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Abstract: Background: The human microbiome can contribute to pathogeneses of many complex
diseases by mediating disease-leading causal pathways. However, standard mediation analysis
methods are not adequate to analyze the microbiome as a mediator due to the excessive number of
zero-valued sequencing reads in the data and that the relative abundances have to sum to one. The
two main challenges raised by the zero-inflated data structure are: (a) disentangling the mediation
effect induced by the point mass at zero; and (b) identifying the observed zero-valued data points
that are not zero (i.e., false zeros). Methods: We develop a novel marginal mediation analysis method
under the potential-outcomes framework to address the issues. We also show that the marginal
model can account for the compositional structure of microbiome data. Results: The mediation effect
can be decomposed into two components that are inherent to the two-part nature of zero-inflated
distributions. With probabilistic models to account for observing zeros, we also address the challenge
with false zeros. A comprehensive simulation study and the application in a real microbiome study
showcase our approach in comparison with existing approaches. Conclusions: When analyzing the
zero-inflated microbiome composition as the mediators, MarZIC approach has better performance
than standard causal mediation analysis approaches and existing competing approach.

Keywords: mediation; microbiome; relative abundance; zero-inflated composition; sparse data

1. Introduction

Emerging evidence suggests that the human microbiome and the immune system
are constantly shaping each other [1]. The human microbiome can contribute to disease
pathogeneses by mediating disease-leading causal pathways in complex diseases such as
Alzheimer’s disease [2] and cancer [3,4]. To study the human microbiome, 16S ribosomal
RNA gene sequencing and metagenomic shotgun sequencing have been popular methods
to quantify microbiome composition in microbiome studies. A challenging feature of
microbiome sequencing data is that it has excessive number of zeros [5]. Many microbiome
data sets have more than 50% of the sequencing reads being 0, and it could be as high
as 80% or more. These zeros are likely to be a mixture of structural zeros (i.e., true
zeros) that represent true absence of microbial taxa and undersampling zeros (i.e., false
zeros) that result from failure of detection. The zero-inflated data feature compounded
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by a compositional structure poses a challenge that needs to be addressed specifically in
mediation analyses. Although there have been some exciting efforts to model microbiome
as a high-dimensional mediator [6–8], it remains a daunting task to address the zero-inflated
data structure.

Mediation analysis is an important tool to investigate the role of intermediate variables
(i.e., mediators) in a causal pathway where the causal effect partially or completely relies on
the mediators. For example, people with higher socioeconomic status tend to have longer
life expectancy, but this causal pathway may be explained by many possible mediators
including access to better health care, fewer stressors, better living environment and so
forth. In a mediation analysis, the indirect effect (i.e., mediation effect) through one or
more mediators can be estimated and tested along with the direct effect. This technique
was first popularized in psychology and social sciences and it has become a common
analysis tool in many research areas such as epidemiology, environmental health sciences,
medicine, randomized trials and psychiatry. There are two general types of mediation
analysis approaches: potential-outcomes (PO) or counterfactual-outcomes methods [9–11]
and traditional linear mediation analysis methods [12,13]. The latter approach can be
considered as a special case of the former approach that can allow for nonlinear associa-
tions and interactions between independent variables and mediators. PO approaches are
more flexible because they can allow interaction effects of the independent variable with
mediators as well as nonlinear effects. Reviews of mediation analysis approaches and their
assumptions can be found in the literature [14–16].

Although mediation modeling frameworks have been well established, to the best
of our knowledge, there have been few studies to address zero-inflated compositional
mediators. In a typical mediation analysis, the total effect of an independent variable can be
decomposed into a mediation effect and a direct effect where the mediation effect measures
the amount of the total causal effect attributable to change in the mediator caused by the
independent variable and the direct effect measures the causal effect due to change in the
independent variable while keeping the mediator variable constant. When the mediator
has a marginal zero-inflated distribution such as a zero-inflated Beta (ZIB) distribution, we
show that its mediation effect can be further decomposed into two parts with one part being
the mediation effect attributable to the amount of numeric change in the mediator and the
other part being the mediation effect attributable to the binary change of the mediator from
zero to a non-zero state. This phenomenon can be explained by the two-part nature of a
zero-inflated distribution. For example, a ZIB distribution is essentially a two-component
mixture distribution [17]: one component is a degenerate distribution with probability
mass of one at zero, and the other component is a Beta distribution. The mediator changing
from zero to a positive value results in the discrete jump from zero to a non-zero state as
well as the change in the numerical metric of the mediator and thus the mediation effect can
be decomposed accordingly. Both changes have important interpretations in microbiome
research. What makes it more complicated is that the observed zero-valued data points
could be false zeros meaning that the true values are non-zero but observed as zero due to
failure of detection. This is similar to a missing data problem and will be addressed here
as well.

To fill the research gap in mediation modeling development, we propose a novel
marginal mediation analysis approach under the PO framework to deal with zero-inflated
compositional mediators. This approach can allow a mixture of truly zero-valued data
points and false zeros. Our method is able to decompose the mediation effect into two
components that are inherent to zero-inflated mediators: one component is the mediation
effect attributable to the numeric change of the mediator on its continuum scale and the
other component is the mediation effect attributable to the binary change of the mediator
from zero to a non-zero state. So the mediation effect is actually the total mediation effect
of the two components each of which can be estimated and tested. An extensive simulation
study is conducted to evaluate our approach MarZIC in comparison with a standard PO
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mediation analysis approach [10] and another approach [6] that can analyze microbiome
composition as a mediator.

We introduce the model and its associated notations in Section 2. Estimation and infer-
ence procedures are provided in Section 3. A simulation study to assess the performance of
our model in comparison with existing approaches is presented in Section 4, followed by
an application of our model in Section 5, and a discussion in Section 6. Additional details
and derivations can be found in the Appendices A–C.

2. Model and Notation

For simplicity, we suppress the subject index in all notations in this section. Let Y,
M = (M1, . . . , MK+1) and X denote the continuous outcome variable, the compositional
mediator variable and the independent variable respectively. For example, M could be the
vector of relative abundances (RA) of microbial taxa. Before constructing the model for zero-
inflated data, we first describe the model for the special case where the mediator M have
no zeros which could happen if investigators choose to impute zeros with a Pseudocount
or a small positive number. The model for zero-inflated data will be provided after that.

