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Diabetes mellitus (DM) is an important lifestyle disease. Type 2 diabetes is one of

the prime contributors to cardiovascular diseases (CVD) and diabetic cardiomyopathy

(DbCM) and leads to increased morbidity and mortality in patients with DM. DbCM is

a typical cardiac disease, characterized by cardiac remodeling in the presence of DM

and in the absence of other comorbidities such as hypertension, valvular diseases, and

coronary artery disease. DbCM is associated with defective cardiac metabolism, altered

mitochondrial structure and function, and other physiological and pathophysiological

signaling mechanisms such as oxidative stress, inflammation, myocardial apoptosis, and

autophagy. Epigenetic modifiers are crucial players in the pathogenesis of DbCM. Thus,

it is important to explore the role of epigenetic modifiers or modifications in regulating

molecular pathways associated with DbCM. In this review, we have discussed the

role of various epigenetic mechanisms such as histone modifications (acetylation and

methylation), DNA methylation and non-coding RNAs in modulating molecular pathways

involved in the pathophysiology of the DbCM.

Keywords: diabetes mellitus, diabetic cardiomyopathy, apoptosis, oxidative stress, mitochondrial function,

cardiac remodeling, epigenetics

INTRODUCTION

Diabetic cardiomyopathy (DbCM) is a cardiac disease characterized by functional and structural
abnormalities in cardiac tissue in patients having diabetesmellitus (DM) but no other comorbidities
such as hypertension, valvular diseases, and coronary artery disease (1). Framingham Heart Study
observed that women andmen with DMhave 5- and 2.4-fold higher incidence of heart failure (HF),
respectively (2). Patients with diabetes have a high prevalence of HF ranging from 19 to 26% (3–5).
A case-control study found that the prevalence of HF was 1.3 times higher in diabetic subjects in
comparison with the non-diabetic subjects (6). In both type I diabetes (T1D) and type II diabetes
(T2D), patients showed a strong correlation between glycated hemoglobin A(1c) (HbA1c) and HF.
With every 1% increase in HbA1c, there is a 30 and 8% higher incidence of HF in T1D and T2D,
respectively, independent of other risk factors (7, 8). The initial phase of DbCM is characterized by
extensive cardiac hypertrophy and mild to moderate fibrosis, leading to defects in the systolic and
diastolic function of the heart (9).

Experimental and clinical studies have identified sustained hyperglycemia (HG), insulin
resistance, aberrant insulin signaling, impaired glucose metabolism, abnormal free fatty acid
(FFA) uptake, oxidative stress, increased renin–angiotensin–aldosterone (RAAS) activity, cardiac
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inflammation, and aberrant mitochondrial function as the
key determinants for biochemical alterations leading to a
vicious cycle of disease. Cardiac fibrosis, left ventricular (LV)
hypertrophy, and increased cardiomyocyte cell death are the
most important mechanisms to explain the pathophysiology
of the disease (10, 11). Multiple molecular mechanisms have
been identified contributing to pathophysiological changes
in DbCM (Figure 1), which include O-GlcNAcylation of
cardiac proteins, decreased insulin and AMPK signaling,
activated MAPK, peroxisome proliferator-activated receptors,
and aberrant protein kinase C activity.

Recent studies suggest that epigenetic regulatory mechanisms
such as DNA methylation, histone modifications (acetylation
and methylation), deregulated microRNAs (miRNAs), circular
RNA (circRNAs), and long non-coding RNA (lncRNAs) play
an important role in the pathogenesis of DbCM (12, 13).
In this review, we provide a comprehensive overview of the
role of epigenetic modifications in various molecular pathways
associated with DbCM.

MOLECULAR MECHANISMS AND THEIR
EPIGENETIC REGULATIONS IN DbCM

Cardiac Remodeling in DbCM
Cardiomyocyte hypertrophy and fibrosis are the important
features of DbCM. Cardiac fibrosis is a dominant mechanism
contributing to the disease pathology of the diabetic human
heart. There is a very pronounced deposition of collagen in
interstitial and perivascular spaces in diabetic cardiac tissues
(14). The major contributing pathways for the aggravated
deposition of collagen types I and III are transforming growth
factor-β1 (TGF-β1) and wingless-related integration site (WNT)
signaling pathways (15). Additionally, there is remodeling
of matrix metalloproteinases (MMPs) leading to dysregulated
degradation of extracellular matrix in diabetic hearts (15–18).
Activation of the TGF-β1 pathway and accelerated extracellular
matrix degradation are mainly consequences of stimulation of
RAAS resulting in heightened advanced glycation end products
(AGEs)-mediated signaling, HG, and insulin resistance (19).
Decreased availability of nitric oxide (NO), oxidative stress,
activation of TGF-β1 signaling pathway, in association with
deregulated insulin signaling leads to high cardiac collagen
deposition and fibronectin content, leading to interstitial fibrosis
(20). Several clinical and animal studies provide substantial
evidence of cardiac fibrosis in diabetes-induced heart failure (HF)
(18, 21–23).

