurate with higher sequencing tag

counts. A practical question is, at what sequencing depth can

Methyl-Seq offer a better quantification than microarrays. We

found 3 tissue sample libraries with technical replication data in

microarray methylation experiments on the Infinium Methyl 27

platform: H9 hESC (2 replicates, with correlation 0.9946); BG02

EB delivered cells (3 replicates, with pairwise correlations 0.9836,

0.9808 and 0.9700); and adult liver (2 replicates with correlation

0.9718). To achieve the same level of consistency of technical

replicates with Methyl-Seq, one has to increase the sequencing

depth. We simulate with different sequencing depths ranging from

40 to 350. It is clear from Figure 5 that the consistency

(correlation) improves with increasing sequencing depth. It is also

shown in Figure 5 that Bayesian method’s correlation is always

higher than TPE. To achieve a microarray’s consistency, the

Bayesian method needs sequencing depth about 40–250 per

cleavage site while TPE would need 50–300. As a cautionary note,

we remark that the correlation between repeated simulations’

estimates is a measure of consistency, whereas the actual accuracy

should be estimated by the correlation between the estimate and

the true values, which is not yet available for our data set.

Nonetheless the high accuracy shown in Figure 2 suggests that the

consistency is a good estimate of the accuracy.

3.4 Site-level versus Region-level Quantification
A key advantage of Methyl-Seq/RRBS over ChIP-based

methylation quantification technologies such as MeDIP [28] is

that Methyl-Seq and RRBS can offer single base-pair resolution

methylation status. We compare the site-level versus the region-

level quantification using simulation. For simplicity, we only

consider two sites in a region, and assume that MspI tag counts are

fixed on sequencing depth, with a constant value l. Meanwhile, we

consider the same sequencing depth of MspI and HpaII libraries,

and generate each site’s MspI tag counts xi~l,for i~1,2,

HpaII tag counts yi*poissonfl(1{m)g. We first use the em-

pirical density of microarray beta values [15] to fit the methy-

lation level m with a marginal beta distribution, resulting with

Beta(0:222,0:715), and then generate methylation level ms for two

neighborhood sites with the same marginal distribution but

different correlation [29], increasing from 0.92 to 1. Overall, we

simulated 2000 sites for each correlation from 0.92 to 1. In

addition, to compare the quantification in different sequencing

depths, we generated simulation data with sequencing depths l 30

and 300.

As shown in Figure 6, we found that the site-level quantification

is more accurate when the sequencing depth is high or the

correlation of methylation levels between nearby sites is low. When

Figure 4. ROC curve Comparison of proposed estimates with Brunner et al. ’s estimate. ROC curves for three quantification methods:
Brunner Estimate (HpaII tag count), Truncated Proportional Estimate (TPE), and Bayesian Estimate. Following Brunner et al., microarray beta values are
treated as gold-standard and dichotomized with .0.6 for methylated and ,0.6 for un-methylated. The Brunner, TPE, and Bayesian estimates are
treated as predictors, and each point on the plot represents a cutoff values on the continuous-valued predictor.
doi:10.1371/journal.pone.0021034.g004
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sequencing depth is low and correlation of methylation levels

between nearby sites is high, quantification by region will be more

accurate than quantification by sites as it allows borrow infor-

mation across all sites in a region. In many practical settings

including the Brunner et al. [15] experiment, the sequencing depth

is relatively low. Region-level quantification may be more appro-

priate in such cases.

3.5 Sensitivity of the estimators to different sequencing
depths of MspI and HpaII libraries

A simplifying assumption in our analysis on Methyl-Seq data is

that the sequencing depths in MspI library and HpaII library are

equal, i.e., lMspI~lHpaII . It would be helpful to know to what

extent different depths are tolerated by the noise in the system.