2.1. Model for Data without Zeros

We first consider cases where there are no zeros for the mediator M in the data which
is very rare, but it could happen if zeros are replaced by a Pseudocount or a small positive
number. We will move to cases with M containing zeros in the next section. As Dirichlet
distributions have been widely used for modeling the RA of microbiome taxa [18–23], let
M follow a (K + 1)−dimensional Dirichlet distribution indexed by its mean parameters
µ1, . . . , µK+1 with ∑K+1

k=1 µk = 1 and a dispersion parameter φ. We assume the outcome Y
depends on M and X through the following regression equation:

Y =
K+1

∑
k=1

βk Mk + βXX +
K+1

∑
k=1

βkkXMk + ε (1)

where the random error ε follows a normal distribution with mean of 0 and a constant
variance, βk, βX and βkk are regression coefficients, and XMk is the interaction term between
the independent variable X and the mediator Mk. An advantage of using Mk instead of
log (Mk) in the model is that it does not require imputing zeros with a positive number.
All taxa and their interactions with X are included and thus the compositional structure is
accounted for in this model. Later, we will show that a marginal model can also account
for the compositional structure. Equation (1) implies that the marginal association between
Y and any taxon Mj, j = 1, . . . , K + 1, has the following form (derivation can be found in
the Appendix A):

EX(Y|Mj) = β∗0 + β∗1 Mj + β∗2X + β∗3XMj, (2)

where EX(Y|Mj) is the mean of Y conditional on Mj given X, and

β∗0 =
∑k 6=j βkµk

∑l 6=j µl
, β∗1 = βj − β∗0, β∗2 = βX +

∑k 6=j βkkµk

∑l 6=j µl
, β∗3 = βjj −

∑k 6=j βkkµk

∑l 6=j µl
.

It is straightforward to see that the full model (1) uniquely determines the marginal
association for each taxon. Therefore, without violating model (1), we can construct the
following marginal regression model for the association between Y and Mj and X such that
it is equivalent to model (1):

Y = β0 + β1Mj + β2X + β3XMj + ε∗, (3)

where the random error ε∗ has a normal distribution with mean of 0. An advantage of the
above marginal model over model (1) is that it is straightforward to interpret the regression
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coefficient β1 as a typical regression coefficient, whereas the corresponding regression
coefficient βj in Equation (1) does not have such a straightforward interpretation. That
is because there has to be at least one Mk, k 6= j, changing when Mj changes due to the
compositional structure, and thus it is not possible to hold all Mk’s, k 6= j, constant while
changing Mj to interpret βj as a typical regression coefficient.

Another nice feature of the marginal model (3) is that the true values of its regression
parameters (β0, β1, β2 and β3) are functions of the parameters µ1, . . . , µK+1 of the Dirichlet
distribution of M as shown in Equation (2); therefore, the marginal model accounts for the
compositional structure.

It is also much more convenient to work on the marginal model (3) due to its simpler
form. With that and the above advantages, we propose to use the marginal model (3) for
constructing the mediation model. When the vector M has the Dirichlet distribution as
previously assumed in this section, Mj has a Beta distribution with mean parameter µj and
scale parameter φ. The following equation can be used to model the association between
Mj and X:

ln
( µj

1− µj

)
= α0 + α1X. (4)

Equations (3) and (4) together form our marginal mediation model for the scenario
without zeros for M.

2.2. Model for Data with Zeros

Now we consider scenarios where the data for M contain zeros. Given the advantages
of a marginal model as demonstrated in the above subsection, we will again use a marginal
model for the association between Y and any taxon Mj to form a mediation model. For any
taxon Mj, j = 1, · · · , K + 1, we construct the marginal model as follows:

Y = β0 + β1Mj + β21(Mj>0) + β3X + β4X1(Mj>0) + β5XMj + ε (5)

where 1(·) is an indicator function indicating whether Mj is 0, the random error ε follows
a normal distribution N(0, δ), and β1, β2, β3, β4 and β5 are regression coefficients. This
model is fully compatible with allowing interactions between the independent variable and
mediators as the two interaction terms: X1(Mj>0) and XMj are included in Equation (5). In
practice, investigators can also include only one or no interaction term depending on the
hypothesis of interest.

For the marginal distribution of Mj, it is natural to use a zero-inflated Beta (ZIB)
distribution because the marginal of a Dirichlet distribution is a Beta distribution [18,19].
Its two-part density function is given as follows:

f (m) =


∆, m = 0

(1− ∆)mµjφ−1
(1−m)

(1−µj)φ−1

B
(

µjφ,(1−µj)φ
) , m > 0

where ∆ is the probability of being 0, B(·, ·) is the Beta function and µj and φ are the mean
and dispersion parameters respectively of the Beta distribution for the non-zero part [24,25].
To model the association of the mediator Mj with X, we use the following equations:

ln
( µj

1− µj

)
= α0 + α1X, (6)

ln
(

∆
1− ∆

)
= γ0 + γ1X. (7)

Equations (5)–(7) together form our mediation model. The parameter α1 in Equation (6)
measures the association between X and the RA level of the mediator and γ1 in Equation (7)
measures the association between X and the binary presence of the mediator. Notice that X



Genes 2022, 13, 1049 5 of 17

is a scalar here, but it is obvious that other covariates such as potential confounders can be
included in the model equations.

2.3. Mechanism for Observing Zeros of the Mediator

For microbiome abundance data, observations that cannot be detected are set to be
zero. Consequently, there are two types of zeros in the observed abundance data: true
abundance of zero (i.e., absence) and abundance that is reported as zero as a consequence
of the measurement failure. Let M∗j denote the observed value of Mj. When the observed
value is positive (i.e., M∗j > 0), we assume that M∗j = Mj. But when M∗j = 0, we don’t know
whether Mj is truly zero or Mj is positive but observed as zero. We consider the following
mechanism for the probability of observing a zero of the microbial taxon abundance:

P(M∗j = 0|Mj, L) = 1(Mj L<1), (8)

where L is the library size (i.e., sequencing depth) and the product MjL can be interpreted as
the sample absolute abundance (SAA) of the jth taxon in a sample. Under this mechanism,
all SAA below 1 have an observed value of zero. Here 1 can be considered as the Limit of
Detection (LOD). We refer to this mechanism as “LOD mechanism” hereafter. Since SAA
depends on both L and Mj, the LOD mechanism is not deterministic conditional on the
library size. The probability of observing a zero conditional on L, the library size, is equal
to E(1(Mj L<1)|L) = P(Mj < 1/L).

