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Abstract

Background and purpose

This project assessed performance of natural language processing (NLP) and machine

learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic

stroke (AIS) and non-AIS phenotypes.

Materials and methods

All brain MRI reports from a single academic institution over a two year period were ran-

domly divided into 2 groups for ML: training (70%) and testing (30%). Using “quanteda” NLP

package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold

cross-validation was applied for bias correction of the training set. Labeling for AIS was per-

formed manually, identifying clinical notes. We applied binary logistic regression, naïve

Bayesian classification, single decision tree, and support vector machine for the binary clas-

sifiers, and we assessed performance of the algorithms by F1-measure. We also assessed

how n-grams or term frequency-inverse document frequency weighting affected the perfor-

mance of the algorithms.

Results

Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were

longer in character length than those of non-AIS (median [interquartile range]; 551 [377–

681] vs. 309 [164–396]). Of all ML algorithms, single decision tree had the highest F1-mea-

sure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure

of naïve Bayesian classification, but not in others, and term frequency-inverse document

frequency weighting to data frequency matrix did not show any additional performance

improvements.
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Conclusions

Supervised ML based NLP algorithms are useful for automatic classification of brain MRI

reports for identification of AIS patients. Single decision tree was the best classifier to iden-

tify brain MRI reports with AIS.

Introduction

Stroke is one of the leading causes of death and morbidity worldwide, and a major health prob-

lem according to the Global Burden of Disease study [1, 2]. When estimating the burden of a

stroke, the incidence, prevalence, and disability-adjusted life-years (DALYs) of the stroke are

combined [1, 3]. However, in most studies, the incidence of stroke is not a true national-level

figure, but estimated figures that were taken into account in large-scale population-based

cohort study results [4, 5]. Alternately, electronic health records can be used to estimate acute

stroke incidence [6, 7]. The medical record contains laboratory data, clinical information, and

the International Classification of Diseases (ICD) diagnosis codes. Those codes can simply

indicate whether a patient has been admitted for a stroke, but often they cannot accurately dis-

tinguish whether the patient was hospitalized for acute symptoms of stroke or other problems

arising from stroke [8]. However, through various MRI imaging techniques, we can confirm

whether the stroke is ischemic or hemorrhagic, and whether it is acute or chronic [9] In addi-

tion, MRI reports are rarely coded at a report reading level, and unstructured data such as text

reports and imaging data often contains useful information.

One approach for unlocking the information in text descriptions of MRI readings is natural

language processing (NLP). NLP has been actively studied in analyses of unstructured text

data, which accounts for a large portion of the medical records such as admission notes, nurs-

ing records and discharge summaries [10, 11]. NLP tools can be applied in a rule-based fashion

to parse out the meaning of texts, although they are employing both supervised and unsuper-

vised machine learning (ML) algorithms [12] Prior stroke research includes feasibility studies

of NLP for predicting a future stroke [13], extracting risk factor information [14], and timely

screening for urgent thrombolysis [15]. In addition, several reports have used NLP to predict

the progression of cancer or to classify breast pathology by analyzing free text radiology reports

[16, 17]. However, no NLP study has occurred to identify patients with acute ischemic stroke

(AIS) from radiologic reports of brain MRIs. Our aims were to implement ML algorithms that

can automatically identify AIS patients based on the free-text in the patients’ brain MRI

reports. In addition, we compared the performances of different supervised ML algorithms

with a harmonized mean of precision and recall in this classification task.

Materials and methods

Participants and MRI sampling

This is a single center retrospective case control study. The study protocol was approved by the

Institutional Review Boards and Ethics Committee at Chuncheon Sacred Heart Hospital (IRB

No. 2017–114), with a waiver of informed consent. Our hospital stores entire medical records

in a clinical data warehouse, which allowed us to screen all brain MRI reports performed

between January 1, 2015 and December 31, 2016. We identified MRI reports that included the

conventional stroke MRI sequence. Conventional stroke MRI sequences were T2-weighted

image, fluid-attenuated inversion recovery, gradient echo image, diffusion weighted image,
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apparent diffusion coefficient map and non-contrast time-of-flight magnetic resonance (MR)

angiography. MRI reports, which also included perfusion or contrast-enhanced MR sequence,

were not excluded from the sample. If a patient had a sequence of multiple MRI examinations

of the brain, only the first brain MRIs in for each patient was included. During the study

period, one neuroradiologist read all brain MRI images. At the time of MRI reading, the

neuroradiologist could access information about the chief complaint or reason for referral of

the patients to propose an impression of the reading. Additionally, outside imaging or a past

imaging were available for the patient, those images were used as a reference for reading the

current brain MRI image.