An increase in LV hypertrophy represented by high LV
mass and its association with DM is well-established (24–26).
Thickened LV is a major hallmark of cardiac hypertrophy in
humans (27). Cardiac fibrosis, hypertrophy, and myocardial
cell apoptosis must be taken into account for the overall
increase in LV mass (27, 28). In DbCM, there are other
contributors in addition to cardiac hypertrophy such as
insulin resistance, HG in the milieu, and oxidative stress-
activating cardiac hypertrophic genes, such as β-myosin heavy
chain (ß-MHC), atrial natriuretic factor (ANP), and brain

natriuretic factor (BNP) (29). Heightened insulin levels induce
cardiac hypertrophy. Insulin-like growth factor (IGF-1) induces
cardiomyocyte hypertrophy through activation of the mitogen-
activated protein kinase 1 (Erk1/2) and phosphoinositide 3-
kinases (PI3K) signaling pathways (30). Several studies in animal
models of DbCM have also shown the role of DM in the
development of cardiac or cardiomyocyte hypertrophy (31–33).

Epigenetic Regulation of Cardiac Remodeling in

DbCM
MicroRNAs are small, non-coding RNAs, which regulate cellular
gene expression. Aberrant expression of ∼30% miRNAs (that
is 300 out of 1,000 total miRNAs) has been observed in DM
heart tissues (34). Several miRNAs have been found to regulate
cardiac fibrosis and cardiac hypertrophy in DbCM. For example,
miRNA-221 was shown to be highly upregulated in the cardiac
tissue of diabetic mice (35). miRNA-212 was found to regulate the
process of cardiac hypertrophy by directly regulating Forkhead
box O3 (Foxo3) (35). Raut et al. reported that miRNA-30c
mediates increased expression of hypertrophy genes, cell division
control protein 42 homolog (Cdc42), and Rac1-activated kinase
1 (Pak1) in DbCM (36). Other miRNAs, such as 181a and
200c, were shown to play a pivotal role in cardiac remodeling
(35, 37–39). The expression of miRNA-199a was elevated in
cardiac hypertrophy (34). Recently, it was reported that silencing
of miR-199a led to the reversal of cardiac hypertrophy by
rescuing themitochondrial fatty acid oxidation through targeting
peroxisome proliferator-activated receptor-gamma coactivator
(PGC-1α) (40). miRNA-30a, miRNA-1, and miRNA-29b levels
were found to be downregulated in the diabetic heart (34).
miRNA-144 and miRNA-133a are among the important key
players, involved in the pathophysiology of diabetes-mediated
HF (41, 42). Singh et al. showed that miRNA-200c promoted
cardiac hypertrophy by modulating dual-specific phosphatase 1
(DUSP1) expression in DbCM (39).

Decreased levels of miRNA-133a were observed in the diabetic
murine model (43). It was also seen that increase in miRNA-
133a levels improved the systolic function and reduced fibrosis
by decreasing the collagen (44). miRNA-21 has been established
as a biomarker for cardiac fibrosis (45). Several groups including
ours have shown upregulated miRNA-21 levels in rat cardiac
fibroblasts in the hyperglycemic milieu and in diabetic hearts,
which leads to advanced collagen synthesis and fibroblast
proliferation (46, 47). miRNA-21 was also found to directly
regulate dual-specific phosphatase 8 (DUSP8) by perturbing c-
Jun N-terminal kinase (JNK) and p38 MAP kinase (MAPK)
signaling pathways (46).

Long non-coding RNAs, a type of non-coding RNAs
which are longer than miRNAs, have been implicated in
various disease pathways (48). Nuclear lncRNAs act at the
transcriptional level, and cytoplasmic lncRNAs often interact
with miRNAs to regulate gene expression post-transcriptionally.
Several lncRNAs have been recently shown to be involved in
the pathophysiology of CVDs, including DbCM, contributing
to cardiac hypertrophy and fibrosis. Myocardial infarction-
associated transcript (MIAT) acts as prohypertrophic lncRNA
as it has a sponging activity for antihypertrophic miRNAs,
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FIGURE 1 | Schematic representation of the various mechanisms involved in

diabetic cardiomyopathy. AGEs, advanced glycation end products.

miRNA-150 (49), and miRNA-93 (50). Additionally, MIAT levels
were higher in the myocardium and compete with miRNA-24
levels to regulate TGF-β1 expression and thus cardiac fibrosis
(51). LncRNA Kcnq1ot1 ablation ameliorates TGF-β1 signaling
and, thus, reduces fibrotic lesions in diabetic mice (52). The
dysregulated ncRNAs, both miRNA and lncRNA, explain HG-
related myocardial insult.

Histone modifications also have been found to play a crucial
role in the cardiac remodeling in DbCM. Non-specific inhibitor-
based silencing of histone deacetylases (HDACs) has been shown
to attenuate cardiac hypertrophy and fibrosis, by increasing
the glucose transporter 1 acetylation and MAPK-mediated
phosphorylation in animal models of diabetic heart disease (53).
The use of specific HDAC3 inhibitors such as RGFP966 also
showed improved cardiac function and reversed DM-induced
cardiac remodeling in diabetic mice. It was found that RGFP966
decreased cardiac hypertrophy by epigenetic modulation of the
ERK1/2 pathway mediated by DUSP5 (54). In contrast, Sir2 is
known to have a beneficial effect onDCM. It improves contractile
dysfunction in leptin receptor-deficient db/db mice through
a histone deacetylase Sir2-driven pathway (54), suggesting its
potential as a therapeutic molecule in DbCM. (55).