2.4. Marginal Mediation Effect and Direct Effect

Under the potential-outcomes (PO) framework [15], we can define the natural indirect
effect (NIE), natural direct effects (NDE) and controlled direct effect (CDE) where NIE is
the mediation effect. We refer to NIE as the marginal mediation effect because the proposed
mediation models are based on marginal models as shown in Section 2. The total effect of X
is equal to the summation of NIE and NDE. For any j, j = 1, . . . , K + 1, let Mj(x) denote the
value of Mj if X equals x. Let Yxm denote the value of Y if (X, Mj) = (x, m). The average
NIE, NDE and CDE for X changing from x1 to x2 are defined as:

NIE = E
(
Yx2 Mj(x2)

−Yx2 Mj(x1)

)
NDE = E

(
Yx2 Mj(x1)

−Yx1 Mj(x1)

)
CDE = E

(
Yx2m −Yx1m

)
, for a fixed (i.e., controlled) value of Mj = m,

where Yx2 Mj(x1)
is a counterfactual outcome. By plugging the Equations (5)–(7) into

the above definitions and using Riemann-Stieljes integration [26], we can obtain the
following formulas:

NIE = E(Yx2 Mj(x2)
)− E(Yx2 Mj(x1)

) = E(E(Yx2 Mj(x2)
|Mj(x2)))− E(E(Yx2 Mj(x1)

|Mj(x1)))

= E(β0 + β1Mj(x2) + β21(Mj(x2)>0) + β3x2 + β4x21(Mj(x2)>0) + β5x2Mj(x2))

− E(β0 + β1Mj(x1) + β21(Mj(x1)>0) + β3x2 + β4x21(Mj(x1)>0) + β5x2Mj(x1))

= (β1 + β5x2)(E(Mj(x2))− E(Mj(x1))) + (β2 + β4x2)(E(1(Mj(x2)>0))− E(1(Mj(x1)>0)))

= NIE1 + NIE2,
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NIE1 = (β1 + β5x2)(E(Mj(x2))− E(Mj(x1)))

= (β1 + β5x2)

( ∫
m∈[0,1]

mdFMj(x2)
(m)−

∫
m∈[0,1]

mdFMj(x1)
(m)

)

= (β1 + β5x2)
(

expit(α0 + α1x2)− expit(α0 + α1x1)
)

− (β1 + β5x2)
(

expit(γ0 + γ1x2)expit(α0 + α1x2)

− expit(γ0 + γ1x1)expit(α0 + α1x1)
)

,

NIE2 = (β2 + β4x2)
(
expit(γ0 + γ1x1)− expit(γ0 + γ1x2)

)
,

where expit(·) is the inverse function of logit(·), FMj(x)(m) denotes the CDF of Mj(x)
and dFMj(x)(m) denotes the stieltjes integration [26] with respect to FMj(x)(m). So NIE,
NIE1, NIE2, NDE and CDE can be estimated by plugging the parameter estimates into
the formulas. Confidence intervals (CI) are obtained using the multivariate delta method
as outlined in the Appendix B. An alternative approach for finding standard errors to
construct CI is bootstrapping [27]. NIE1 can be interpreted as the marginal mediation effect
due to the change of the mediator on its numeric scale and NIE2 can be interpreted as the
marginal mediation effect due to the discrete binary change of the mediator from zero to
a non-zero status. This decomposition can be also seen in Figure 1 where there are two
possible indirect causal pathways from X to Y through the mediator Mj.

𝑋 𝑌
𝛽3

𝛽1
𝛼1

𝑀𝑗

1(𝑀𝑗>0)

𝛾1
𝛽2

Figure 1. Potential causal mediation pathways of a zero-inflated mediator.

2.5. Sequential Ignorability Assumption

Mediation analyses require assumptions to make causal inference and there have
been different forms of assumptions proposed in the liteature [9,28–32]. The key of the
assumptions is to identify the terms involving counterfactual outcomes so that they can
be estimated with the observed data. One of the popular assumptions is the sequential
ignorability assumption proposed in [28]. In the definition of NIE and NDE, the variable
Yx2 Mj(x1)

is a counterfactual outcome because Mj(x1) can not be observed when X takes

the value of x2. The sequential ignorability assumption [28] for identifying E
(
Yx2 Mj(x1)

)
can be written as follows in our setting:

{Yx′m, Mj(x)} ⊥⊥ X|Z, (9)

Yx′m ⊥⊥ Mj(x)|X = x, Z, (10)

where x′ and x are any values in the support of X, m is any value in the support of Mj,
and Z is a vector of confounders (if any). The first assumption in Equation (9) says the
outcome Y at any given value of the vector (X, Mj) and the mediator Mj at any given
value of X should all be dependent of X conditional on confounders in Z. A randomized
trial where X is the random assignment typically makes this assumption automatically
satisfied. The second assumption in Equation (10) says the outcome Y at any given value
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of the vector (X, Mj) is independent of the mediator Mj at X = x conditional on X = x
and confounders in Z. The second assumption is essentially saying that the mediator Mj is
effectively randomly assigned given X and Z. A straightforward interpretation for the first
assumption is that there are no unmeasured confounders for the X−Mj association and the
X−Y association. A straightforward interpretation for the second assumption is that there
are no unmeasured confounders for the Mj − Y association. In our setting, the indicator
variable 1(Mj>0) is also considered as a mediator. Because it is completely determined by
Mj, the above assumptions are enough to ensure the identifiability of E(Yx2 Mj(x1)

) such
that it can be estimated by the observed data.

