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Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome

with diverse etiologies and pathophysiological factors. Obesity and type 2 diabetes

mellitus (T2DM), conditions that coexist frequently, induce a cluster of metabolic and non-

metabolic signaling derangements which are in favor to induce inflammation, fibrosis,

myocyte stiffness, all hallmarks of HFpEF. In contrast to other HFpEF risk factors, obesity

and T2DM are often associated with the generation of enlarged epicardial adipose tissue

(EAT). EAT acts as an endocrine tissue that may exacerbate myocardial inflammation

and fibrosis via various paracrine and vasocrine signals. In addition, an abnormally large

EAT poses mechanical stress on the heart via pericardial restrain. HFpEF patients with

enlarged EAT may belong to a unique phenotype that can benefit from specific EAT-

targeted interventions, including life-style modifications and pharmacologically via statins

and fat modifying anti-diabetics drugs; like metformin, sodium-glucose cotransporter 2

inhibitors, or glucagon-like peptide-1 receptor agonists, respectively.

Keywords: heart failure with a preserved ejection fraction, epicardiac adipose tissue, diabetes, obesity, SGLT2,

inhibitor, GLP-1 agonists

INTRODUCTION

Nearly one-half of heart failure (HF) patients have a preserved ejection fraction (HFpEF), with
rising prevalence in the United States of America and Western populations (1, 2). Common
hemodynamic features of HFpEF include diastolic dysfunction and reduced ventricular compliance
(3). The pathophysiology of HFpEF is complex, exacerbated by a variety of comorbidities including
age, hypertension, renal dysfunction, diabetes mellitus (DM), and obesity (4, 5), and may reflect
also different phenotypes and differences in pathology (6). This could be especially important
for the obese and DM subgroup of HFpEF. In dispersion through large outcome studies and
registries, around 80% of HFpEF patients are obese and 20–45% have type 2 DM (T2DM) (7–10).
Thirty-percent of HFpEF patients have both obesity and T2DM (11). As such, HFpEF is perceived
as an inflammatory cardiometabolic disease, which includes all major mechanisms discussed in
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GRAPHICAL ABSTRACT | Epicardial adipose tissue (EAT)-related heart failure with preserved ejection fraction (HFpEF). Obesity and type 2 diabetes mellitus (T2DM)

are common triggers of HFpEF, frequently associated with EAT expansion. EAT plays metabolic and mechanical roles in HFpEF development via para/vasocrine

factors and pericardial restrain, respectively. Life-style modifications including healthy diet and regular exercise can quash the EAT expansion. Statins, proprotein

convertase subtilisin/kexin type 9 (PCSK9) inhibitors and fat-modulating antidiabetics including metformin, sodium-glucose cotransporter 2 (SGLT2) inhibitors and

glucagon-like peptide-1 (GLP-1) agonists can target EAT. FFA, free fatty acids; AGEs, advanced glycation end-products; NO, nitric oxide; ROS, reactive oxygen

species; Ang-II, angiotensin II; TGF-β, Transforming growth factor beta; MCP-1, monocyte chemoattractant protein 1; IL-6, interleukin 6; TNF-α, tumor necrosis factor

alpha. Figure created via Servier Medical Art and BioRender tools.

HFpEF (12, 13). However, even in this subgroup of HFpEF
some patients, differ with respect to the existences of epicardial
adipose tissue (EAT). EAT, which is the visceral fat depot of
the heart, may play an important extra role in the development
of HFpEF (10, 14). Compared to non-obese HFpEF patients,
HFpEF patients with obese phenotype show 20–50% higher
EAT thickness despite similar body mass index (BMI) (15). The
volume of EAT is directly proportional with the presence of atrial
fibrillation and T2DM and with myocardial injury biomarkers
(16). It has been recognized as a metabolically active depot
that affects the myocardium via production of cytokines and
adipokines (17).

There is growing evidence that HFpEF with enlarged EAT
is a clinically relevant HF phenotype that may require specific
treatments (15, 17). We hypothesize that EAT quantification
would allow the differentiation of HFpEF patients with enlarged
EAT. This specific subgroup of patients might benefit from EAT-
modifying therapies.

