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Background and Significance

In the United States, over 83 million people have been 
infected with SARS-CoV-2, the virus responsible for 
COVID-19 (Johns Hopkins University, 2021), and the cumu-
lative hospitalization rate has exceeded 1,300 persons per 
100,000 since early 2020 (Centers for Disease Control and 
Prevention, 2021). Hospitalized patients account for 1% of 
COVID-19 patients, yet most of the COVID-19 research 
focuses on in-patients with severe disease (Bergquist et al., 
2020). Among non-hospitalized patients, little is known 
about the medium- and long-term consequences of COVID-
19. The most recent statistics show that 10–30% non-hospi-
talized patients, those with mild to moderate COVID-19 
cases, will not recover quickly, within the expected time-
frame for symptom resolution (Carfì et al., 2020; Greenhalgh 
et al., 2020; Lambert & Survivor Corps, 2020; Rubin, 2020). 
These individuals, termed “long-haulers,” or persons with 
post-acute sequelae of SARS-CoV-2 (PASC) infection, as 
recently termed by the United States National Institutes of 
Health, struggle with debilitating, persistent, and ever-evolv-
ing symptoms that last for weeks and can exceed 1 year after 

SARS-CoV-2 infection. In short, COVID-19 has resulted in 
a cohort of millions of long-haulers worldwide, and we know 
little about the diagnosis and treatment. There is no cure.

It is not uncommon for infectious diseases to have late 
sequelae; however, the reason is unclear. For PASC, some 
scientists believe that late sequelae reflects primary 
organ involvement during acute infection; others believe 
that long-term signs and symptoms are promoted by aber-
rant inflammatory immune responses. PASC is yet to be 
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Abstract
Post-acute sequelae of SARS-CoV-2 (PASC) is defined as persistent symptoms after apparent recovery from acute COVID-19 
infection, also known as COVID-19 long-haul. We performed a retrospective review of electronic health records (EHR) from 
the University of California COvid Research Data Set (UC CORDS), a de-identified EHR of PCR-confirmed SARS-CoV-2-
positive patients in California. The purposes were to (1) describe the prevalence of PASC, (2) describe COVID-19 symptoms 
and symptom clusters, and (3) identify risk factors for PASC. Data were subjected to non-negative matrix factorization to 
identify symptom clusters, and a predictive model of PASC was developed. PASC prevalence was 11% (277/2,153), and 
of these patients, 66% (183/277) were considered asymptomatic at days 0–30. Five PASC symptom clusters emerged and 
specific symptoms at days 0–30 were associated with PASC. Women were more likely than men to develop PASC, with all 
age groups and ethnicities represented. PASC is a public health priority.
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clinically and biologically characterized. We know little 
about PASC diagnosis, treatment, and what medical, com-
munity, and societal resources are needed to optimally sup-
port survivors in their recovery. Little is also known about 
the prevalence of PASC, risk factors to develop PASC, indi-
vidual symptoms and symptom clusters, and symptoms that 
evolve over time among non-hospitalized patients. To date, 
PASC research has been limited by small sample sizes and 
omission of non-hospitalized survivors (classified as “mild” 
to “moderate” infection), thereby limiting population-level 
data that are essential for development of evidence-based 
management guidelines for PASC.

SARS-CoV-2 was thought to target the respiratory sys-
tems; however, we have since learned that multiple other 
organs are involved during infection; there is a wide range of 
symptom presentations. Clinical observations suggest the 
co-occurrence of hallmark COVID-19 symptoms. For exam-
ple, dyspnea and chest pain tend to co-occur as do loss of 
sense of taste with loss of sense of smell. The underlying 
pathophysiology of these phenomena is unknown. To this 
end, it is important to investigate symptoms, symptom clus-
ters, and their associations.

In this study, medically documented symptoms via elec-
tronic health records (EHRs) of non-hospitalized patients 
(N = 2,153) with confirmed SARS-CoV-2 infection (via 
PCR) were examined to identify symptoms and symptom 
clusters. Specifically, we evaluated symptoms at presenta-
tion (days 0–30 following a positive PCR test for SARS-
CoV-2) and at 180+ days. Symptoms present within the year 
prior to SARS-CoV-2 infection were excluded to mitigate 
potential overlap with pre-existing comorbidities. There is 
not yet consensus on the definition of PASC. For the purpose 
of this paper, PASC is defined as persistent symptoms at 
180+ days, a time in which symptoms would be expected to 
have abated. We examined how early symptoms and pre-
infection non-modifiable factors (age, ethnicity) could pre-
dict the likelihood of persistent symptoms at 180+ days 
(e.g., long-hauler) and/or assignment within any given symp-
tom cluster.