3. Parameter Estimation

Maximum likelihood estimation (MLE) will be used to estimate the parameters.
The data that is needed to estimate the marginal mediation effects for the jth taxon is
(Y, R, M∗j , L, X) where R = 1(M∗j >0). The estimation challenge is that Mj is not always
observable due to false zeros. The log-likelihood contribution from those subjects with
false zeros cannot be directly calculated. However, given that we know the probability of
observing a zero in Equation (8), we can still obtain their log-likelihood contributions by
integrating the joint density function over all possible values of Mj using Riemann–Stieltjes
integration [26]. Let (yi, ri, m∗ij, li, xi) denote the observed data values of (Y, R, M∗j , L, X) for
the ith subject in a study and mij denote the true value of the mediator Mj for the ith subject.
We use i for subject index hereafter throughout the paper. The subjects can be divided
into two groups by whether m∗ij is non-zero and we derive the log-likelihood contribution
for each group. The first group consists of subjects whose observed value of the mediator
is non-zero (i.e., m∗ij > 0). Based on the assumptions in the Equations (5)-(7) where ε is
assumed to have a normal distribution, the log-likelihood contribution from the ith subject
(if it is in group 1) can be calculated as:

`1
i = ln( f (yi, ri|m∗ij, xi, li) f (m∗ij|xi, li)) = ln( f (yi|m∗ij, xi, li)p(ri|m∗ij, xi, li) f (m∗ij|xi, li))

= ln( f (yi|m∗ij, xi, li)) + ln(p(ri|m∗ij, li)) + ln( f (m∗ij|xi, li))

= −0.5 ln(2π)− ln(δ)−
(
yi − β0 − β1m∗ij − β2 − (β3 + β4)xi − β5xim∗ij

)2

2δ2

+ ln(1− ∆i)− ln
(

B
(
µiφ, (1− µi)φ

))
+ (µiφ− 1) ln (m∗ij) +

(
(1− µi)φ− 1

)
ln (1−m∗ij),

where f (·|m∗ij, xi, li), p(·|m∗ij, xi, li) and f (·|xi, li) are the (conditional) density (or prob-
ability mass function) for Y, R and Mj respectively, ∆i = expit(γ0 + γ1xi) and µi =
expit(α0 + α1xi). Let F(m|x) denote the (conditional) cumulative distribution function for
Mj. The second group consists of subjects with m∗ij = 0. The log-likelihood contribution
from the ith subject (if it is in group 2) can be calculated as:

`2
i = ln( f (yi, ri, m∗ij|xi)) = ln

( ∫
m∈[0,1]

f (yi|m, xi)p(ri|m)dF(m|xi)

)

= ln

(
∆i√
2πδ2

exp
(
− (yi − β0 − β3xi)

2

2δ2

)

+

1/li∫
0

f (yi|m, xi)(1− ∆i)
mµiφ−1(1−m)(1−µi)φ−1

B
(
µiφ, (1− µi)φ

) dm

)

= −0.5 ln(2π)− ln(δ) + ln

(
∆i exp

(
− (yi − β0 − β3xi)

2

2δ2

)
+

1− ∆i

B
(
µiφ, (1− µi)φ

) 1/li∫
0

hi(m)dm

)
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where

hi(m) =mµiφ−1(1−m)(1−µi)φ−1

× exp
(
−
(
yi − β0 − β1m− β2 − (β3 + β4)xi − β5xim

)2

2δ2

)
.

Taken together, we have the complete log-likelihood function given by:

` = ∑
i∈group 1

`1
i + ∑

i∈group 2
`2

i . (11)

The MLE of the parameters can be obtained by maximizing the above complete log-
likelihood function. With the parameter estimates and the observed Fisher information
matrix, we will be able to calculate NIE, NIE1, NIE2, NDE and CDE and their CI’s.

4. Simulation

Extensive simulations were carried out to demonstrate the performance of our ap-
proach MarZIC in comparison with two existing approaches under two settings. In setting
1 where the mediator was generated by univariate ZIB distributions which is univariate
version of Dirichlet distributions, we compared MarZIC with a current standard practice
in causal mediation analyses developed by Imai, Keele and Tingley [10] (IKT approach
hereafter) which is a PO approach and can be implemented in R using the package “me-
diation” [33]. The Marginal Structural Models [9] is also a standard PO approach with
a very similar definition of indirect effect. These causal mediation analysis approaches
were not developed to analyze microbiome data, and thus could have poor performance
when applied to microbiome data. In setting 2 where the mediator was generated by
multivariate zero-inflated Dirichlet-Multinomial distributions, MarZIC was compared with
IKT and CCMM [6] which was developed specifically to model microbiome composition
as a mediator.

In all simulation settings, the independent variable X was binary and generated using
the Bernoulli distribution Ber(0.5) such that the number of subjects was balanced between
the two groups. To mimic the real study data, the library size was generated by randomly
picking the library size with replacement from the real study data in Section 5 where the
library size ranges from 31,607 to 911,652. The RA data was generated in a way such that it
mimicked the distribution of RA in the real data. Multivariate delta method was used to
derive confidence intervals in all settings.

4.1. Simulation Setting 1: Univariate ZIB Distribution

In this setting, the outcome Y was assumed to be a continuous variable and generated
using Equation (5) where β5 is set to be 0 and other true parameter values can be found
in Table 1. Similar to simulation studies in the literature [18,19] where RA were generated
individually, we generated individual taxon RA with ZIB distributions (i.e., univariate
version of Dirichlet distributions) based on Equations (6) and (7). The LOD mechanism in
Equation (8) for observing zero-valued data points of the mediator was used to generate
false zeros for the mediator Mj. Two scenarios were considered for the taxon RA: low RA
(Scenario 1: mean of positive RA is equal to 0.0025) and high RA (Scenario 2: mean of
positive RA is equal to 0.5). We generated 100 random data sets for each scenario and the
sample size was 200 for each data set. About 20% of all sequencing reads were generated
as true zeros (i.e., structured zeros) in both scenarios. Under the LOD mechanism in
Equation (8), about 30% sequencing reads were false zeros in Scenario 1 and there were no
false zeros in Scenario 2 because the RA in Scenario 2 was high and thus SAA were greater
than 1 for all truly non-zero RA. Model performance was evaluated by estimation bias,
standard error, coverage probability (CP) of 95% CI of the estimators for parameters and
the mediation effects in this comparison. For Scenario 1, the simulation results (Table 1)
showed good performance for MarZIC in terms of bias and CP of the mediation effects and
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the parameter estimates. All the biases were small and the CP were around the desired level
of 95%. The IKT approach, however, had a poor performance with a large bias (84.81%)
and a small CP (9%). These poor performances were likely due to the false zeros not being
appropriately accounted for by the IKT approach. Another disadvantage of IKT is that it
cannot decompose the mediation effect into NIE1 and NIE2. For Scenario 2 with high RA
where there were no false zeros, MarZIC showed good performance again in terms of the
performance measures. IKT also showed satisfactory performance for the estimation of
the NIE because there were no false zeros in the data under this scenario, but IKT cannot
decompose the mediation effect according to the zero-inflated distribution of mediator.