Here we investigate the effect of different sequencing depths in

MspI and HpaII libraries on the estimate by simulation. We use

the simulation procedure as described above in Results section 3.1

to simulate regions and sites, except that we generate 9 con-

figurations of sequencing depths lMspI and lHpaII . Specifically, we

consider three different MspI sequencing depths: low (lMspI = 5),

medium (lMspI = 30), and high lMspI = 300). To control the level

of sequencing depth discordance between the HpaII library and

the MspI library, we generate the HpaII sequencing depth using

log-normal distribution: log(lHpaII )*N( log(lMspI ) ,s2). For each

MspI setting we consider three levels of sequencing depth

discordance with s from 0, 0.5 to 1. For each combination of

lMspI and s we generate 100 data sets, each with 6 tissue libraries’

tag counts, across 155 regions, with total 930 methylation levels to

be estimated. We run TPE and Bayesian model and compare the

estimates to the true levels.

As shown in Figure 7, we found that the quantification accuracy

plummeted as the sequencing depth discordance increases: At

sequencing depths of 30 or above, the correlation is above 95%

when no discordance exist, while the correlation is about 90% with

modest discordance (s = 0.5), and the correlation is at 80% or

lower when high discordance exists (s = 1). Meanwhile, the

quantification with higher sequencing depth always helps. While

there is a huge difference between low (lMspI = 5) and medium

(lMspI = 30) sequencing depths, additional sequencing depths

above 30 seems only to increase correlation 2%–3%. Besides

these patterns, it is also shown that the Bayesian estimates are

consistently better than the Truncated Proportional Estimates.

In many practical settings, including Brunner et al. ’s real data,

the sequencing depths of the MspI and HpaII libraries are

correlated but are not guaranteed to be the same, ie, there exists

regional variations of sequencing depth in the experiment, even

after the global library-wide sequencing depth is adjusted. While

our model assumes no discordance between the sequence depths

among libraries, our results suggest that the Bayesian model

displays a higher level of robustness to this unknown noise than the

naı̈ve TPE model.

As a caveat, a scatter plot (Supplementary Figure S1) suggests

that the heavy distribution of TPE estimates at extreme values

(zero and one) in real data might be due to low sequencing depths

in some regions.

3.6 Comparison of Methyl-Seq and RRBS in terms of the
variance of their quantification

The quantification of RRBS data is relatively straightforward in

the spirit of proportional estimate. For a site with a C nucleotide in

Figure 5. Quantification consistency of proposed estimates with increasing sequencing depth. Consistency of the proposed estimates
for increasing sequencing depths in Methyl-Seq. Consistency is the average correlation between the measurements from technical replicates.
Simulated technical replicates are generated from repeated sampling of the same underlying true methylation levels.
doi:10.1371/journal.pone.0021034.g005
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Figure 6. Comparison of performances of site level and region-level Bayesian estimations at high and low sequencing depths. The
region-level estimation’s accuracy increases rapidly with higher correlation, while the site-level estimation’s accuracy remains stable. The region-level
estimation has clear advantage for higher correlation region sites or lower sequencing depth, while the site-level estimation has better result for
lower correlation region sites and higher sequencing depth.
doi:10.1371/journal.pone.0021034.g006

Figure 7. Effect of sequence depth difference between MspI and HpaII. Methyl-Seq assumes that MspI and HpaII sequencing tags share the
same sequence depth l. In many practical settings, the sequence depths are correlated but may not be the same. We consider the sequence depth
difference with log(lHpaII )*N( log(lMspI ), s2), and compare the average correlation while the deviation s changes from 0, 0.5 to 1. Furthermore, we
consider the sequence depths difference effect in three settings: low sequencing depth lMspI with 5, medium sequence depth lMspI with 30, as well
as extremely high sequencing depth lMspI with 300. The sequence depth difference brings accuracy to drop rapidly. The effect of sequence depth
difference is more heavy than the sequence depth.
doi:10.1371/journal.pone.0021034.g007
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the reference genome covered by MspI fragments, we denote the

number of sequencing tags with ‘C’ at the site as x, and the

number of sequencing tags with ‘T’ at the site as y, and the

methylation level at the site would be simply x/(x+y). This site-level

estimate can be generalized to region-level estimate as Sxi/

S(xi+yi), where the xi and yi are the sequencing tag counts of site i

in the region.