Annotation of MRI reports

The format of the brain MRI reading is depicted in S1 Fig. All the reports were in English. Of

these reports, we collected only text data on the radiologists’ descriptions and findings of brain

MRI reports, and we specifically excluded the texts on the report’s conclusions. We consecu-

tively enrolled patients who were admitted to the hospital within 7 days of neurological symp-

tom onset, had consented to participate in a research registry, and were diagnosed with AIS

both clinically and radiologically. The registry contains demographic variables, laboratory

data, radiologic lesion information, and all the information related to stroke from symptom to

post-discharge, such as onset time, emergency department visit time, stroke subtype, type of

acute treatment, early neurologic deterioration, and 3-month functional outcome [18]. How-

ever, the neuroradiologist could not access the registry which included consensus information

about whether the patient had AIS. The gold standard labeling of AIS relied on previous diag-

nosis of AIS in a prospective AIS registry. In the registry, ischemic stroke was defined as having

the relevant lesion on MRI and acute neurological symptoms lasting more than 24 hours [19].

All brain MR images, which were performed in non-AIS subjects and included more than

stroke MR sequences, were used as control groups when comparing the text in the findings

section of the reading. The control group included patients who underwent brain MRI for a

specific disease, such as brain tumor or intracranial hemorrhage, as well as those who under-

went MRI as a health check-up or outpatient evaluation for specific symptoms such as head-

ache or dizziness.

NLP algorithm

We used the open source “quanteda” R package, which classifies texts into 2 groups using NLP

algorithms (Fig 1) [20]. In brief, full text brain MRI reading sentences were initially parsed

into “tokens,” with numbers, punctuations, symbols and hyphens in the original text data

removed. Then, we used lowercase lettering, stop word removal, and word stemming to nor-

malize those data [21]. Finally, we obtained the document-feature matrix (dfm), which is a vec-

tor representation of tokens that are truncated from the whole text. We used 4 types of dfm

vectorization: unigram, unigram + term frequency-inverse document frequency (tf-idf), add-

ing bigram, and adding bigram + tf-idf. Term frequency (tf) is the number of times that a par-

ticular word occurs in a document, and document frequency is the count of documents

containing a particular word [22]. Inverse document frequency (idf) is the reciprocal of docu-

ment frequency. For example, idf value is small for common words such as “the”, and large for

those that are not common. Tf-idf is a way of giving weight to a word vector by multiplying tf

by idf. Bigram is a two-word vector that is arranged in a sequential manner, which helps to dif-

ferentiate a document by the word quantity as well as the word order [23].
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Statistical analysis

We performed descriptive analyses of differences between AIS and non-AIS reports. Character

lengths of the reports were compared using a Mann-Whitney U test. We used the “keyness

plot” to determine which words were frequently used in AIS readings and which words were

frequently used in non-AIS. The chi-square value of the plot indicates the frequency of the

words appearing in the document, and that value becomes smaller and approaches zero when

the words appearing simultaneously in two documents of AIS and non-AIS patients [24].

To classify the two reference standards of AIS and non-AIS, four types of dfm matrix were

applied to 4 ML algorithms—binary logistic regression (BLR), naïve Bayesian classification

(NBC), single decision tree (SDT) and support vector machine (SVM). We split the text data

into training and testing datasets with a ratio of 7:3 and used 10-fold cross-validation to train

the models on the training set. We compared the performance of the four algorithms with

F1-measure (harmonized mean and precision and recall) and receiver operating characteristic

(ROC) curve analysis in classifying AIS and non-AIS reports. The e1071, rpart, and quanteda

packages were used to perform all our statistical analyses and ML algorithms; all statistical

computing was performed with R (version 3.4.3) [25, 26].