Role of Epigenetics in Regulating Cell
Death Mechanisms in DbCM
Diabetic cardiomyopathy has a strong association with high
cardiomyocyte cell death. Apoptosis and autophagy are
the important deregulated mechanisms responsible for this
phenomenon (56). Several fold higher apoptosis rates have been
reported in cardiomyocytes, fibroblasts, and endothelial cells in
myocardial tissues of patients with DbCM. The death rate of
cardiomyocytes was the highest, followed by that of endothelial
cells and fibroblasts (57). Increased cardiomyocyte cell death
results in cell loss in the heart, remodeling such as cardiac

hypertrophy and fibrosis, leading to cardiomyopathy and cardiac
failure (58).

Various mechanisms are proposed for increased
cardiomyocyte cell death in diabetic hearts. HG, insulin
resistance, lipid peroxidation, increased angiotensin II signaling,
oxidative stress, and endoplasmic stress have been implicated
as major triggers of cardiomyocyte apoptosis in the diabetic
milieu. HG is the major causative factor for increased oxidative
stress and endoplasmic stress mediating cardiomyocyte death
in diabetic hearts (59). HG mediates these actions through
localized increased angiotensin II (Ang II) (60). Kobayashi et al.
have recently shown that HG may also induce cardiomyocyte
cell death by inducing lysosomal membrane permeabilization
and increased cathepsin D expression and lysosomal release in
cardiomyocytes resulting in cell death (61).

Apoptosis and Its Epigenetic Regulation
The expression of several miRNAs was deregulated in HG-
induced cardiomyocyte apoptosis and diabetic hearts (34).
These include miRNA-30c, miRNA-181, miRNA-378, miRNA-
34a, miRNA-1, miRNA-195, miRNA-144, and miRNA-483-3p.
It was shown that miR-1 is upregulated in HG-treated H9c2
cardiomyocytes along with increased apoptosis. They reported
that miR-1 promotes cardiomyocyte apoptosis by inhibiting
IGF-1 expression; IGF-1 increased expression was shown to
inhibit glucose-induced cytochrome c release and apoptosis,
suggesting that miRNA-1 promotes apoptosis by regulating IGF-
1 (62). miRNA-34a is highly expressed in cardiomyocytes and
regulates the expression of several proteins including prosurvival
protein, sirtuin 1 (SIRT1). miRNA-34a is upregulated in diabetic
hearts and glucose-treated cardiomyocytes. Fomison-Nurse et
al. reported that upregulation of miRNA-34a was associated
with downregulation of SIRT1 and increased the activity of
proapoptotic caspases in HG-treated cultured cardiomyocytes.
Inhibition of miRNA-34a was found to reduce HG-induced
cardiomyocyte apoptosis, indicating its potential therapeutic role
(63). Qiao et al. showed that miRNA-483-3p was involved in HG-
induced cardiomyocyte apoptosis by repressing the expression of
its target gene, IGF-1. They reported elevated expression of this
miRNA in diabetic mice and hyperglycemic cardiomyocytes (64).
Downregulation of miRNA-30c and miRNA-181 was observed
in diabetic hearts and hyperglycemic cardiomyocytes (38). These
miRNAs promote cardiomyocyte apoptosis by deregulation of a
p53-p21 axis (38). It was reported that miRNA-195 upregulation
induces apoptosis in streptozotocin (STZ) and leptin receptor-
deficient type 2 diabetic murine hearts via downregulation of
SIRT1 and B cell leukemia 2 (Bcl2) (65). Altered expression
of miRNA-144 was observed in hearts and also cardiomyocytes
in hyperglycemic conditions. miRNA-144-3p was found to be
upregulated in T2D (66). Karolina et al. reported that miRNA-
144 controls the expression of IRS-1 in diabetes (66). Recently,
Song et al. have reported increased miRNA-144 levels in HG-
treated cardiomyocytes (67). They showed that miRNA-144-
targeted C1q/TNF-related protein 3 (CTRP3)/JNK pathway and
inhibition of miRNA-144 attenuated cardiomyocyte apoptosis.
In another study, Tao et al. observed decreased miRNA-144
levels in HG-treated cardiomyocytes and diabetic hearts (68).
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Cellular overexpression of miRNA-144 resulted in improved
mitochondrial function and decreased myocyte apoptosis by
regulating Rac family small GTPase 1 (Rac-1) levels, which in
turn regulated apoptosis via 5’ AMP-activated protein kinase
(AMPK) phosphorylation and PGC-1α deacetylation (68). Thus,
the precise role of this miRNA remains to be fully elucidated.
Altered PI3K/Akt signaling stimulates apoptosis, fibrosis, and
hypertrophy of cardiomyocytes and leads to DbCM progression
(69). It was reported that miRNA-203 overexpression inhibited
PIK3CA and activated of PI3K/Akt signaling, thus inhibiting
myocardial hypertrophy, fibrosis, and apoptosis (69). Recently,
miRNA-532 has been shown to exhibit a positive association with
cardiomyocyte apoptosis in diabetic heart disease. miRNA-532
was shown to be upregulated in cardiac tissues of patients with
type 2 DM, thus decreasing the expression of its main target,
the antiapoptotic protein (ARC). It was shown that miRNA-
532 upregulation leads to the activation of proapoptotic caspases
activity and vice versa in HG-treated cardiomyocytes (70).
Another study showed decrease in expression of antiapoptotic
protein, Hsp60 in the diabetic heart. miRNA-1 and miRNA-
206 modulated myocardial Hsp60 post-transcriptionally and its
downregulation was an important proapoptotic signal in the
diabetic myocardium (71).