THE OBESE HFpEF PHENOTYPE

HFpEF is a systemic disorder involving multiple organ systems
where circulating proinflammatory mediators originating from
multiple comorbidities trigger abnormalities in both the heart

and the skeletal muscles (18). An expansion in body fat mass
causes hemodynamic, metabolic, inflammatory, and hormonal
disruption, which affect the vascular endothelium and the
heart (19, 20). Obesity is a principal HFpEF component
via triggering a systemic proinflammatory environment and
inducing endothelial production of reactive oxygen species
and reduces nitric oxide (NO) bioavailability, which especially
affect the coronary microvasculature and the neighboring
cardiomyocytes (21–23).Moreover, cardiomyocytes have no lipid
storage capacity, their exposure to excess blood lipids, typically
occurring in obese patients can lead to cardiomyocyte steatosis
and reduction of function (14, 24).

Accordingly, HFpEF patients can be further classified into
non-obese and obese phenotypes. The latter is characterized by
high bodymass index>30 kg/m2, lower natriuretic peptide levels
and higher left ventricular (LV) mass to volume ratio compared
to the non-obese phenotype which is more common in the
elderly (15). Moreover, obese HFpEF patients have abnormal
cardiac and skeletal muscle composition with infiltration of
adipose tissue (25). Furthermore, in comparison with non-
obese HFpEF patients, obese HFpEF patients have unique
pathophysiological features including larger volume overload,
abnormal right ventricular-pulmonary arterial coupling, worse
exercise capacity, subtle hemodynamic perturbations, increased
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epicardial fat mass and higher LV filling pressure and exaggerated
biventricular remodeling (15, 26, 27). Increased biventricular
pressure can be attributed to greater dependence on plasma
volume expansion, and enhanced ventricular interaction, and
is further amplified as pulmonary pressure load increases (15,
26). This increase in the pulmonary pressure is a consequence
of impaired pulmonary vasodilatation that could be related to
the existence of adipokines which reduce NO bioavailability
(28, 29). However, obese patients can also develop a significant
enlargement in EAT, which may represent an additional factor
in the HFpEF hemodynamic features due to an increased
pericardial restraint.

DIABETIC CARDIOMYOPATHY WITH
HFpEF PHENOTYPE

Like obesity, T2DM plays a fundamental role in the
pathophysiology of HFpEF via diabetic specific mechanisms
which culminate in matrix changes, vascular endothelial
dysfunction, and myocardial stiffness, respectively (30, 31).
In HFpEF patients, T2DM is associated with poor prognosis
manifested in an increased risk of hospitalization for worsening
HF and HF-related death (32, 33). In obese T2DM patients,
metabolic disturbances including hyperglycemia, lipotoxicity,
abundance of advanced glycation end-products (AGEs), and
hyperinsulinemia provoke coronary microvascular dysfunction,
and the development of HFpEF (21, 30). Hyperglycemia
impairs endothelial NO generation and reduces cyclic guanosine
monophosphate (cGMP) production which in turn reduce
protein kinase G (PKG) activity in cardiomyocytes and
consequently titin protein function and diastolic distensibility
(21, 34). Similarly, AGEs impair endothelial NO production
and predisposes to concentric LV remodeling and myocardial
stiffness as observed in diabetic cardiomyopathy patients with
HFpEF (35–38). In addition, in T2DM there is an increase in
glucose-auto-oxidation and free-fatty acid concentrations which
creates oxidative stress in the myocardium and subsequently
concentric ventricular remodeling (39). Lam (30) recognized
T2DM-related HFpEF as a unique diabetic cardiomyopathy
phenotype, which can be defined by the presence of left
ventricular diastolic dysfunction in diabetic patients without
coronary artery disease, hypertension, or other potential
etiologies (40). This phenotype is in contrast with the well-
established diabetic cardiomyopathy definitions where LV
dilatation, reduced EF and systolic dysfunction are the main
characteristics (30). The features of both phenotypes have been
compared in detail elsewhere (21). CommonHFpEFmechanisms
associated with obesity and T2DM are summarized in Table 1.
Like obesity, T2DM patients may develop EAT expansion, which
contributed to HFpEF pathogenesis via several mechanisms.