In addition, we performed a qualitative analysis of MRI readings that were misclassified by

the best performing ML model. In the case of supervised ML classifiers, it may be important to

correct the class imbalance during the training process to reduce the bias and to obtain better

Fig 1. Preprocessing flow chart of “quanteda” natural language processing package.

https://doi.org/10.1371/journal.pone.0212778.g001
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performance [27]. Therefore, ML training was performed by random sampling of training

data corresponding to each class balanced to 50:50 by setting with a case number (303 vs 303),

a control number (1815 vs 1815), or a desired number (5000 in total) [28].

Results

Of all 8,793 brain MRI readings, 4,238 MRIs included more than conventional stroke MRI

sequences. A total of 3,024 MRIs was included in the final analysis, excluding those taken

more than twice during the study period. Raw data can be downloaded in the Supporting

Information File (S1 File). The mean age of the participants and proportion of female were

60.0 ± 17.6 years and 51.7% (1,563 out of 3,024), respectively. During the study period, there

were 469 AIS patients were enrolled in the registry; we excluded 37 subjects with an AIS

because they did not have enough stroke MRI sequence images, or they only had MRI images

from outside the hospital. The test and training data sets included 432 (14.3%) patients with

MRI readings that confirmed AIS. The resulting training dataset had 303 AIS and 1,815 non-

AIS reports, and the test dataset had 129 AIS and 777 non-AIS reports.

Fig 2 depicts the difference of the text character lengths between AIS and non-AIS reports.

MRI reports of AIS patients had a larger amount of text characters versus reports of non-AIS

patients (median [interquartile range]; 551 [377–681] vs. 309 [164–396]). We show the 15

most frequently occurring words in the AIS reading and those words in the non-AIS readings,

and we summarize them in Fig 3. For example, the word “acute” was used most frequently in

AIS reports, followed by “restrictions” and “cortex”. On the other hand, the words “gross”,

“abnormal”, and “finding”, which usually represent normal conditions (e.g., “No gross abnor-

mal findings was observed.”), appeared frequently in non-AIS reports.

MRI reading classification by NLP

Of 2,118 randomly selected reports in the training dataset, text preprocessing of MRI reports

yielded 1,146 keyword features after removing numbers, punctuations, symbols, hyphens and

stop words. When we extracted the keywords using bigram as well as unigram in text

Fig 2. Difference of the text character lengths between AIS and non-AIS reports. AIS, acute ischemic stroke.

https://doi.org/10.1371/journal.pone.0212778.g002
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classification, 9,402 features were obtained and entered into the training dataset and used to

predict each ML algorithm. Precision, also known as positive predictive value, was defined as

the ratio of true positive over true positive plus false positive, while recall, also known as sensi-

tivity, was defined as the ratio of true positive results in the test over the true positive plus false

negative. We presented the performance of each algorithms as the F1-measure (harmonized

mean of precision and recall):

F1 measure ¼ 2�
precision� recall
precisionþ recall

Fig 4 shows a comparison of these performance of each algorithm and detailed results are

presented in Table 1. Of all the ML algorithms, the F1-measure of SDT was the highest in uni-

gram classification even if we added bigram or tf-idf weights in the ML model. Adding the

bigram to the ML model improved performance in NBC, but not in other models. S2 Fig also

shows the area under the ROC of each ML algorithm. Adding the bigram to the ML model,

which requires more computational efforts in performing the ML task, could improve the

recall slightly, but overall performance of the BLR or SVM was not improved.

Decision tree and error analysis

Performance of SDT produced 93.2 of F1-measure as well as a good accuracy (98.0% in

Table 1). The”acut” feature was located in the root node, while the “intracerebr” and “intraven-

tricular” features, which usually imply an intracranial hemorrhage, were located in the internal

nodes to distinguish AIS from non-AIS. There were 12 false positive and 6 false negative

results for this algorithm, and the relevant explanations for the misclassification are summa-

rized in Table 2.

Model considering class imbalance of training

The training dataset of the single decision tree was composed of 303 AIS cases and 1,815 con-

trols. We used three methods to resolve the class imbalance in decision tree training: over

Fig 3. Result of keyness plot analysis of AIS and non-AIS reports. AIS, acute ischemic stroke.

https://doi.org/10.1371/journal.pone.0212778.g003
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sampling (1,815 vs 1,815), under sampling (303 vs. 303), and fixed number (n = 5,000) sam-

pling (S1 Table). There was no significant change of performance in precision, recall, accuracy,

and the F1-measure when we obtained test results after training with those balanced data sets.