Using simulation, we reveal, however, that Methyl-Seq’s TPE

and RRBS’s proportional estimates have different behavior in

terms of the variances of their estimates. For convenience of

comparison, we apply the RRBS simulation procedure similar

to Methyl-Seq in Results section 3.1, and simulate the regions,

sites, and tag counts with the same sequencing depth 50 as in

Methyl-Seq, except that we assume yi*poissonf50(1{m)g, and

xi*poisson(50m). As shown in Figure 8, RRBS’s estimates has a

relatively equal level of variance near m = 0 and m = 1. This is in

dramatic contrast to the Methyl-Seq’s TPE estimate shown in

Figure 2, where the variance is higher in the near m = 0 range.

This reflects the nature of the data rather than the biases in

these estimates. In Methyl-Seq, the MspI tag counts serve as a

‘‘control’’ of the HpaII tag counts. At sites where methylation level

is low, the HpaII counts can be high but the MspI tag counts may

be low and thus TPE truncation happens or the MspI tag counts

may be very high and thus the proportional estimate can be quite

different from the true methylation level. Noise of MspI tag counts

in either direction can result in large deviation of TPE from the

true value. At sites where methylatioin is high, the HpaII tag

counts tend to be low, the variation of MspI tag counts would have

a smaller effect on proportional estimates. In RRBS, the ‘C’ tag

counts and the ‘T’ tag counts are symmetric and variances of the

proportional estimate at either extremely high or extremely low

methylation levels behave similarly. See Supplementary Part A in

Materials S1 for a proof sketch for these arguments.

Discussions

Methyl-Seq and other emerging sequencing-based technologies

can measure DNA methylation levels in a sample efficiently.

However, to the best of our knowledge, there is no investigation on

the statistical issues related to the quantification of methylation

levels in Methyl-Seq and other methylation sequencing data. In

this study, we introduced two different methods for estimating the

methylation levels for the Methyl-Seq technology: one intuitive

Truncated Proportional Estimate (TPE) based on Maximum

Likelihood estimation and the other in Bayesian hierarchical

framework. Comparing these quantification methods through

simulation and real Methyl-Seq data, we demonstrated that

Bayesian hierarchical model outperforms the TPE, while both

methods are significantly better than the binary quantification in

the original Methyl-Seq paper [15]. This result indicates that the

Bayesian hierarchical structure can effectively capture the

statistical signals in the complex experimental design of Methyl-

Seq. While TPE is conceptually simple and easy to implement, we

recommend using Bayesian hierarchical structure as the statistical

quantification method for Methyl-Seq.

In addition, we investigated several statistical issues relating to

methylation quantification by sequencing. We found that, to

achieve a quantification quality comparable to microarrays,

Methyl-Seq should be conducted with at least sequencing depth

40–250 per cleavage site for both MspI and HpaII libraries. Also,

Figure 8. Performance of proposed estimates on RRBS simulation data. The RRBS data simulation is similar with Methyl-Seq data simulation.
But we assume that yi*poissonf50(1{m)g,and xi*poisson(50m). The Methylation level’s variation keep consistent when m = 0 and m = 1, which is
different from Methyl-Seq in Figure 2, where m’s variation inflates as m decreases from 1 to 0.
doi:10.1371/journal.pone.0021034.g008
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using Bayesian method could save 15–20% in sequencing depth

over using TPE to achieve the same level of quantification quality.