THE ROLE OF EPICARDIAL FAT IN OBESE
OR DIABETIC HFpEF PATIENTS

EAT is the visceral fat depot of the heart. In the adult, EAT is
physiologically found in the atrioventricular and interventricular

TABLE 1 | Common obesity and type 2 diabetes mellitus related HFpEF

mechanisms.

- Systemic inflammation

- Expansion of epicardial adipose tissue (EAT)

- “Cardiac steatosis”

- Cardiac fibrosis

- Increased endothelial production of reactive oxygen species

- Impaired endothelial nitric oxide production

- Increased myocyte stiffness

grooves of the heart. HFpEF patients have 20–50% higher EAT
mass compared to both patients with non-obese HFpEF and
control subjects with similar body mass index (14–16). EAT
expansion includes the intensification of perivascular fat which
causes coronary inflammation and accelerated atherosclerosis,
and ultimately leads to myocardial stiffness and fibrosis (41, 42).
The EAT interacts directly with the heart, metabolically and
mechanically (Figure 1) (15, 17). Since there is no muscle fascia
between the EAT and the myocardium, the two tissues depend
on the same microvasculature and could interact directly via
paracrine and vasocrine secretions (43, 44). In obese patients,
the EAT secretes several pro-inflammatory chemokines and
cytokines, collectively called adipokines such as tumor necrosis
factor alpha (TNF-α), monocyte chemoattractant protein-1
(MCP-1), interleukin-6 (IL-6), IL-1β, plasminogen activator
inhibitor-1 (PAI-1), resistin, S100A9, and many others (16).
All together create a proinflammatory state in the myocardium
associated with cardiomyocyte stiffness, coronary endothelial
dysfunction, and fibrosis, which are all implicated in the
development of HFpEF (14, 15, 45). In line, Karastergiou
et al. (46) have reported a strong presence of activated
macrophages in the EAT obtained from obese patients with
coronary artery disease (CAD) (46). Moreover, the EAT
produces high levels of reactive oxygen species (ROS) products,
which drives oxidative stress in the myocardium and the
coronary vasculature (47). Furthermore, the EAT is a source
of angiotensin II, which provokes coronary vasoconstriction
enhancing ischemia, especially in patients with DM due to
coexisting vasculopathies (48). Also, the EAT transcriptome
contributes to the development of CAD via higher levels of
renitol-binding protein 4 (RBP4) and lower levels of glucose
transporter-4 (GLUT4), leading to adverse lipid and glucose
metabolic profile augmented by the proinflammatory secretome
(49, 50). Metabolically, EAT expansion is associated with
intramyocardial accumulation of triglycerides causing cardiac
steatosis (51). It has been shown that myocardial triglyceride
content is independently associated with reduced pump function
(52), and impaired ventricular strain parameters (53). Cardiac
steatosis induces fetal gene transcription that favors myocardial
glucose utilization instead of free fatty acids under physiological
conditions, which further aggravates lipid accumulation (54, 55).

Mechanically, the EAT occupies space in the cardiac fossa.
In obese patients, large EAT mass causes an increase in
intracardiac pressures, particularly during exercise (15, 56). In
HFpEF patients, an expansion in the EAT volume is commonly
observed jointly with biventricular hypertrophy, however, the
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FIGURE 1 | The role of epicardial adipose tissue in the pathogenesis of heart failure with preserved ejection fraction. ROS, reactive oxygen species; TNF-α, tumor

necrosis factor alpha; MCP-1, monocyte chemoattractant protein 1; IL-6, interleukin 6; IL-1b, interleukin 1b; PAI-1, plasminogen activator inhibitor-1; Ang-II,

angiotensin II; ROS, reactive oxygen species; RBP4, renitol-binding protein 4; GLUT4, glucose transporter-4; CAD, coronary artery disease.