Besides miRNAs, several lncRNAs have been identified
mediating cardiac cell death in hyperglycemic or diabetic
conditions (72). Decreased expression of lncRNA H19 in DCM
and HG-treated cardiomyocytes was observed and improved
ventricular function by inhibiting reduced apoptosis in diabetic
rats (73). H19 functions by inhibiting miR-675-mediated
expression of voltage-dependent anion channel 1 (VDAC1), a
proapoptotic molecule, which promotes cell death (73). Yang et
al. showed escalated expression of another lncRNA Kcnq1ot, in
the hearts of diabeticmice. They further showed that inhibition of
Kcnq1ot1 improved cardiac function and attenuated pyroptosis
(52). Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is another long non-coding RNA that regulates HG-
induced cardiomyocyte apoptosis (74). MALAT1 was also shown
to downregulate miR-141 or miR-181a-5p levels by sponging
and inducing NLR family pyrin domain containing 3 (NLRP3)
inflammasome activity and TGF-β1/Smad signaling (75). In
a very recent study, MALAT1 has been shown to influence
cardiomyocyte apoptosis by EZH2, a histone methyltransferase,
and upregulating ATP-binding cassette transporter A1 (ABCA1)
(76). HOTAIR is another lncRNA that has been shown to protect
cardiac cell death in hyperglycemic conditions and DbCM.
HOTAIR was decreased in the hearts of the diabetic mice,
and its cardiac-specific overexpression attenuated cardiomyocyte
death in STZ diabetic mice (77). It was shown to regulate
miR-34a levels by acting as competing endogenous RNA
(ceRNA) and increasing its target protein SIRT1, which has
antiapoptotic activity (77). MEG3 is a lncRNA that is upregulated
in HG-treated cardiomyocytes and induces apoptosis via
sponging miR-145 and increasing proapoptotic programmed
cell death 4 (PDCD4) levels (78). Recently, expression of
Lnc NKILA (nuclear factor-κ B interacting long non-coding
RNA) was found to be highly increased in patients with
DbCM and its in vitro silencing decreased HG-induced cardiac

cell death (79). Similarly, increased lncRNA LUCAT1 (lung
cancer-associated transcript 1) levels were found in HG-
treated AC 16 cardiomyocytes and its inhibition reduced HG-
induced cardiomyocyte apoptosis by downregulating aldosterone
synthase (CYP11B2) (80).

The DNA and histone methylation and acetylation
are important epigenetic mechanisms that regulate gene
expression and associated cellular mechanisms. The role of these
mechanisms in diabetic cardiomyocyte cell death has not been
well-investigated but emerging research suggests that they might
have an important role. Yu et al. reported that HDAC1 mediates
repression of IGF-1R in HG-treated cardiomyocytes (81). They
showed that the association of histone 4 with p53-HDAC1
is increased and the association of histone 4 with IGF-1R is
decreased (81). HDAC inhibition was later shown to inhibit
HG-induced cardiac apoptosis by increasing GLUT1 acetylation
and decreasing caspase 3 activity in diabetic mice (53).

Endoplasmic reticulum (ER) stress, an important mediator of
DbCM, has also been implicated in the induction of apoptosis
of cardiac cells (82). The role of epigenetic regulation of ER
stress in DM-induced cardiac apoptosis was further confirmed by
Guo et al. They reported that activation of SIRT1, a deacetylase,
attenuates ER stress and apoptosis in cardiomyocytes of diabetic
rats (83). Nitrosative stress induced by increased nitric oxide
production resulting in nitrosylation of proteins has been found
to induce apoptosis in heart of diabetic rats (84). Puthanveetil et
al. reported that HC-induced iNOS expression in cardiomyocytes
leads to increased nitrosylation of caspase 3 that facilitates
apoptosis. They showed that nitrosylation of the proteins was
mediated by Foxo1. Foxo1-mediated nitrosylation of caspase 3
resulted in increased cell death under HG conditions (84).