Objectives

The objectives of this study were to (1) determine the preva-
lence of PASC, (2) to describe medically documented symp-
toms (EHR) of non-hospitalized patients with PCR-confirmed 
SARS-CoV-2-positive (n = 2,153) tests at days 0–30 and 
180+ days, and (3) to identify the factors that increase risk to 
develop symptoms at 180+ days.

Materials and Methods

Sample Size and Inclusion Criteria

University of California COvid Research Data Set (UC 
CORDS as of 03/17/2021) is a de-identified EHR for 52,083 

patients treated in facilities throughout California and is 
available to University of California researchers. Because 
this is one of the first studies to characterize long-haul symp-
toms, it was important to ensure accurate temporal ordering 
of symptoms that were not subject to limitations of patient 
recall and used the gold standard of recording medical data, 
the EHR. Symptoms recorded in the EHR are documented 
by a medical provider, who receives information from the 
patient, and conducts a medical assessment. Using medically 
documented symptoms through the EHR increased our 
confidence in the accurate reporting of symptoms and their 
temporal order. This approach worked to overcome the limi-
tations of prior work that relied on patient retrospective recall 
of symptoms by patients months following SARS-CoV-2 
infection and lacked symptom history data and was plagued 
by the inability to determine the temporal order of symptoms 
or if symptoms were new or pre-existing before COVID-19. 
To validly capture the symptoms that could be attributed to 
COVID-19, we employed strict inclusion/exclusion criteria 
that yielded a sample (N = 2,153) of never-hospitalized 
SARS-CoV-2-infected individuals with COVID-19 symp-
toms. Patients hospitalized for COVID-19 were excluded as 
were out-patients with false-positive PCR results—having a 
positive and negative test within the same visit—or docu-
mented reinfection with SARS-CoV-2. In addition, patients 
needed to have records within the system before SARS-
CoV-2 infection for at least a year and symptoms reported 
before infection were excluded in the analysis. The data cap-
tured in the EHR reflect a time before vaccines were publicly 
available. Figure 1 provides a schematic of how we achieved 
the sample size of 2,153.

Non-Negative Matrix Factorization for Subgroup 
Identification

Non-negative matrix factorization (NMF) was employed to 
identify and quantitatively derive the subgroups of patients 
based on initial symptom presentation data. NMF is an unsu-
pervised learning algorithm that can extract meaningful fea-
tures from high-dimensional data sets (Lee & Seung, 1999). 
It is widely used to extract interpretable components from 
data in various domains such as image processing, data min-
ing, and genomics. In principle, NMF could be used in any 
application for meaningful components extraction where the 
elements in input data are non-negative. We formulate our 
input data as a matrix A of m rows and n columns with each 
element Aij ≥ 0, where m is the number of subjects and n is 
the total number of symptoms of interest, each element 
denotes the count of a symptom documented within a spe-
cific time range for a given patient. NMF searches for matri-
ces W of size m*k and H of size k*n, such that A ≈ WH. The 
matrices W and H are derived by minimizing the squared 
Frobenius norm ||A − WH||2 with some suitable optimization 
algorithms such as coordinate descent. Here k is a hyperpa-
rameter and its value is determined by the user. In the context 
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of symptom cluster discovery, k would be the number of 
symptom clusters; its value should be smaller than the small-
est of m and n. The matrix W is also known as the basis 
matrix, and H is called coefficient matrix. Note that the value 
of an element inside matrix A can be approximated in terms 
of the dot product of a basis vector (rows of W) and the cor-
responding coefficients (columns of H). Plenty of questions 
can be explained by the W matrix and H matrix. First of all, 
we can recognize which subgroup a patient resides in by 
inspecting the basis vector where the ith element of the 
basis vector can be interpreted as how likely the patient 
belongs to the ith subgroup, and given that the patient 
belongs to the ith subgroup, the chances of developing 
each symptom are represented by the coefficient vector in 
matrix H. Second, we can identify the most representative 
symptoms in each subgroup by aggregating and sorting the 
coefficient vectors.