pericardium does not expand at the same proportion (15, 56).
Hence, the pericardium exerts a compressive contact force on
the heart and consequently increases pericardial restrain and
enhances ventricular interaction (57). The abnormal mechanical
interaction between the heart and the pericardium causes an
increase in pericardial pressure and LV end-diastolic pressure,
and a decrease in LV transmural pressure and LV end-
diastolic diameter which together elevate the pulmonary capillary
hydrostatic pressures promoting dyspnea (58). Further studies
have substantiated the deleterious effect of EAT expansion on
the cardiac muscle function including strain abnormalities (59).
In a 2-dimensional speckle tracking echocardiography study,
Maimaituxun et al. (60) have demonstrated that EAT volume
is a determinant of global longitudinal strain (GLS) in HFpEF
patients. Similarly, DM was a sole determinant of GLS (60).

Visceral fat accumulation is a fundamental element of T2DM
(43, 61). HFpEF patients with T2DM have higher EAT mass
compared to those without T2DM at similar BMI (16, 61).
Being a marker of visceral adiposity, EAT is a risk factor for
T2DM, cardiovascular complications and metabolic syndrome
(14, 44, 62, 63). In diabetics, the EAT transcriptome is rich
in proinflammatory and innate immune genes like Pentraxin
3 (PTX3) and endothelial lipase G (LIPG) compared with the
subcutaneous fat transcriptome from the same patients (64). Van
Woerden et al. (16) have observed that in HF patients creatine
kinase-MB, troponin T, and glycated hemoglobin positively
correlate with EAT volume. It appears that EAT expansion
is associated with DM, however, whether there is a causal
association between the two disorders is not yet clear.

DIAGNOSIS OF EPICARDIAL ADIPOSE
TISSUE EXPANSION

The diagnosis of EAT enlargement is imperative for the
identification of EAT-related HFpEF phenotypes. Transthoracic
echocardiography can estimate the EAT thickness, measured as
the echo-lucent area between the epicardial surface and parietal
pericardium. However, echocardiography cannot be used to
estimate EAT volume and has relatively poor inter-observer and
intra-observer variability among other limitations (65).

Ideally, EAT volume can be evaluated via cardiac magnetic
resonance (CMR) (66, 67) (Figure 2). In line, the European
society of cardiology (ESC) consensus recommends the use
of a stepwise score-based algorithm to diagnose HFpEF (68).
The algorithm suggests the use of more sophisticated tools
including CMR to identify specific etiologies in patients with
confirmed HFpEF. CMR-based stratification of HFpEF patients
based on EAT volume might support the rational to use of EAT-
modulating therapies. In addition, CMR opens the possibility
to a combined evaluation of potential underlying myocardial
ischemia, storage diseases like amyloidosis, diffuse myocardial
fibrosis (extracellular volume), and epicardial fat. Recently, a
growing number of publications also demonstrate the easiness
of epicardial fat quantification using artificial intelligence (AI)
algorithms (69). Beside the heart, the same approach can also
be applied to other organ regions in patients with HFpEF
like the abdomen (70). Since CMR allows imaging also in
severely obese patients, functional evaluation of the systolic and
diastolic function including myocardial work is feasible (71).
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FIGURE 2 | Standard-4-chamber orientations acquired using standard steady-state free precession-cardiac magnetic imaging sequences. The images demonstrate

epicardial fat (red arrow) with a minimal (normal) amount in a healthy volunteer (A) and in a patient with HFpEF (B) with increased epicardial fat surrounding the

whole heart.

Recent guidelines of the ESC recommend the use of the imaging
modality which is locally available with the best expertise and
confidence in results. Cardiac computed tomography (CT) is
widely available and easy to use and has demonstrated its ability
to quantify epicardial fat. However, the necessary use of radiation
limits its application for serial measurements needed to control
treatment effects. However, since newest generation CT-scanner
can be used with very low radiation doses, this might be an
interesting field for future research. In addition, quantification
of EAT by cardiac CT can be used to predict outcome even in
inflammatory diseases like Covid-19 (72).