Fig 4. Comparison of ML and NLP algorithms for classifying the brain MRI reports. ML, machine learning; NLP,

natural language processing, BLR, binary logistic regression; NBC, naïve Bayesian classification; SDT, single decision

tree; SVM, support vector machine; TFIDF, term frequency-inverse document frequency.

https://doi.org/10.1371/journal.pone.0212778.g004

Table 1. Results of performance of each machine learning algorithms.

TP FP FN TN Total Sensitivity (Recall) Specificity PPV (Precision) NPV Accuracy F1-measure P for χ2

BLR unigram 100 106 29 671 906 77.5 86.4 48.5 95.9 85.1 59.7 <0.001

BLR tf-idf 102 103 27 674 906 79.1 86.7 49.8 96.1 85.7 61.1 <0.001

BLR adding bigram 64 298 65 479 906 49.6 61.6 17.7 88.1 59.9 26.1 0.020

BLR adding bigram+tf-idf�� 60 297 69 480 906 46.5 61.8 16.8 87.4 59.6 24.7 0.082

NBC unigram 110 170 19 607 906 85.3 78.1 39.3 97.0 79.1 53.8 <0.001

NBC tf-idf 112 170 17 607 906 86.8 78.1 39.7 97.3 79.4 54.5 <0.001

NBC adding bigram 111 112 18 665 906 86.0 85.6 49.8 97.4 85.7 63.1 <0.001

NBC adding bigram+tf-idf 116 118 13 659 906 89.9 84.8 49.6 98.1 85.5 63.9 <0.001

SDT unigram� 123 12 6 765 906 95.3 98.5 91.1 99.2 98.0 93.2 <0.001

SDT tf-idf� 123 12 6 765 906 95.3 98.5 91.1 99.2 98.0 93.2 <0.001

SDT adding bigram� 123 12 6 765 906 95.3 98.5 91.1 99.2 98.0 93.2 <0.001

SDT adding bigram+tf-idf� 123 12 6 765 906 95.3 98.5 91.1 99.2 98.0 93.2 <0.001

SVM unigram 76 5 53 772 906 58.9 99.4 93.8 93.6 93.6 72.4 <0.001

SVM tf-idf 80 5 49 772 906 62.0 99.4 94.1 94.0 94.0 74.8 <0.001

SVM adding bigram 43 0 86 777 906 33.3 100.0 100.0 90.0 90.5 50.0 <0.001

SVM adding bigram+tf-idf 50 1 79 776 906 38.8 99.9 98.0 90.8 91.2 55.6 <0.001

TP, true positive; FP, false positive; FN, false negative; TN, true negative; PPV, positive predictive value, NPV, negative predictive value; BLR, binary logistic regression;

tf-idf, term frequency-inverse document frequency; NBC, Naïve Bayesian classification; SDT, single decision tree; SVM, support vector machine.

� the best classifiers.

�� the worst classifier.

https://doi.org/10.1371/journal.pone.0212778.t001
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Discussion

In our study, NLP algorithms were a useful tool to identify patients with the phenotype of AIS,

using unstructured radiologic reports of brain MRIs. Interestingly, SDT-based binary classifi-

cation showed high precision (91.1%) and recall (95.3%), and additional weighting method for

dfm did not show further improvement of several ML algorithms. Error analysis of SDT

showed that most of the errors were not caused by NLP or ML algorithms but by the MRI

imaging characteristics of the AIS itself. In terms of classification imbalance during the SDT

training process, there were no significant differences of the F1-measures of ML predictions

when we performed training processes using several class-balanced data.