Model Selection of NMF

We used Akaike information criterion (AIC) (Akaike, 1974), 
a method originated from information theory and widely 
applied in statistics and machine learning for model selection 
to determine the optimal k, the formula of AIC is given as 
follows:

AIC = − + +2log ( )L K N M

where L is the likelihood of the model, and K(N + M) is the 
number of parameters in the model. When there are several 
candidate models, the best choice is identified as the one cor-
responding to the minimum AIC, and the intuition is that 
when the likelihood is identical for two models, the better 
model is the one with less parameters. We further normalized 
likelihood term and model complexity term in the original 
AIC formula because without proper normalization, the sec-
ond term would usually dominate the equation and thus sug-
gest K = 1 all the time. We found out that AIC works the best 
and the optimal Ks derived are 5 for both early-stage symp-
toms and long-haul symptoms. More details are found in our 
supplemental materials.

Network Analysis to Determine Symptom 
Associations

Association study methods are typically based on correla-
tions and to derive the associations, a common way is to 
set an arbitrary threshold (e.g., significance of α = .05) via 
null-hypothesis testing, one often has to execute a consider-
able number of significance tests and deal with it through 
Bonferroni corrections, which will lead to a loss of power. To 
circumvent the above problems, we applied Graphical lasso 
(Glasso) which uses model selection to find the simplest 
model (sparse network) with spasticity achieved by impos-
ing L1 penalty on model coefficients. Glasso operates on 
symptom occurrence counts data and yields pairwise associ-
ations of symptoms which are represented by an undirected 
network where each vertex represents a symptom. The net-
work structure can be estimated by applying a lasso regres-
sion using each variable in the graph as the response and the 
others as predictors. After network structure estimation using 
Glasso, we employed the walktrap algorithm which is a stan-
dard community detection algorithm on graphs to further 
cluster nodes in the network (Friedman et al., 2008; Pons & 
Latapy, 2005).

Analysis to Identify Predictors of PASC

To identify factors leading to the development of persistent 
symptoms, we developed a predictive model that inputs 
multiple potential key factors to predict whether a subject 
with SARS-CoV-2 infection will become a long-hauler. By 

Figure 1. Flowchart depicting how records were screened for 
inclusion in the study.
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inspecting the model’s coefficient strength, we can identify 
the key predictors. We formulated socio-demographics, 
symptoms the individuals experienced in the first 30 days, 
and whether a patient was asymptomatic in the first 30 days 
as input features and then applied logistic regression as our 
predictive model. To alleviate the effect of multicollinearity, 
which may cause misinterpretation of predictor importance, 
we performed hierarchical clustering on the Spearman rank-
order correlations of input features.

One of the key properties of supervised machine learn-
ing techniques (e.g., logistic regression) is their predictive 
nature. In these techniques also known as classification, by 
analyzing a set of features (e.g., symptoms from the first 
30 days) from an existing set of labeled samples (e.g., 
COVID-19 long-hauler vs. not COVID-19 long-hauler), a 
model can be learned to predict the probability of those 
classes/labels (e.g., becoming a long-hauler or not) for a 
new sample. Such predictive models do not require a con-
trol group for predictions since the labels (e.g., positive/
negative) intrinsically provide information regarding both 
classes (in binary classification), assuming that enough 
samples were observed by the model to learn from. Once 
can then analyze the learned models to calculate the contri-
bution/correlation of each of the features (e.g., symptoms) 
to the final classification.

Results

Features and Symptoms Among Community-
Dwelling Individuals with COVID-19: Days 0–30 
and 180+ Days

Table 1 shows the sample distribution related to age, sex, and 
ethnicity at days 0–30 and at 180+ days. Comorbidities 
included asthma (~13%), hypertension (~43%), diabetes 
mellitus (~24%), chronic obstructive pulmonary disease 
(~1%), hyperlipidemia (~38%), major depressive disorder 
(~15%), congestive heart failure (~7%), anemia (~21%), 
cerebrovascular disease (~1%), and hypothyroidism (~13%). 
Approximately 22% had 1 comorbidity, 16% had 2 comor-
bidities, 32% had three or more, and 30% of the sample 
did not have any of these comorbidities. Figure 2 shows 
the prevalence of symptoms reported at days 0–30 and 
180+ days. Prevalent symptoms at days 0–30 include (in 
descending order) cough, dyspnea, fever, chest pain, head-
ache, among others. Symptoms reported among those with 
PASC (180+ days) include (in descending order) dyspnea, 
chest pain, abdominal pain, headache, low back pain, among 
other symptoms.