Table 1. Simulation results for comparison between MarZIC and IKT with sample size of n = 200.
Bias, percentage of the bias, the empirical standard errors, the the mean of estimated standard errors
and the empirical coverage probability of the 95% CI for each estimator is respectively reported under
the columns Bias, Bias %, SE, Mean SE and CP(%). Mediation effects from the IKT approach are
provided at the bottom part of the table.

Low Relative Abundance (Mean = 0.0025) High Relative Abundance (Mean = 0.5)

Parameter True Mean Bias Bias SE Mean CP(%) True Mean Bias Bias SE Mean CP(%)

/Effect Estimate % SE Estimate % SE

MarZIC

NIE1 0.10 0.11 0.01 10.0 0.08 0.07 91 9.30 9.11 −0.18 −1.98 2.68 2.70 96
NIE2 0.55 0.52 −0.03 −5.67 0.55 0.56 97 0.55 0.50 −0.06 −10.15 0.62 0.56 94
NIE 0.65 0.63 −0.02 −3.31 0.58 0.58 96 9.85 9.61 −0.24 −2.44 3.25 3.20 95
β0 −2.00 −2.05 −0.05 −2.45 0.32 0.33 96 −2.00 −1.92 0.07 3.82 0.32 0.29 94
β1 100.00 101.89 1.89 1.89 18.04 19.04 97 100.00 99.96 −0.04 −0.04 1.89 1.74 91
β2 4.00 4.05 0.05 1.37 0.38 0.36 94 4.00 3.93 −0.07 −1.73 0.58 0.57 91
β3 5.00 5.08 0.08 1.53 0.53 0.51 94 5.00 4.97 −0.03 −0.62 0.46 0.46 99
β4 3.00 2.93 −0.07 −2.40 0.58 0.55 92 3.00 3.02 0.02 0.55 0.53 0.54 99
δ 1.00 0.99 −0.01 −1.00 0.07 0.07 90 1.00 0.97 −0.03 −2.99 0.07 0.07 89

α0 −6.20 −6.24 −0.04 −0.69 0.36 0.36 94 −1.00 −1.01 −0.01 −0.93 0.05 0.05 90
α1 0.40 0.42 0.02 5.52 0.33 0.29 92 0.40 0.41 0.01 1.69 0.06 0.07 95
ξ 50.00 56.42 6.42 12.83 24.21 19.35 97 50.00 53.37 3.37 6.74 8.22 8.40 96

γ0 −1.16 −1.23 −0.07 −5.75 0.35 0.36 99 −1.16 −1.20 −0.04 −3.18 0.37 0.34 95
γ1 −0.50 −0.53 −0.03 −5.10 0.55 0.55 97 −0.50 −0.47 0.03 6.91 0.58 0.53 91

IKT

NIE 0.65 0.10 −0.55 −84.81 - - 9 9.85 9.20 −0.65 −6.62 - - 94

4.2. Simulation Setting 2: Multivariate Zero-Inflated Dirichlet-Multinomial Distribution

The subject index i is suppressed in this subsection for simplicity. The microbiome
data was generated using a zero-inflated Dirichlet-multinomial model that can account
for variability from both the Dirichlet distribution and the multinomial distribution. The
microbiome data generation process can be found in Appendix C. As shown in Table 2, six
different scenarios were considered, of which some had the number of taxa smaller than
the sample size and the others had the number of taxa larger than the sample size. We
generated 100 random data sets for each scenario and the sample size was 200 for each data
set. The outcome Y was generated using the following equation:

Y = β0 + β11 M1 + β12 M2 + β21(M2>0) + β3X + β4X1(M2>0) + β5XM2 + ε. (12)

where M1 and M2 denote the RA of the first taxon and the second taxon respectively,
(β0, β11, β12, β2, β3, β4, β5) = (1, 80, 2, 3, 1, 1, 1) and ε follows the standard normal distribution.

Notice that the data generation models are different from the analysis models in a few
aspects: (a). The data generation model (12) involves both M1 and M2 which is different
than the marginal model (5) where only one Mj is in the model; (b). The relationships
between X and M1 and M2 in the data generation in Appendix C are different from the
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data analysis model (6); (c). The zero mechanism for generating false zeros in the data
generation as outlined in Appendix C is also different from the proposed mechanism in
Section 2.3. Thus, to some extent, this simulation also demonstrated the robustness of our
approach with respect to mis-specification of the model and the zero mechanism. Under
the data generation model (12), Y has marginal associations with all taxa, but only the first
two taxa marginally mediate the effect of X on Y because only their marginal mean values
depend on X conditional on their presence according to the data generation in Appendix C.
The indicator variable for the second taxon 1(M2>0) also has a mediation effect because it
has an impact on Y as shown in Equation (12) and the probability of presence of the second
taxon depends on X. In summary, NIE1 should be significant for M1 and M2, and NIE2

should be significant for M2 in the analysis results of this simulation. This setting also
mimicked the real study case where there were only two OTU’s with significant NIE1.

Three indices were used to evaluate the model performance: Recall, Precision and F1
which were calculated as follows:

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

, F1 =
2

1
recall +

1
precision

where TP, FP, TN and FN denote true positive, false positive, true negative and false
negative respectively. Recall is a measure of statistical power, the higher the better. Precision
has an inverse relationship with false discovery rate (FDR) which is equal to (1-Precision),
and thus the higher the Precision, the lower the FDR. When FP = 0, Precision was set to
be 1 regardless of whether TP = 0. F1 is the Harmonic mean [34] of Recall and Precision
that measures the overall performance in terms of Recall and Precision. In the data analysis
step of the simulation, MarZIC analyzed each taxon as a mediator one by one whereas
CCMM employed `1 regularization to handle high dimensionality. Multiple testing was
adjusted using the Benjamini-Hochberg Procedure [35] such that the targeted FDR is 20%
for all approaches in this comparison which means that the targeted Precision should be
around 80%.