Since the 1980s when CT equipment in conjunction with X-rays began to be used for the

diagnosis of human illness, the development of diagnostic equipment has evolved rapidly. Var-

ious imaging techniques have been used to diagnose specific brain diseases, and brain MRI has

become an essential tool for the diagnosis of various diseases including AIS [29]. Because MRI

images are proliferating at a rapid rate and the MRI reading is an unstructured text data, it is

becoming increasingly difficult to classify those diagnostic images manually within a fixed

time period. Moreover, it may be inaccurate to classify CNS diseases using diagnostic codes

such as the ICD [30, 31], which are usually coded manually. In the case of AIS caused by other

main diseases, such as cardiogenic AIS caused by acute myocardial infarction, the stroke diag-

nosis code may be secondary to the ICD codes. In addition, two studies that analyzed a trend

of intravenous thrombolysis after acute ischemic stroke with the ICD-9 codes reported that

the ICD-9 codes tended to underestimate intravenous thrombolysis [32, 33]. Therefore, diag-

nostic codes such as the ICD-9 may return inaccurate search results for certain diseases such

as AIS. However, our study demonstrated that information related to an AIS diagnosis could

be successfully extracted in large numbers of brain MRI radiology reports using open source

NLP and ML algorithms. We suggest that these automated supervised ML and NLP algorithms

could be beneficial in classifying a vast amount of brain MRI reports automatically and

accurately.

Our NLP-based ML technique makes it possible to classify and extract useful information

efficiently in a short period of time from a large amount of text reports. Wright et al. used lexi-

con-based ML classification for extracting diabetes-related information from 2000 clinical

progress notes and reported that SVM using a bag-of-words approach was effective in classify-

ing them as 0.96 of AUROC and 0.93 of the F1-score [34]. Hassanpour et al. suggested that

simple structured texts could be sufficiently classified with a bag-of-words model and complex

structured texts with lexicon-based information retrieval methods [35]. In our analysis, we

applied bag-of-words NLP algorithms to identify AIS reports from a large amount of brain

MRI radiology reports, and their algorithmic performances were comparable to other study

results [34,36,37]. Our result suggest that the brain MRI radiology report is not a complex

structured text. However, further study is needed to determine whether the bag-of-words

Table 2. Error analysis of result of single decision tree in classifying AIS and non-AIS.

Reason for misclassification FN FP

Various disease condition could be accompanied with MR diffusion restrictions 3 0

Reading including the recent or old cerebral hemorrhages 3 4

Lesions with diffusion restrictions in MRI but no relevant clinical symptoms 5 0

Miscellaneous 1 2

Total 12 6

AIS, acute ischemic stroke; FN, false negative; FP, false positive.

https://doi.org/10.1371/journal.pone.0212778.t002
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model is more important than the higher order classification system for multi-class

classification.

Usually adding bigram features on a bag-of-words unigram model improves the classifica-

tion performance because the text itself is the sum of the sequential vectors [38]. However, com-

bined unigram-bigram features did not improve classification performance in our analysis. The

reasons why this phenomenon occurred are as follows. First, applying bigram to input vectors

produces a large amount of input data. In our model, input vector size increased from 1,146 to

9,402 features. Moreover, performance of the ML classifier depends on the trade-off between

false positives and false negatives. Therefore, the large number of word vectors created by add-

ing bigram features to NLP may have contributed to a further reduction in performance in

binary classification. Grundmeier et al. suggested that removal words with low frequency in

each text from a large number of input features could successfully identify long bone fractures

in radiology reports [39]. Second, in the SDT structure, the more important predictors are

located near the root node [40]. Grundmeier et al. studied the NLP classification adding bigram

features to the random forest classifier, which is an ensemble of decision trees. And they showed

that unigram features had higher Gini importance values when compared to bigram features

[6]. Therefore, we speculate that the performance of SDT did not improve by adding bigram

because unigram features were located in the uppermost node in the decision tree.

Fig 3 shows the results of a keyness plot indicating "keyword" features and comparing their

differential associations with an AIS versus a non-AIS group. That representative example

illustrates that “keyword searching” can extract information but in an inefficient way when

compared to the NLP method. A large number of words expressing stroke lesion were identi-

fied in the AIS reports, while those that described normal reading, such as “unidentified bright

object”, “unremarkable” or “no gross abnormal finding” were located in those of non-AIS.

However, the words “restriction” or “restrictions” appeared in both AIS and non-AIS reports.

Because word stemming as well as lowercase lettering used in NLP can condense various types

of words into a single etymology, it is possible to process text features more efficiently with

NLP versus keyword searching in text classification. Doan et al. reported that an NLP tool had

a higher sensitivity (93.6% vs. 41.0%) in identifying Kawasaki disease in emergency depart-

ment notes when compared to a simple keyword research, which suggested that the NLP tool

could be a good decision support system for the proper diagnosis in an emergent clinical set-

ting when compared to knowledge-based clinical decision-making alone [41]. Thus, we also

showed that text mining using NLP had a high accuracy and efficiency compared to keyword

searching.