Using NMF five symptom clusters with the co-occurrence 
of symptoms were identified at days 0–30 (Figure 3a) and 
180+ days (Figure 3b). At days 0–30 symptom clusters included: 
dyspnea—diarrhea (N = 283), cough–diarrhea (N = 378), chest 
pain–heart palpitations (N = 173), fever–nausea (N = 270), and 

tachycardia–heart palpitations (N = 337). Symptom network 
analysis was used to identify the strength of association 
between symptoms, wherein the darker the line connecting 
nodes indicates a stronger relationship. Symptom clusters 
observed among PASC (180+ days) included the following: 
dyspnea–cough (N = 41), chest pain–cough (N = 40), heart 
palpitations–anxiety (N = 29), headache–low back pain 
(N = 53), and nausea–fatigue (N = 64). Symptom network 
analysis was again used to identify the strength of associa-
tion between symptoms, wherein the darker the line connect-
ing nodes indicates a stronger relationship.

Symptoms at Days 0–30 and Their Predictive 
Value for PASC and Specific Symptom Cluster

Table 1 provides the distribution of age, sex, and ethnicity 
among patients with PASC, those reporting symptoms at 
180+ days. This group was distributed across all age groups, 
including among those <18, ethnicities, and included more 
women than men. In Figure 4, features associated with devel-
oping PASC were identified and included an initial asymp-
tomatic presentation at the time of testing, as well as reporting 
alopecia, chronic rhinitis, joint or throat pain, and tinnitus, 
among many others. Conversely, an initial presentation of 
dysgeusia, or loss of taste, was negatively associated with 
developing PASC.

Features present at days 0–30 that most likely result in 
grouping within one of five symptom clusters identified 
among PASC survivors are reported in Figure 5. The greatest 

Table 1. Demographics of Patients Seen for SARS-CoV-2 
Infection at days 0–30 and 180+ days.

0–30 Days 180+ Days

 n = 2,153 n = 277 (11%)

Age (years) Number (%) Number (%)

 <18 46 (2%) 3 (1%)
 18–29 261 (12%) 32 (14%)
 30–39 336 (16%) 38 (17%)
 40–49 367 (17%) 38 (17%)
 50–59 433 (20%) 44 (19%)
 60–69 357 (17%) 28 (12%)
 70–79 225 (10%) 22 (10%)
 >80 126 (6%) 22 (10%)
Gender
 Female 1,218 (57%) 129 (57%)
 Male 935 (43%) 98 (43%)
Race/ethnicity
 Asian 121 (6%) 14 (6%)
 Black 81 (4%) 7 (3%)
 Hispanic 1,004 (47%) 115 (51%)
 White 707 (33%) 75 (33%)
 Other 240 (11%) 16 (7%)



1394 Clinical Nursing Research 31(8)

magnitude between a feature and membership within a cluster 
included initial presentation with fatigue with the dyspnea–
cough cluster, asymptomatic with heart palpitations–anxiety 
cluster, and muscle pain with nausea–fatigue cluster. Of the 

non-modifiable factors such as age, sex, and ethnicity, age 
18–29 was associated with the nausea–fatigue symptom clus-
ter and White race was associated with headache–low back 
pain cluster.

Figure 2. Symptoms prevalence among SARS-CoV-2 infected community dwellers at days 0–30 and 180+ days.
Bar graphs showing prevalence of symptoms reported at days 0–30 and 180+ days. Symptoms with very low prevalence are omitted in this graph.

Figure 3. Symptom clusters among SARS-CoV-2-infected community dwellers at days (a) 0–30 and (b) 180+ days.
NMF determined symptom clusters depicted in bar graphs with symptom ranking within each cluster, graph demonstrating optimal k means clustering, 
and graph demonstrating symptom network analysis showing relationship between each reported symptom. Each symptom is denoted as a node, with 
darker lines connecting symptoms indicating stronger relationships.
NMF = non-negative matrix factorization.
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Discussion

The current study provides much needed insight into early 
factors predisposing individuals for developing PASC. These 
novel findings warrant additional investigations, discussion, 

and context within current knowledge about long-haulers/
PASC. In reviewing our findings, we believe there are sev-
eral key take-home points from our analyses.