The simulation results (See Table 2) showed that MarZIC had a very good overall
performance for identifying NIE1 and NIE2 in terms of Recall (>77.5%), Precision (>87.2%)
and F1 (>87.3%). MarZIC achieved the targeted Precision of 80% across all cases. CCMM
had good performance in terms of Recall, but its Precision rates (38.8–52.4%) were much
lower than the targeted Precision rate (80%) which resulted in low F1 values (55.3–66.1%).
This suboptimal performance is likely due to: (a). CCMM was proposed to model the
RA on log-scale whereas Equation (12) is on the original scale of RA, (b). CCMM was not
developed to incorporate the mediation effect of the binary variable 1(M1>0), and (c). CCMM
could not handle interactions between the independent variable and mediators such as
X1(M1>0) in model (12). And CCMM could not generate any results for those scenarios
with the number of taxa greater than or equal to 300 (See Table 2) due to computational
issues whereas MarZIC can handle all cases very well. This is likely because CCMM is too
computationally demanding for its `1 regularization algorithm which is not computationally
capable of handling such high dimensionality. IKT had good Precision rates (>99.7%), but
low recall rates (23.5–58.0%) compared to MarZIC, and thus also low F1 values.

In addition, we also considered cases with 5 taxa having significant NIE1 and one
taxon having significant NIE2 and cases with 10 taxa having significant NIE1 and one taxon
having significant NIE2. The simulation results (See Table 3) also showed that MarZIC
outperformed the other approaches. It had good recall rates for NIE1 (>85.3%) and NIE2

(>93%), and also achieved the target precision rate (80%) for both NIE1 and NIE2 except
that it was 77.10%, slightly lower than 80%, for the case with 300 taxa of which 10 taxa had
significant NIE1. Its F1 values were also good for both NIE1 (>79.6%) and NIE2 (>86.6%).
CCMM had fair recall (>66.0%), but much lower precision rate (19.0–66.2%) and therefore
low F1 values (31.2–43.9%). IKT, on the other hand, achieved target precision rate for all
cases (>99.1%), but low recall rate (29.3–66.2%), and thus low F1 values (44.3–78.2%).
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Table 2. Simulation results for the comparison of MarZIC with CCMM and IKT. Here n denotes the
sample size and K + 1 denotes the number of taxa.

Recall (%) Precision (%) F1 (%)

K + 1 n MarZIC MarZIC CCMM IKT MarZIC MarZIC CCMM IKT MarZIC MarZIC CCMM IKT

(NIE1) (NIE2) (NIE1) (NIE2) (NIE1) (NIE2)

10 200 99.00 100.00 100.00 58.00 97.70 98.00 38.80 99.70 97.90 98.60 55.30 68.10
25 200 99.50 100.00 96.00 39.50 98.20 99.50 52.40 100.00 98.50 99.60 66.10 48.30
50 200 97.50 100.00 97.00 44.00 100.00 100.00 46.40 100.00 98.30 100.00 60.60 54.70
100 200 96.00 98.90 100.00 32.50 95.50 100.00 42.80 100.00 94.50 98.90 58.00 41.30
300 200 86.00 97.80 - 25.00 90.80 99.50 - 100.00 85.80 97.50 - 31.30
500 200 77.50 94.70 - 23.50 97.80 87.20 - 99.00 83.00 87.30 - 30.00

Per the suggestion of a referee, we also did a simulation study with only 5 taxa (i.e.,
K = 4) in the data. The sample size was still 200 and the mean RA of the five taxa were
approximately 0.196, 0.250, 0.220, 0.146 and 0.188 respectively. There were no false zeros
because the five RA were large. The first two taxa had non-zero NIE1 and the second
taxon had non-zero NIE2. The simulation results from 100 random data sets showed
good performance for both NIE1 (Recall = 0.95, Precision = 0.96 and F1 = 0.94) and NIE2

(Recall = 1, Precision = 0.97 and F1 = 0.98).

Table 3. Simulation results for the comparison of MarZIC with CCMM and IKT.

Recall (%) Precision (%) F1 (%)

K + 1 Number of Taxa MarZIC MarZIC CCMM IKT MarZIC MarZIC CCMM IKT MarZIC MarZIC CCMM IKT
with Non-Zero NIE1 (NIE1) (NIE2) (NIE1B (NIE2) (NIE1) (NIE2)

50 5 95.00 100.00 89.00 66.20 99.00 98.50 27.90 99.60 96.60 99.00 42.20 78.20
50 10 95.70 92.00 66.00 62.40 98.80 91.80 33.20 99.60 97.10 86.20 43.90 75.70
100 5 96.60 99.00 89.40 60.60 92.70 98.30 19.00 99.10 94.10 97.80 31.20 73.30
100 10 92.10 91.00 80.10 46.00 93.70 97.80 27.20 100.00 92.50 89.50 40.40 61.20
300 5 94.20 96.00 - 56.10 80.50 97.00 - 99.70 85.20 94.00 - 69.90
300 10 85.30 93.00 - 29.30 77.10 91.00 - 99.60 79.60 86.60 - 43.40

5. Real Study Application

VSL#3 is a commercially available probiotic cocktail (Sigma-Tau Pharmaceuticals,
Inc., Gaithersburg, MD, USA) of eight strains of lactic acid-producing bacteria: Lactobacillus
plantarum, Lactobacillus delbrueckii subsp. Bulgaricus, Lactobacillus paracasei, Lactobacillus acidophilus,
Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, and Streptococcus salivarius subsp.
Orally administered VSL#3 has shown success in ameliorating symptoms and reducing
inflammation in human pouchitis [36] and ulcerative colitis [37]. Preventive VSL#3 ad-
ministration can also attenuate colitis in Il10−/− mice [38] and ileitis in SAMP1/YitFc
mice [39]. When used as a preventative strategy, it has the potential capability to prevent
inflammation and carcinogenesis. In a mouse model, Arthur et al. [40] studied the ability
of a probiotic cocktail VSL#3 to alter the colonic microbiota and decrease inflammation-
associated colorectal cancer when administered as interventional therapy after the onset of
inflammation. The study duration was 24 weeks. In this study, there were 24 mice of which
10 were treated with VSL#3 and 14 served as control. Gut microbiome data were collected
from stools at the end of the study with 16S rRNA sequencing. We obtained sequence
data from Arthur et al. [40] and generated open reference OTUs using the Quantitative
Insights into Microbial Ecology (QIIME) [41] version 1.9.1 at 97% similarity level using
the Greengenes 97% reference dataset (release 13_8). Chimeric sequences were detected
and removed using QIIME. OTUs that had 0.005% of the total number of sequences were
excluded according to Bokulich and colleagues [42]. Taxonomic assignment was done
using the RDP (ribosomal database project) classifier [43] through QIIME with confidence
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set to 50%. There were 362 OTUs in total in the data sets after quality control and data
cleaning. 40% of the OTU RA data points were zero.