THERAPEUTIC STRATEGIES

Lifestyle Modification
Unlike HF with reduced EF (HFrEF), patients with HFpEF
phenotype do not benefit from most standard HF therapies, but
rather from lifestyle modifications (73, 74). Similarly, diabetic
cardiomyopathy patients with an HFpEF phenotype benefit more
from lifestyle modifications compared to standard heart failure
therapies (21). Implementation of a healthy lifestyle including
smoking cessation, weight reduction, exercise, and healthy diet
is the mainstay of HFpEF management (75). Looking at obese-
HFpEF patients, weight reduction, and exercise might regress
the EAT volume, restore its physiological role (14), and mitigate
excessive pericardial restraint (15).

Symptomatic Treatment With Diuretics
In addition to lifestyle modifications, the ESC 2016 guidelines
have recommended the symptomatic use of diuretics in
HFpEF (3). Owing to the strong dependency between filling
pressures and blood volume, obese-HFpEF patients might
benefit from diuretics (15, 76). By reducing blood volume,
diuretics reduce right ventricular volume and ventricular
interaction, which in turn improves LV end-diastolic volume
(LVEDV) and stroke volume (SV), and relives pericardial
restrain (15, 77). However, the diuretic dose should be
carefully adjusted to avoid hypovolemia and severe preload
reduction (3).

Epicardial Fat Modifying Interventions
Statins and Other Antihyperlipidemics
Statins are lead prescribed medications that can achieve
substantial serum cholesterol lowering via inhibiting 3-hydroxy-
3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-
limiting enzyme of cholesterol synthesis (78). Members of this
class are known pleiotropic agents having the potential to affect
different body tissues independent of lipid lowering (79, 80).
Statins restore endothelial redox balance and NO bioavailability
(81). Although the use of statins in HFpEF has been a topic
of debate, several studies support the beneficial effect of statins
in HFpEF (82, 83). Various metanalysis studies advocate the
potential benefit of statins on HFpEF-mortality (84–86). In
cohort studies statins have demonstrated the ability to reduce
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EAT volume up to 15% with atorvastatin, independent of low-
density lipoprotein cholesterol-lowering (79, 87). Prominently,
a multi-center study comparing 87 aortic stenosis patients on
statins to 106 not on statins, concluded that statin treatment
was significantly associated with reduced EAT thickness and
proinflammatory cytokines secretome (88). The expression of
LDL and VLDL receptors by the EAT, advocates the role of statins
in modulating the metabolism of this fat depot (89). Besides, it
has been suggested that statins reduce the EAT metabolic activity
(79). Ultimately, the exact mechanism by which statins affect the
EAT volume is so far unknown.

Ezetimibe is another antihypercholesterolemic agent that
inhibits cholesterol absorption from the gut. In combination with
simvastatin, ezetimibe could not achieve better reduction in EAT
thickness compared to atorvastatin monotherapy (87).

Proprotein convertase subtilisin/kexin type 9 inhibitors
(PCSK9i) are novel cholesterol lowering agents which act
via inhibiting the PCSK9 enzyme which is responsible the
downregulation of low-density lipoprotein (LDL) receptors on
the surface of hepatocytes (90). A study by Galvez et al. concluded
that 6 months of treatment with PSCK9i could achieve a 20%
reduction in EAT thickness (91).

Metformin
Metformin is the first-line treatment for T2DM, particularly in
obese patients. Alongside its glucose-lowering effect, metformin
use is associated with weight loss independent of diabetes,
primary due to reduction of VAT (92, 93). A recent meta-
analysis by Halabi et al. concluded that metformin treatment
is associated with a reduction in mortality in patients with
HFpEF (94). In addition, two recent studies have demonstrated
that metformin monotherapy reduces EAT thickness (95, 96).
A standard metformin monotherapy for 3 months could reduce
the EAT thickness by 10% (95). The exact mechanism by which
metformin affects EAT is unclear but most reasonably attributed
to the well-establishedmetabolic effects ofmetformin, specifically
shifting metabolism into fat oxidation and upregulation of
thermogenesis (92, 95).