We found that radiology reports of AIS had a longer length than those of non-AIS. Text

length could be an important marker in differentiating ham and spam in supervised text mes-

sage classification [42]. Several structured data such as age and sex are not included in pro-

tected health information identifiers and are readily available from the electronic health

record, those structured data contain valuable information related to the risk of developing a

particular disease. Therefore, it is expected that additional modeling with unstructured data

and selected structured data may have a beneficial effect on the performance of ML algorithms

in classifying radiology reports. However, we only used the deidentified unstructured text data

for this study; further research is needed to determine the effects of additionally using struc-

tured data to assess classification performance.

In our result, we showed that SDT had a higher performance for binary classification than

the other ML algorithms. Generally, a decision tree performs well when dealing with discrete

or categorical features, while SVM performs well with continuous features [43]. Chen et al.

analyzed the performance of an ML algorithm to categorize oncologic response using abdomi-

nal CT and MRI reports; those researchers showed that SVM had a higher performance
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(accuracy = 90.6, F score = 0.81) versus analyses with Bayes point machine, logistic regression,

random forest, or neural network [16]. However, the performance of SVM decreased when

more than 2,500 features were included in the ML algorithms. We also identified that F1-mea-

sure was lower when SVM was performed using an n-gram, which requires more additional

features during training, as compared to unigram bag-of-words training.

Also, the performance of SVM is reported to be better than decision tree when classification

is performed using imaging data or voice data [44]. Yadav et al. reported that the decision tree

showed high performance when binary classification was performed for traumatic brain injury

using brain CT readings [45]. Likewise, we found that, to achieve good performance, it may be

better to choose decision tree as a classifier if the researchers choose to perform a binary classi-

fication using brain or CT or MRI radiology reports. However, the factors affecting the perfor-

mance of the classifier include the amount of training data, characteristics of those data, and

class imbalance, and the type of classifier [43]. Therefore, we should carefully consider charac-

teristics of the data when we select for the ML classifier of NLP algorithms.

The resulting error analysis for SDT was due to the radiological characteristics of disease in

the CNS rather than errors in NLP or ML algorithms. Diffusion-restrictive lesion is not only a

main MRI characteristic of the AIS lesion, it is also accompanied by hypoxia, excitotoxicity,

and perihematomal ischemia of the brain [46]. Other NLP tools such as continuous skip-gram

of word2vec [47] and GloVe [48] could take into account order and proximity of the words. It

is worth investigating whether these NLP methodologies can reduce the errors seen in our

results.

There are several limitations to our study. First, our text corpus was created at a single insti-

tution, and therefore, it is not possible to generalize our findings. However, generalizable

results could occur if we use those NLP and ML tools for inter-institutional validation in a

future study. Second, we only included brain MRI reports with conventional stroke MRI

sequence. In clinical practice, full conventional brain MRI sequence could vary depending on

the degree of emergency in a given situation, the patient’s condition, and the laboratory results.

In other words, diffusion only MRI instead of the full stroke MRI sequences would be per-

formed in cases of emergency or when a patient is unstable. Although a diffusion only MRI

report is sometimes used to diagnose AIS, that technique does not have all the text features of

AIS because the report only includes the description of the diffusion MRI. Therefore, it is

important to investigate the characteristics of each institutional radiology report before appli-

cation of NLP and ML algorithms. Lastly, the performance of ML classifiers could be affected

by the class proportions in the training dataset [49]. The proportion of brain MRI reporting in

AIS may vary significantly depending on the characteristics of each hospital. However, we

obtained results using a balanced dataset, so we can expect that differences in class proportion

in the training dataset will not affect the outcome.

Conclusions

Supervised ML and NLP algorithms can successfully classify brain MRI reports for identifica-

tion of AIS patients. Moreover, these techniques are rapidly developing fields that can auto-

matically classify a vast amount of medical images using deep learning algorithms. However,

labeling for the image data is also a challenging problem in the field of image classification.

Therefore, the NLP algorithms can be used to label image data for deep learning.
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