The relative abundance (RA) of each OTU was analyzed as a mediator variable using
a ZIB distribution. The outcome variable in our analysis was dysplasia score (the higher
the worse) which is a ordinal categorical variable measuring the abnormality of cell growth
and it is treated as a continuous variable in the analysis because of its ordinal nature and
its roughly bell-shaped density curve. The treatment variable is coded as 1/0 indicating
VSL#3/control. Again, the FDR approach was used for adjusting for multiple testing such
that the targeted FDR is 20% and the 95% CI were calculated before adjustment. NIE1 of two
OTUs were found to be statistically significant. The first OTU was assigned to the family
S24-7 under order Bacteroidales and the second one was assigned to class Bacilli. The
estimates of NIE1 were 0.27 (95% CI: 0.1, 0.42) and −1.28 (95% CI: −2.06, −0.49) respectively.
The interpretation for the mediation effects are that the treatment had a marginal positive
effect of 0.27 on the dysplasia score through changing the RA of the first OTU and it also
had a marginal negative effect of −1.28 on the dysplasia score through changing the RA of
the second OTU. The family S24-7 and class Bacilli found by our approach have also been
reported to be related with colorectal cancer in the literature [44,45]. To give a full picture
of the mediation effects in this data set, a heatmap based on p-values was constructed (see
Figure 2) to illustrate the NIE1 of all OTUs. CCMM and IKT did not find any significant
mediation effects of the OTUs.

Figure 2. Heatmap of mediation strength based on NIE1 in VSL#3 study. The mediation strength
is measured by (1-p) where p is the unadjusted p-value. Negative sign indicates negative NIE1.
Taxonomic assignment is labeled on the vertical axis. Samples are labeled on the horizontal axis.
Absence of an OTU in a sample is left blank in the heatmap.
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6. Discussion

We developed an innovative marginal mediation modeling approach under the PO
framework to analyze zero-inflated compositional mediators such as microbiome. We
showed that the marginal mediation effect for zero-inflated mediators can be decomposed
into two components of which the first is due to the change in the mediator over its
positive domain and the second is due to the discrete binary change from zero to a non-zero
status. These two components have different interpretations and are equally important
for investigating causal mechanisms. The marginal model approach can also account for
the compositional structure. When the point mass at zero (i.e., ∆) is equal to zero for
the mediator (i.e., the distribution is not zero-inflated), the model reduces to a marginal
mediation model for data without zeros as described in Section 2.1. Therefore, this approach
can be also used for data sets after zero-valued data points are imputed with a positive
number such as a Pseudocount (or after other normalization techniques are applied). R
scripts for implementing the method are available upon request.

This paper considered X as a univariate variable and did not include covariates as po-
tential confounders in the models. It is straightforward to adjust for a set of covariates using
our approach. Let C denote a vector of covariates or potential confounders. Then the NIE
and NDE can be calculated at a specific value, c, of C as NIE = E(Yx2 Mj(x2) −Yx2 Mj(x1)|C = c),
NDE = E(Yx2 Mj(x1) − Yx1 Mj(x1)|C = c) and CDE = E(Yx2m − Yx1m|C = c). The value of c can be
taken as the mean value of the covariates similar to how least squares mean is calculated in
regression models [46]. CI can be obtained using the delta method or resampling methods.
Decomposition of NIE follows the same procedure as shown in Section 2.4.

Misspecification of the mechanisms for observing zero-valued data points could have
an impact on the model performance. This is similar to missing data issues where partial
information is available on the missing data. It can be considered as missing not at random
(MNAR) [47] because the probability of a data point being observed as zero depends on its
true value. Besides the LOD mechanism in Equation (8), another possible mechanism could
be P(M∗j = 0|Mj, L) = exp(−ηMjL) where η > 0. Model selection approaches such BIC or
AIC can be used to choose the optimal mechanism among different mechanisms. Although
these mechanisms may not be perfect to account for MNAR, it can, to a large extent,
alleviate the burden of not accounting for false zeros in the data at all. A future project
has been planned to study the robustness of our model with respect to the mechanism for
observing zeros using sensitivity analysis techniques.
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Appendix A. Marginal Association beween Y and Mj

Subject index i is again suppressed in this section for simplicity. To obtain the marginal
association beween Y and Mj under Equation (1), we derive the expression for the condi-
tional expectation EX(Y|Mj) which is the mean of Y conditional on Mj given X. By following
basic principles of calculating conditional expectations, we have:



Genes 2022, 13, 1049 14 of 17

EX(Y|Mj) = EX

( K+1

∑
k=1

βk Mk + βXX +
K+1

∑
k=1

βkkXMk + ε

∣∣∣∣Mj

)

=
K+1

∑
k=1

βkEX(Mk|Mj) + βXX +
K+1

∑
k=1

βkkXEX(Mk|Mj) + EX

(
ε
∣∣∣Mj

)
(A1)

=
K+1

∑
k=1

βkEX(Mk|Mj) + βXX +
K+1

∑
k=1

βkkXEX(Mk|Mj).

Next we need to derive the expression for EX

(
Mk

∣∣∣Mj

)
for all k = 1, . . . , K + 1 in the

above equation. It is trivial to see that EX

(
Mj

∣∣∣Mj

)
= Mj. Let M−j denote the vector con-

taining all but Mj and thus M−j = (M1, . . . , Mj−1, Mj+1, . . . , MK+1)
T. Since M has a Dirichlet

distribution, the subcomposition M−j
1−Mj

conditional on Mj follows another Dirichlet distri-

bution [48] with the mean parameters being
(

µ1
∑k 6=j µk

, . . . , µj−1

∑k 6=j µk
, µj+1

∑k 6=j µk
, . . . , µK+1

∑k 6=j µk

)
and the

dispersion parameter being φ ∑k 6=j µk. Thus, for any Mk in the subvector M−j, we have

EX

(
Mk

∣∣∣Mj

)
= EX

(
(1−Mj)

Mk
1−Mj

∣∣∣∣Mj

)
= (1−Mj)EX

(
Mk

1−Mj

∣∣∣∣Mj

)
= (1−Mj)

µk

∑l 6=j µl
.