Autophagy and Its Epigenetic Regulation
Autophagy is a physiological process that removes or recycles
damaged cell components such as organelles, proteins, and
metabolites from the cell. It is an important process to
maintain cell homeostasis. Both repression and augmentation
of autophagy have been reported in diabetic hearts and HG-
exposed cardiomyocytes (85–87). Mellor et al. reported increased
autophagy (LC3B-II: LC3B-I ratio) in hearts of fructose-fed
diabetic mice, suggesting myocardial autophagy activation in
DbCM (88). However, Xie et al. reported repressed cardiac
AMPK activity and autophagy in OVE26 diabetic mice (89).
To date, there is no unequivocal consensus on the role of
myocardial autophagy in the pathophysiology of DbCM. A recent
review on autophagy in diabetic heart showed that autophagy
might act as a double-edged sword, with initial activation
helping in the removal of damaged mitochondria, peroxisomes,
and protein aggregates and improving antioxidant mechanisms
through the activation of antioxidant transcription factors such
as nuclear factor erythroid 2-related factor 2 (Nrf2). However,
this increased autophagy in the cell may result in self-digestion
and enhanced reactive oxygen species (ROS) generation, causing
cardiac damage (87).

Few reports suggest that miRNAs may regulate diabetes-
induced autophagy. Chen et al. reported that circulatory miRNA-
30c levels were highly reduced in patients with DM. Similar
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results have been found in an animal model of diabetes and
cardiomyocytes. It was observed that miR-30c directly regulates
Beclin-1 expression. Thus, downregulation of miR-30cenhanced
autophagy by increasing proautophagic Beclin-1 expression in
diabetic hearts. Further, miR-30c directly regulates Beclin-1, thus
controlling autophagy in DM (90).

There are a few studies suggesting the involvement of
LncRNAs in DbCM. Feng et al. showed a marked increase in
expression of LncRNAs, DCM-related factor (DCRF) in DbCM
in the diabetic mice model (91). They showed that DCRF
increased cardiomyocyte autophagy by sponging miR-551b-
5p, thereby increasing protocadherin 17 (PCDH17) expression
(89). Similarly, Zhou et al. reported decreased expression of
LncRNA H19 in DbCM. They observed that LncRNA H19
regulates GTP-binding protein Di-Ras3 (DIRAS3) expression
and promotesmTORphosphorylation, thus inhibiting autophagy
in DbCM (92).

Pyroptosis and Its Epigenetic Regulation
Pyroptosis or inflammation-induced cell death has been
shown to contribute to increased cardiomyocyte cell loss in
DbCM (93). miRNA-30d promoted cardiomyocyte pyroptosis
in hyperglycemic conditions by repressing Forkhead box
O3 (Foxo3a) and its downstream effector activity regulated
cytoskeleton-associated protein (ARC), an apoptotic repressor
leading to caspase-1 activation and increasing proinflammatory
molecules (94). Jeyabal et al. have also reported that miRNA-
9 may have a role in HG-induced cardiomyocyte pyroptosis
(95). They showed that expression of miRNA-9 was significantly
decreased in HG-treated cardiomyocytes in vitro and in human
diabetic hearts in vivo. The proinflammatory ELAV-like protein
1 (ELAVL1) was shown to be the target protein of miRNA-9. The
authors reported that upregulation of miRNA-9 attenuated HG-
induced cardiomyocyte pyroptosis by downregulating ELAVL1
expression, indicating that miRNA-9 has an antiapoptotic role in
diabetic hearts (95).

Epigenetic Regulation of Mitochondrial
Dysfunction in DbCM
Mitochondria play a vital role in the maintenance of cardiac
function and metabolism. Loss of mitochondrial function is
implicated in DbCM (96). In adult cardiomyocytes, oxidative
phosphorylation is the major source of intracellular ATP
production in mitochondria. During DM, there is a switch in
the ATP production pathway from glucose to FFA oxidation
in mitochondria (97). This impaired oxidative phosphorylation
increases mitochondrial ROS generation (98). Further, faulty
Ca2+ flux in mitochondria leads to apoptosis in cardiomyocytes
(99). This dysregulated Ca2+ flux also induces permeability in
mitochondrial membranes, resulting in increased cardiomyocyte
autophagy (100).

MicroRNAs have a significant role in fatty acid metabolism
in the diabetic heart tissues. miRNA-133a levels were decreased
in the cardiac tissue of the diabetic murine model (43).
Mechanistically, miRNA-133a controls the CD36 expression
by directly regulating testicular protein 4 (101). This explains
the increase in CD36 expression in diabetic rat hearts (102).

Peroxisome proliferator-activated receptor alpha (PPAR-α)
regulates the oxidation of fatty acids in cardiomyocytes (103).
miRNA-29a directly regulates the coactivator of PPAR-α (104).
It was also reported that miRNA-29a levels are decreased in
diabetic rat hearts, and this explains the increased fatty acid
oxidation mediated by PPAR-α (105). In another study, it was
reported that miRNA-210 levels are 2.5 folds higher in human
diabetic failing hearts compared with non-diabetic failing hearts
(106). miRNA-210 is a direct regulator of ISCU1/2, iron sulfur
complex protein, which drives the electron transport chain (ETC)
by regulating the function of aconitase and complex I (107).
Another group reported that there is an increase in miRNA-
141 levels in type 1 diabetic hearts (108). miRNA-141 regulates
inorganic phosphate transport in the mitochondria by regulating
the solute carrier family 25 members 3 (SLC25A3), this, in
turn, affects the ATP synthesis in mitochondria (108). Similarly,
miRNA-378 that negatively regulates ATP synthase was found
to be elevated in interfibrillar mitochondria in streptozotocin-
induced diabetic hearts of mice (109). All studies suggest that
miRNAs are important players in mitochondrial function and
energy metabolism in the diabetic heart.