First, we found the PASC prevalence to be 11%. While 
our method captured symptoms attributable to COVID-19, it 
is likely the symptoms reported in the EHR are not compre-
hensive. Patient visits are typically short, and patients often 
report the most bothersome symptoms, the symptoms 
they see as most related to the suspected illness, and refrain 
from discussing symptoms that may be stigmatized or cause 
embarrassment. The understanding of COVID-19 symptoms 
and openness of providers in validating patient accounts 
have evolved over time. While this study estimated PASC 
prevalence at 11%, it is possible that there are more patients 
with symptoms that did not disclose for one the aforemen-
tioned reasons. Therefore, our estimate is conservative and is 
likely at the lower bounds of prevalence. Of note, of those 
that developed PASC, 66% were asymptomatic days 0–30. 
The reason for testing is unclear, but the implication that 
many asymptomatic, SARS-CoV-2-infected persons suggest 
PASC may be difficult to diagnose because of a lack of 
COVID-19 symptoms or COVID-19 disease among non-
hospitalized people. Moreover, this could represent a signifi-
cant number of people that may be omitted from any 
supportive services that would assist in recovery where doc-
umentation of a PCR-positive test is required.

Second, the UC CORDS data set provides both patient-
reported and clinician-documented symptoms from SARS-
CoV-2-infected patients. These symptoms are reported and 
recorded in real time, which minimizes retrospective recall 
that has been used in the limited studies to date and includes 
any symptoms uncovered by the medical provider (Carfì 
et al., 2020; Carvalho-Schneider et al., 2020). A few other 
important strengths from using the UC CORDS data set and 
the analytic techniques are exclusion of symptoms attributed 
to chronic diseases (e.g., asthma, heart failure, etc.). By 
excluding symptoms reported prior to SARS-CoV-2 infec-
tion, we increase confidence in the identified symptoms 
being attributable to becoming a long-hauler. However, it is 
important to note that while exclusion of symptomatic 
comorbidities may raise confidence in the symptoms attrib-
utable to PASC, a potential limitation with our model is that 
it did not account for asymptomatic or well-controlled 
comorbid conditions, nor does it account for the potential 
impact of comorbidities on PASC and symptoms/symptom 
clusters. However, the use of the data set allowed for a broad 
swath of symptoms, rather than being limited to a narrowly 
focused checklist of symptoms, which allows for a more 
sophisticated understanding of symptoms among long-haul-
ers. Symptoms were obtained through a clinical encounter 
and are documented by the provider; however, this does not 
mean that all symptoms experienced were captured. It is 
likely that symptoms that were causing the patient the most 
problems were reported, and only symptoms that patients 
believe were associated with the primary problem. Thus, it is 

Figure 4. Key features during days 0–30 and their potential as 
indicators for developing prolonged COVID-19 symptoms or 
being a long-hauler.
Bar graph showing factors that positively or negatively affect the 
probability of developing persistent symptoms among COVID+ 
community dwellers.

Figure 5. Presence of key indicators at days 0–30 predict 
inclusion into specific symptom clusters reported at 180+ days.
Heat map demonstrating magnitude of association between key 
predictors reported at days 0–30 and assignment to a cluster; darker 
coloring indicates greater positive magnitude of association.
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possible that dominant symptoms of each symptom cluster 
were potentially the most bothersome to patients. Also, it is 
worth considering that a feature of PASC may be the accel-
eration of symptoms that could be attributed to worsening or 
progression of underlying comorbidities, a nuance not cur-
rently being considered in attempting to understand and 
define PASC.

Third, our observations suggest a developing picture of 
long-haulers potentially reflecting that middle age and 
female sex as common features specific to a subset of long-
haulers. Although similar descriptions have been provided in 
other investigations (Huang et al., 2021) and the lay media, 
further corroboration is warranted. We observed a near nor-
mal distribution of age among long-haulers (Table 1), includ-
ing those under the age of 18—with the mean age at 
10.92 years. Although our study supported a potential asso-
ciation with male sex and higher likelihood of becoming a 
long-hauler, race also appeared to be predictive for both 
Caucasian and Hispanic ethnicity. Blacks were at decreased 
risk (Figure 4), and a larger sample is needed to validate this 
finding. Age distribution of all SARS-CoV-2-infected indi-
viduals at days 0–30 very closely mimicked that of the long-
haulers, suggesting the latter group are distributed across all 
age groups with persons ages 50–59 range (±20 years) rep-
resenting more than 75% of the long-hauler population.