Glucagon-Like Peptide-1 Receptor Agonists
Semaglutide, liraglutide, and dulaglutide are glucagon-like
peptide-1 (GLP-1) receptor agonists, indicated for the treatment
T2DM. They act via enhancing glucose-dependent insulin
secretion, reducing glucagon secretion, and delaying gastric
emptying, resulting in adequate T2DM control and weight
loss (97). Several studies have demonstrated that the use
of GLP-1 associates with reduced cardiovascular risk (98,
99). In a randomized placebo-controlled trial on patients
with T2DM, liraglutide exhibited favorable cardiovascular
outcomes including LV filling pressure reduction and diastolic
function improvement. Both parameters are relevant for diabetic
cardiomyopathy and HFpEF (100). In addition, a systematic
review comparing the effect of GLP-1 agonists to different
antidiabetics on LV diastolic function has concluded that
liraglutide monotherapy offers a considerably beneficial outcome
(101). Interestingly, the EAT was found to express GLP-1
receptors in contrast to subcutaneous fat in the same patient

(102). In a cohort of patients with T2DM and obesity, Lacobellis
and his colleagues demonstrated that weekly administration
of either semaglutide or dulaglutide causes rapid, substantial,
and dose dependent reduction in EAT thickness, attaining 20%
reduction in 12 weeks (103). Similarly, liraglutide treatment
on top of metformin has resulted in 29 and 36% reduction
in EAT after 3 and 6 months, respectively, together with
a reduction in BMI and glycated hemoglobin (104). GLP-1
agonists are suggested to regulate EAT adipocyte formation
and metabolism as an outcome of promoting preadipocyte
differentiation, increasing sensitivity to insulin and stimulating
thermogenesis and adipocyte browning via a complex signaling
system (105–107).

Dipeptidyl Peptidase-4 Inhibitors
Endogenous GLP-1 is susceptible to cleavage by dipeptidyl
peptidase-4 (DPP-4). Sitagliptin, a DPP-4 inhibitor, has recently
been shown to substantially reduce EAT in subjects with
obesity and T2DM via prolonging GLP-1 half-life (108). DDP-
4 inhibitors are recommended in T2DM patients without
cardiovascular risk. Whether DPP-4 inhibitors would offer
long-term benefit for HFpEF patients or not is debatable.
Several studies have shown that DPP-4 inhibitors exhibit
cardioprotective anti-inflammatory properties that may have
beneficial effects on EAT (109–111). Those effects were
described to be mediated via different mechanisms including
downregulation of the receptor for AGE (RAGE) (112),
activation of cAMP/PKA signaling and IL-6 production (113),
reduction of ROS generation and ICAM-1 expression (114),
and diminishing DPP-4-activated phosphatidylinositol 3-
kinase signaling which favors adipocyte maturation (115). In
contrast, other studies have concluded that DPP-4 inhibitors
might increase the inflammatory products of the EAT and
adversely affect the myocardium especially in diabetic patients
via potentiating the actions of endogenous proinflammatory
chemokines like CXCL12 and mineralocorticoid receptor
signaling (116–118).

Sodium-Glucose Cotransporter 2 Inhibitors
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), for example
dapagliflozin and empagliflozin are relatively new medications
indicated for T2DM patients, but they are also sufficient in
HFrEF patients without DM (119, 120). Agents of this class
lower plasma glucose concentration via increasing urinary
glucose excretion (121). In addition, they cause significant
weight reduction, comparable to GLP-1 agonists, via caloric
loss, osmotic diuresis, and stimulation of visceral fat burn
(122, 123). Like diuretics, SGLT2i can reduce plasma volume
and consequently ventricular filling pressures, offering benefit
to HFpEF patients (15). With respect to HFpEF animal
data, showing that SGLT2 inhibition exhibited beneficial
cardiovascular effects in several non-diabetic HFpEF-animal
models (124, 125). Cardiomyocytes from empagliflozin-treated
HFpEF patients showed improved NO–sGC–cGMP–cascade
and PKG-activity, suggesting favorable cardiovascular outcomes
(126). In patients with T2DM and recent worsening HF,
sotagliflozin treatment reduced the total number of deaths
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from cardiovascular causes and hospitalizations and urgent
visits for HF, particularly in patients with preserved EF (127).
Press release about the EMPEROR-Preserved study, which has
been recently completed on HFpEF patients, stated that the
study met its primary endpoint showing that empagliflozin
has reduced mortality and hospitalization in the treated cohort
[NCT03057951]. Moreover, optimistic results are expected from
the DELIVER trial, which investigates the benefit of dapagliflozin
in HFpEF patients (128), all showing that SGLTi inhibition can
exert cardio-beneficial effects in HFpEF. In addition, in T2DM
patients dapagliflozin could reduce the EAT volume and the
occurrence cardiovascular events (94). Similarly, dapagliflozin
was recently shown to cause significant EAT thickness reduction
reaching 20% after 24 weeks of treatment in obese patients
with T2DM, independent of weight loss (129). Weight loss
independent mechanisms include improvement of EAT cells-
insulin sensitivity and reduction of local proinflammatory
chemokines secretion (e.g., CCL2) (130). Overall, SGLT2i showed
favorable results in HFpEF patients including EAT reduction.
Whether this effect is mediated via weight loss, or a direct
metabolic mechanism warrants further investigation.