Histone modifiers such as deacetylases and acetyltransferases
regulate global acetylation levels in various physiological states
of the cell. They maintain homeostasis by acetylation or
deacetylation of histone substrates (110). It was reported that
increased HDAC activity leads to myocardial ischemia mediated
by Foxo3a/Bim in the diabetic heart (111). Well-known cardiac
protector resveratrol reduces mitochondrial dysfunction through
regulation of SIRT1 activation in a murine model of DM and
increased histone deacetylation of PGC-1α (112, 113). In the
murine model of DM, HDAC inhibition resulted in elevated
expression of cardiac PPAR-α and resulted in reduced expression
of peroxisome proliferator-activated receptor gamma (PPAR-γ),
suggesting the role of HDAC abrogation in regulating the fatty
acid oxidation in DbCM (114).

Mitochondrial Oxidative Stress and Its
Epigenetic Regulation in DbCM
Oxidative stress plays a crucial role in the pathogenesis
and progression of DbCM by increasing insulin resistance
in cardiomyocytes (Figure 2). During oxygen metabolism in
mitochondria, ROS is produced as a by-product (97). Under
abnormal conditions such as insulin resistance and HG, there
is an increase in NADH in the mitochondrial respiratory
chain leading to shunting of ETC at complex III and leading
to tremendous ROS production (115). High NADPH oxidase
activity is seen in cardiomyocytes of patients with obesity and
cardiac insulin resistance (31). This increase in NADPH oxidase
activity led to increased ROS generation. In DbCM, ROS levels
also get elevated because of increased xanthine oxidase activity
and NO synthase uncoupling (116). Mitochondrial dysfunction
leads to increased ROS accumulation. Major ROS determinants
are hydrogen peroxide, hydroxyl radical, superoxide molecules,
and reduced oxygen in patients with DbCM (116–118).

Several miRNAs such as miRNA-1, miRNA-19b, and
miRNA-144 have been associated with oxidative stress (34, 41).
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FIGURE 2 | The molecular mechanisms interactome in the pathophysiology of diabetic cardiomyopathy (DbCM). AGEs, advanced glycation end products; LV, left

ventricle; ROS, reactive oxygen species.

It was shown that miR-1 levels decrease in cardiomyocytes
treated with high glucose and treatment with N-acetylcysteine
(NAC) leads to the rescue of cardiac phenotype proving the
role of miRNA in oxidative stress-dependent DbCM (119).
Similarly, miRNA-144 levels were found to be downregulated
in hyperglycemic conditions. miRNA-144 is shown to
regulate ROS levels directly through Nrf2 expression (41).
Moreover, an increase in miRNA-141 in type I diabetic mice
heart inhibited mitochondrial phosphate carrier (Slc25a)
resulting in increased ROS and decreased mitochondrial
ATP generation (108). Additionally, miRNA-210 has been
reported to regulate mitochondrial metabolism by targeting
the molecules involved in the ROS generation (120). Another
report suggests that miRNA-373 levels were decreased in
DbCM due to glucose-induced oxidative stress-mediated cardiac
hypertrophy (121).

Few lncRNAs have been reported to regulate diabetes-induced
oxidative stress. LncRNA H19 was shown to be downregulated
in diabetic rat hearts, and enforced overexpression leads to
attenuation of oxidative stress and thus, in turn, alleviates the LV
dysfunction (73).

Epigenetic modulators such as histone DNA deacetylases
have been also found to play an important role in oxidative
stress-mediated pathophysiology of DbCM. Kumar et al.
reported that dysregulated SIRT1 and methyltransferase 3b
(Dnmt3b) activity resulted in increased histone H3 acetylation
and CpG demethylation at the p66Shc (prooxidant adaptor
protein) promoter in diabetes-induced vascular oxidative
stress (122, 123). Similarly, Mortuza et al. looked into the
mechanisms that decreased SIRT1 activity and suggested

the role of SIRT1 and FOXO1 axis in ROS-mediated
stress (124).

Electrical Remodeling and Its Epigenetic
Regulation in the Progression of DbCM
Structural cues such as cardiac remodeling (fibrosis and
hypertrophy) lead to functional abnormality (altered electrical
activation) ultimately leading to electrical remodeling of the
heart during HF. Electrical remodeling is characterized by
compensatory or maladaptive prolonged disturbances in ion
channels that might be reversible or irreversible, respectively.
The remodeling of the electrical conduction system is considered
to be the main reason for lethal arrhythmias (125). There are
various etiologies of CVDs but delay in cardiac action potential
repolarization is a common mechanism of electrical remodeling
(125–127). Most electrophysiological studies suggest that a dip in
the K+ currents plays a key role in electrical remodeling (126–
129). There is experimental evidence suggesting that alterations
in glucose metabolism in cardiomyocytes led to the remodeling
of various channels in the ventricle. It will be interesting to learn
that how the K+ channel gets altered in DM.Mechanisms behind
the upregulation of K+ channel activity in cardiomyocytes of
patients with DbCM have derailed insulin signaling and glucose
utilization. It was shown in the streptozotocin-induced DM
murine model that insulin treatment is quite promising in
achieving the normal transient outward current (129–131).