Finally, we revealed an important difference between the variances

of Methyl-Seq and RRBS: Methyl-Seq has an inflated variance for

methylation level estimates at lowly methylated sites, while RRBS

does not have such an artifact. All quantification methods for

Methyl-Seq and RRBS have been implemented in an R-package,

msBayes, freely available at http://www.ssg.uab.edu/wiki/dis-

play/SQML/Home.

There are additional biases in the Methyl-Seq data that have

not yet been adjusted in our models. First, since methylation status

and sequencing depth are coupled in the HpaII library, the overall

library-wide sequencing depth might be underestimated by

Brunner et al. by adjusting it with genome-wide CGG tags aligned

to MspI sites [15]. While we followed Brunner et al. ’s procedure,

one possible future improvement is to iteratively re-adjust the

overall library-wide sequencing depth after the quantification of

methylation levels. Second, a major confounding factor for

methyl-sequencing data is that the read frequency for a specific

restriction site depends not only on the DNA methylation status at

this particular site, but also on the DNA methylation status of

neighboring sites. This is because, in order to obtain an HpaII

read at site i, there has to be another HpaII cleavage site not too

far from site i to present a fragment for sequencing. Third, the

regional sequencing coverage li is associated with many factors

such as GC content, a common issue faced by many other

sequencing-based technologies. It would be interesting to borrow

ideas from other sequencing-based technologies such as RNA-Seq.

For example, we can apply the Poisson log linear regression in our

Bayesian hierarchical structure to model the sequencing prefer-

ence by predicting li from local sequences [30]. Fourth, in the

context of Methyl-Seq and RRBS, an additional complicating

factor is the selection bias of enzyme-cleaved fragments with

different lengths (Supplemental Figure 4 of Brunner et al. [15]).

The lengths of these fragments are associated with the regional

density of 59-CCGG-39 sites. Our Bayesian model might be

improved by incorporating components adjusting these biases and

addressing these biases will be topics for future research. Fifth and

finally, fragment size selection is an important source of

sequencing depth bias, as shown in Supplemental Figure 4 in

Brunner et al. Also, the variance/range of fragment sizes could

influence the definition of regions in our quantification. As a

background model, a restriction enzyme which is not only non-

methylation dependent but also non-GC rich might be interesting

to study as it teases out many sequence-dependent fragment

selection biases.

In the present work, we follow the definition of regions by

Brunner et al.[15]. Region definition is important as our models

assume that methylation levels within a region remain a constant.

We recognize that this region definition is rather simplistic. It is

known that methylation levels can fluctuate even between nearby

sites. More flexible constraints on the auto-correlation of

methylation levels among neighboring sites may be explored as

additional hierarchies in the Bayesian framework in the future. For

example, one may incorporate a correlation matrix among

neighboring sites.

The Reduced Representation Bisulfite Sequencing (RRBS) is an

alternative sequencing-based technology for methylation quanti-

fication [16]. Similar to Methyl-Seq, RRBS is also a count-based

sequencing technology, using restriction enzymes to recognize 59-

CCGG-39 sites for enrichment of CpG sites. Unlike Methyl-Seq,

RRBS uses bisulfite conversion technology and obtains both the

tag counts for methylated and unmethylated DNAs from one

tissue sample. However, RRBS may have distinct sources of biases

such as the noisy alignment due to a reduced genome alphabet

and noisy base calling at the first position of the fragment. Current

quantification frameworks of both the TPE and the Bayesian

Hierarchical model can be extended to quantify the RRBS data,

with the Bayesian model is more promising in terms of handling

the biases from diverse sources.

Supporting Information

Figure S1 Performance of proposed estimates on sim-
ulation data at low sequencing depth. TPE and Bayesian

estimates of methylation levels in simulation data generated using

low sequencing depth (lMspI = 5). Please see Results section 3.5 in

the main text for detailed simulation procedure. By visual

comparison with Figure 3 in the main text, this result suggests

that the extreme TPE estimates (zeros and ones) in the real data

might be due to the setting of low sequencing depth.
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