Surgical Pericardiectomy
Anterior pericardiotomy through minimally invasive
percutaneous procedure is a potentially novel last-option
treatment for HFpEF patients with severe LV restriction,
since it eliminates the external restraint of the pericardium
(57, 131, 132). In canine HFpEF animal models, resection of
the pericardium improved LV compliance and filling pressure
(132). This technique is also applicable in humans, however
further studies are warranted to evaluate its long-term benefit
and safety (131).

Future Therapies
Anti-inflammatory Agents
Inflammation is an important driver of HF, by which its role
in the pathogenesis of HFrEF and HFpEF differs (133, 134).
Although it plays a pathological role in the EAT of obese patients
(46), pharmacological treatment with anti-inflammatory agents
like steroids (135) cannot be recommended in HF patients with
DM and/or metabolic syndrome (136). Theoretically, several
biological agents like interleukin (IL)-1 and IL-6 inhibitors
can target EAT-induced myocardial inflammation (136). The
small D-HARD study has demonstrated the beneficial effects
of the competitive IL-1 receptor antagonist anakinra in HFpEF
patients (137). However, the subsequent phase II (D-HART2)

study has failed to corroborate favorable outcomes (138).
Eventually, the study was underpowered and most of the
study participants suffered from obesity which independently
affects the co-primary endpoints peak oxygen uptake (VO2)
and ventilatory efficiency (VE/VCO2) (138). Whether the D-
HART2 study results be different in HFpEF patients with
enlarged EAT warrants further investigation. Canakinumab
is another monoclonal antibody that binds and neutralizes
IL-1β. Results from the CANTOS study demonstrated that
canakinumab significantly reduces the recurrence of new
cardiovascular events (139). These findings form the rationale

to consider investigating whether canakinumab would influence
EAT-inflammation. Ultimately, clinical studies testing whether
targeting EAT-related proinflammatory cytokines can benefit
HFpEF patients with enlarged EAT or not are necessary.

CONCLUSION

HFpEF is a diverse disease resulting from wide range of
comorbidities. Obesity and DM are principal drivers of HFpEF.
Stratifying HFpEF patients based on phenotypic data results
in novel classifications including obese and diabetic HFpEF
phenotypes. There is a close association between EAT volume
and HFpEF. HFpEF patients can be further classified according
to EAT volume using advanced imaging techniques including
CMR and CT. EAT functions as endocrine tissue that contributes
to myocardial inflammation. In addition, EAT expansion acts
as space-occupying lesion that causes pericardial restrain,
increase in ventricular filling pressures, and enhanced ventricular
interaction. HFpEF patients with enlarged EATmay benefit from
lifestyle modifications and symptomatic treatment with diuretics.
Besides, statins, PCSK9i and fat-modulating anti-diabetic agents
like metformin, SGLT2i or GLP-1 agonists can be especially
effective in this subgroup of patients, being able to induce EAT
regression. In addition, direct effects of SGLT2i and GLP-1
agonists on HFpEF are currently under clinical investigation.
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