In the case of DbCM (induced by type I or type II diabetes),
prolongedQT is seen (132–135), increasing the risk of ventricular
arrhythmia (136, 137). At the molecular level, this lengthening of
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the action potential is mainly driven by deregulated expression of
various ion channel proteins and their properties (138–140).

Recently, it was found that epigenetic regulators
such as miRNAs also participate in myocardial electrical
remodeling (141). The expression of voltage-gated potassium
channel Kv4.2 is regulated by miR-301a in diabetes (141).
Overexpression of miRNA-29 in the diabetic murine
model led to structural damage in the heart (142). In
another study using a murine model of diabetes, it
was seen that an increase in miRNA-141 levels affects
ATP production by decreasing mitochondrial phosphate
transport (108).

Various studies have underscored the role of HDACs in the
regulation of ion channel expression but their exact function still
needs to be elucidated. One such study elucidates the regulation
of sodium–calcium exchanger (NCX)1 by HDAC5. The NCX1
is involved in Ca2+ efflux out of the cells and its expression
is regulated by NK2 homeobox 5 (NKX2.5). It is involved in
the recruitment of HDAC5 to the NCX gene promoter (143).
Another study showed that acetylation of NKX2.5 increases
its interaction with HDAC5, whereas deacetylation of NKX2.5
increases its affinity toward the p300 complex (144). Epigenetic
regulation of HDACs affects Ca2+ flux in cardiomyocytes (145).
In this study, the authors reported that the N-terminal of HDAC4
inhibits MEF2 activity, resulting in reduced expression of nuclear
orphan receptor NR4A, suppressing the hexamine biosynthetic
pathway (145). HDAC2 was downregulated in the porcine
model of HF, affecting the potassium channel and prolonging
the QT interval (146), leading to inhibition of HDAC2 and
affecting the action potential. Inhibition of HDACs using class
I inhibitor entinostat is a plausible therapeutic modality for
HF that reduces the electrical and structural remodeling in
HF (147).

Histone Deacetylases Inhibitors: A
Prospective Therapeutic Modality for
DbCM
Histone deacetylases are molecules with pleiotropic function
and are involved in crucial homeostatic processes such as
proliferation, cell death, and cell cycle. HDAC inhibitors
(HDACIs) specifically block Zn2+-dependent HDAC enzymes
involved in histone acetylation. Recently, the US FDA has
approved HDACIs for cancer treatment in clinics (148).
Moreover, few reports suggest that regulation of histone
acetylation is a promising strategy for the treatment of
cardiovascular disease in the preclinical model (149). HDACIs
are divided into five categories based on their structure:

A) Hydroxamic acid derivates: (e.g., panobinostat,
trichostatin A)

B) Short-chain fatty (aliphatic) acids (e.g., valproic acid (VPA),
sodium butyrate)

C) Cyclic peptides (e.g., romidepsin)
D) Benzamides (e.g., entinostat)
E) Sirtuin inhibitors

These HDACIs have been approved by US FDA (150–152).
To date, HDACIs are not used in clinical trials for fibrotic

diseases, but they have been used in cardiac and lung fibrosis
(153–155). The major player in the fibrotic condition is the
transition of fibroblast into myofibroblasts (156). There are
studies suggesting that HDACIs have reversed myofibroblasts
activation in animal models of HF. VPA combated fibrosis in
the hypertension murine model by regulating the acetylation of
corticoid receptors (157). In the pressure overload mice model,
VPA abrogated cardiac remodeling (158). VPA also ameliorated
cardiac fibrosis by regulating the ERK1/2 phosphorylation (159).
A recent study demonstrated that VPA decreased the remodeling
process, therefore leading to the onset of atrial fibrillation
(160). Similarly, pan-HDACIs also showed antifibrotic activities,
MPT0E014 decreased the expression of Ang II and TGF-
β receptors in a murine model of cardiomyopathy (161).
Mocetinostat downregulated the expression of HDACs in an HF
model mechanistically by increasing apoptosis and reducing the
myofibroblast phenotype (162). HDAC6 silencing or inhibition
using tubacin reduced the TGF-β1 expression and, thus,
decreased cardiac fibrosis (163). There is a need for more
comprehensive studies looking into the potential of selective
HDACIs for DbCM treatment.