By plugging the above results into Equation (A1), we have

EX(Y|Mj) =
K+1

∑
k=1

βkEX(Mk|Mj) + βXX +
K+1

∑
k=1

βkkXEX(Mk|Mj)

= βj Mj + ∑
k 6=j

βk(1−Mj)
µk

∑l 6=j µl
+ βXX + βjjXMj + ∑

k 6=j
βkkX(1−Mj)

µk

∑l 6=j µl

= β∗0 + β∗1 Mj + β∗2X + β∗3XMj,

where

β∗0 =
∑k 6=j βkµk

∑l 6=j µl
, β∗1 = βj − β∗0, β∗2 = βX +

∑k 6=j βkkµk

∑l 6=j µl
, and β∗3 = βjj −

∑k 6=j βkkµk

∑l 6=j µl
.

Appendix B. Multivariate Delta Method for Obtaining 95% CI of NIE1, NIE2, NDE and CDE

Let ζ = (β0, β1, β2, β3, β4, β5, δ, α0, α1, γ0, γ1)
>. The formulas for NIE1, NIE2, NIE, NDE

and CDE can be considered as functions of the full parameter vector ζ. Let f1(ζ) = NIE1

as derived in Section 2.4 and thus f1(ζ̂) is the MLE of NIE1 where ζ̂ is the MLE of ζ.
We first calculate the observed Fisher information matrix which can be calculated as
Iobs = − ∂2`

∂ζ∂ζ>
|ζ=ζ̂ where ` is the loglikelihood function in Equation (11). By using the

multivariate Delta method, we can calculate the variance of the estimator as follows:

var(NIE
∧

1) = var( f1(ζ̂)) =

(
∂ f1(ζ)

∂ζ
|ζ=ζ̂

)>
var(ζ̂)

(
∂ f1(ζ)

∂ζ
|ζ=ζ̂

)
=

(
∂ f1(ζ)

∂ζ
|ζ=ζ̂

)>
I−1
obs

(
∂ f1(ζ)

∂ζ
|ζ=ζ̂

)
,
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where ∂ f1(ζ)
∂ζ =

(
∂ f1(ζ)

∂β0
, ∂ f1(ζ)

∂β1
, . . . , ∂ f1(ζ)

∂γ1

)>
. Let z0.025 denotes the 97.5th percentile of the stan-

dard normal distribution and the 95% CI of NIE1 can calculated as
(

f1(ζ̂)− z0.025

√
var( f1(ζ̂)),

f1(ζ̂) + z0.025

√
var( f1(ζ̂))

)
. The 95% CI for NIE2, NDE and CDE can be calculated similarly.

Appendix C. Microbiome Data Generation Process for Simulation Setting 2

Let K + 1 be the number of taxa, for the ith subject, the microbiome data generation
steps are listed below:

Step 1: Generate true zeros for all taxa. The zeros for a taxon were generated using a
Bernoulli distribution, Ber(∆), with ∆ given in Equation (7). So the probability of the taxon
being 0 is equal to ∆. For taxon 1, we set ∆ = 0 so that there’s no zero in taxon 1. For taxon 2,
we set γ0 = 1 and γ1 = −3 in Equation (7) for ∆. For all the other taxa, γ0 were generated
from U(1, 2) and γ1 = 0 in Equation (7) for ∆. So only the absence (or presence) of taxon 2
was associated with X. The total percentage of zeros was between 68.8% and 81.6% with
K + 1 ranging from 10 to 500, which indicates high data sparsity.

Step 2: Generate RA for the non-zero taxa from a Dirichlet distribution. Assume we
had P non-zero taxa (from Step 1) indexed by (t1, t2, · · · , tP) in the ascending order meaning
t1 < · · · < tP. Here t1 = 1 since the first taxon does not have any zeros from Step 1. The
RA of those non-zero taxa was generated by the P-dimensional Dirichlet distribution with
the dispersion parameter φ and mean parametesr (µt1 , · · · , µtP ) that satisfies ∑P

p=1 µtp = 1.
The dispersion parameter φ was set to be 50 to mimic the over-dispersion in real data. The
values of mean parameters were chosen in a way such that it has smaller values for taxa
with larger ∆’s in Step 1 so that taxa with lower abundance are more likely to have zeros.
More specifically, the mean parameters were determined as follows:

If t2 = 2 (i.e., taxa 2 is one of the non-zero taxa):

µt1 =
exp (α1

0)

∑K+1
k=1 exp (αk

0)
× 1

1 + exp(a0 + a1X)
,

µt2 =
exp (α1

0)

∑K+1
k=1 exp (αk

0)
× exp(a0 + a1X)

1 + exp(a0 + a1X)
,

µtp =

(
1−

exp (α1
0)

∑K+1
k=1 exp (αk

0)

)
×

exp (α
tp
0 )

∑P
p=3 exp (α

tp
0 )

, p ∈ {3, . . . , P},

where a0 = −2, a1 = 5, α1
0 was set to be the value such that the false zeros for taxon 2 that

will be generated in next step will be around 20%, and αk
0, k ∈ {2, . . . , K + 1} were generated

from U(0, 1)
If t2 > 2 (i.e., taxa 2 is not one of the non-zero taxa):

µt1 =
exp (α1

0)

∑K+1
k=1 exp (αk

0)
,

µtp =

(
1−

exp (α1
0)

∑K+1
k=1 exp (αk

0)

)
×

exp (α
tp
0 )

∑P
p=2 exp (α

tp
0 )

, p ∈ {2, . . . , P}.

Under this data generation, only the RA of taxa 1 and taxa 2 (conditional on presence) were
dependent on X. The RA of taxa 3 to taxa K were independent of X.

Step 3: Generate sample absolute abundance (SAA) and false zeros from a multinomial
distribution. Let (Rt1 , · · · ,RtP ) denote the RA generated in Step 2 for the P non-zero taxa
and thus ∑P

p=1Rtp = 1. The P-dimensional multinomial distribution with the parameter
vector (Rt1 , · · · ,RtP ) and the library size (randomly selected from real data) was used to
generate SAA for all the P non-zero taxa. Those taxa with SAA = 0 generated from the
multinomial distribution are false zeros.
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Step 4: Getting final RA for all non-zero taxa. After SAA were generated for all non-
zero taxa in Step 3, the SAA were divided by the library size to get the final RA for all
non-zero taxa.

Step 5: Repeat the above Steps 1–4 for each subject to get a full data set of microbiome
data for 200 subjects.
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