Next, the symptom experience among those who become 
long-haulers changes over time and may be influenced by the 
circulating viral strain. In this study, founder and alpha 
strains were the dominant strains, and symptoms associated 
with SARS-CoV-2 infection have evolved as newer strain 
emerge. However, data from multiple studies converge to 
illustrate that many hospitalized and non-hospitalized survi-
vors of COVID-19 experience persistent symptoms 
(Chopra et al., 2020; Davis et al., 2020; Goërtz et al., 2020; 
Halpin et al., 2021; Huang et al., 2021; Mandal et al., 2020; 
Meys et al., 2020). The reported incidence of persistent 
symptoms varies; however, in the current study, we report 
that 11% of people-reported symptoms after 180+ days. 
Some of the variability in symptom reporting and symptom 
association with long-haulers in other studies may be due to 
limitations inherent in rapid screening questionnaires in as 
much as these questionnaires inquire about symptoms that 
predominantly impact those with severe disease. Also, ques-
tionnaires may fail to inquire about emerging symptoms such 
as cognitive dysfunction (including “brain fog”), limiting the 
ability to accurately document such symptoms. Asymptomatic 
individuals may be less often intensely monitored due to an 
inherent notion of low risk for severe acute disease; however, 
this is problematic as asymptomatic individuals account for 
66% of the long-haulers observed in this study. Since the 
start of the pandemic, we have learned that COVID-19 
affects nearly every body system, and there is a wide variety 
of symptoms. It is possible that patients who reported symp-
toms did not mention during their office visit with the pro-
vider symptoms that they did not connect as related to their 

primary complaint. Because long-haul among non-hospital-
ized patients has not been well characterized, we took a con-
servative approach to symptom identification with increased 
confidence that symptoms documented were not pre-existing 
and because information was collected in real time during 
office visits, it was not subject to recall. We see these symp-
tom clusters as a foundation to build from in future studies 
and enrich and continue to validate with other data sources. 
The symptom clusters observed among long-haulers vary 
compared to those at initial presentation. The evolution of 
these clusters may provide insight into the etiology of long-
haulers in which elucidating sites of evolving tissue damage, 
and alterations in innate and adaptive immune inflammatory 
pathways might provide clarity in understanding the under-
lying pathophysiology.

In October 2020, the Tony Blair Institute for Global 
Change identified key characteristics among long-haulers, 
specifically that women appear to be at greater risk and those 
who are of working age (mean of age 45) (Sleat et al., 2020). 
Our data align with these observations. Therefore, to our 
third key point, we observed that all ethnicities and races 
were affected as well as individuals who were initially 
asymptomatic. However, our use of ethnicity and race is lim-
ited to broad groups and lacks needed specificity, a limitation 
imposed by how data are recorded in the EHR.

Larger population-based studies will be needed to con-
firm and expand upon these observations, particularly stud-
ies using large databases that can incorporate the methods 
used here would be insightful in determining emerging 
variants and their symptom patterns with the development 
of PASC. Undertaking detailed immune profiling through 
emerging technologies such as the -omics platforms may 
identify key host phenotypes associated with the symptom 
clusters that we have described. We hope this article will 
prompt the development and implementation of longitudi-
nal prospective studies that garner patient-generated reports 
of symptoms, rather than patient responses to questions 
generated by researchers—this latter approach inherently 
constrained the answers we obtained. With such a new phe-
nomenon, an ethnographic approach that focuses on under-
standing patients’ experiences would add an important lens 
to our analyses.

Conclusion

This study utilized machine learning techniques to develop 
and test an algorithm designed to predict individuals at risk 
for the development of PASC. In addition, we identified 
symptoms and symptom clusters among individuals with 
persistent symptoms at 180+ days post-SARS-CoV-2 infec-
tion. Indeed, data suggest that infection with SARS-CoV-2 
leads to prolonged and persistent symptoms in a subset of 
persons known as long-haulers. However, the long-term con-
sequences of becoming a long-hauler are unclear, and further 
research is urgently needed to corroborate our findings. 
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These findings include identifying a cohort of long-haulers 
with non-modifiable risk factors, which may have predicted 
the likelihood of persistent symptoms and/or assignment 
within given symptom clusters. Further research is needed to 
understand the underlying pathophysiology including host 
phenotypes associated with aberrant innate and adaptive 
immune responses following SARS-CoV-2 infection.
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