CONCLUSION AND FUTURE
PROSPECTIVE

Diabetic cardiomyopathy is a pleiotropic metabolic disease,
with complex etiology and cumulative effects of crosstalk
between genetic and epigenetic factors. The diabetic
milieu has several inducers of cardiomyopathy such as
ROS-mediated oxidative stress, hyperglycemic conditions,
cytokines-mediated inflammation, cell death (apoptosis,
autophagy, and pyroptosis), and epigenetic regulation
of the dysregulated molecular pathways induced by these
mediators. Epigenetic modifications range from deregulated
ncRNAs (miRNAs and lncRNAs), histone modifications
(acetylation and methylation), and DNA promoter methylation,
which regulates the expression of important molecules of
various pathways mediating DbCM. In summary, previous
studies showed that interaction between environmental and
genetic factors strongly determine the pathogenesis of DbCM
through epigenetic changes in cellular signaling pathways
(Figure 3).

The past decade has shown that miRNAs and lncRNAs are
important regulators of major molecular pathways such as cell
death, oxidative stress, mitochondrial dysfunction, and electrical
remodeling (Tables 1, 2). Cardiac fibrosis is an important
phenomenon of the cardiac remodeling process in DbCM. There
is substantial evidence that epigenetics plays a major role in
diabetes-associated cell death. Epigenetic regulatory mechanisms
such as histone changes, DNA methylation, miRNAs, and
non-coding RNAs regulate cardiac cell death in the diabetic
milieu. Similarly, other mechanisms such as mitochondrial
dysfunction, oxidative stress, and electrical remodeling are also
regulated by miRNAs and by HDACs. The elucidation of
these epigenetic mechanisms can provide newer therapeutic
strategies for the DbCM. miRNAs and lncRNAs have shown

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 December 2021 | Volume 8 | Article 725532

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Mittal et al. Epigenetics of Diabetic Cardiomyopathy

FIGURE 3 | The crosstalk between epigenetic modulators and various mechanisms of DbCM. miRNAs, microRNAs; lncRNAs, long non-coding RNAs; HDACs,

histone deacetylases; HMTs, histone methyltransferases; DNMT, DNA methyltransferases.

TABLE 1 | Deregulated miRNAs in diabetic cardiomyopathy (DbCM).

miRNAs Process associated Target genes References

miRNA-212 Cardiac hypertrophy FOXO3 (35)

miRNA-30c Cardiac hypertrophy Cdc42 and Pak1 (36)

miRNA-30c & 181 Cardiac hypertrophy p53 (38)

miRNA-199a Cardiac hypertrophy PGC-1α (40)

miRNA-200c Cardiac hypertrophy DUSP-1 (39)

miRNA-133a Cardiac fibrosis TGF-ß1 (43)

miRNA-21 Cardiac fibrosis DUSP-8 (46)

miRNA-1 Cardiac apoptosis IGF-1 (62)

miRNA-34a Cardiac apoptosis SIRT-1 (77)

miRNA-483-3p Cardiac apoptosis IGF-1 (64)

miRNA-195 Cardiac apoptosis SIRT-1 (65)

miRNA-144 Cardiac apoptosis IRS (66)

miRNA-203 Cardiac apoptosis PIK3CA (69)

miRNA-532 Cardiac apoptosis ARC (70)

miRNA-30c Cardiac autophagy Beclin1 (90)

miRNA-30d Cardiac pyroptosis Foxo3A (94)

miRNA-9 Cardiac pyroptosis ELAVL1 (95)

miRNA-29a Mitochondrial dysfunction PPARα (103)

miRNA-210 Mitochondrial dysfunction ISCU1/2 (107)

miRNA-141 Mitochondrial dysfunction SLC25A3 (108)

miRNA-378 Oxidative stress ATP synthase (109)

miRNA-144 Oxidative stress Nrf2 (41)

miRNA-301 Electrical remodeling Kv4.2 (141)

translational potential as diagnostic and prognostic biomarkers
and therapeutic modalities for DbCM. It was also shown

TABLE 2 | Deregulated lncRNAs in DbCM.

lncRNAs Process associated Target genes References

MIAT Hypertrophy; fibrosis TLR4; TGF-ß1 (49–51)

Kcnq1ot Fibrosis; pyroptosis TGF-ß1 (52)

H19 Apoptosis; autophagy VDAC1; DIRAS3 (73, 92)

MALAT 1 Apoptosis NLRP3; TGF-ß1; ABCA1 (74–76)

HOTAIR Apoptosis SIRT-1 (77)

MEG3 Apoptosis PDCD 4 (78)

LUCAT1 Apoptosis CYP11B2 (80)

DCRF Autophagy PCDH17 (91)

that HDACs are important regulators in the pathophysiology
of DbCM. Inhibition of HDACs using inhibitors has shown
promising data in the context of cardiac fibrosis. We have
presented a detailed discussion on HDAC inhibitors as
promising therapeutic targets for DbCM. However, there is a
need to investigate regulatory mechanisms such as chromatin
modifications and circular RNAs as contributors to DbCM.

With the advancement in genomics and molecular biology
techniques, such as transposase-accessible chromatin (ATAC)
sequencing, deep sequencing, and ChIP-sequencing, high-
throughput data on DNA methylomes can be generated. This
genome-wide data will provide a comprehensive picture of
DbCM. The information, thus, acquired will help to understand
the role of epigenetic modulators in DbCM in a pathway-specific
manner. This review aims to help in understanding the role of
various epigenetic factors in conjunction with specific pathways
in DbCM.
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