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Impact of Synaptic Device 
Variations on Classification 
Accuracy in a Binarized Neural 
Network
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Brain-inspired neuromorphic systems (hardware neural networks) are expected to be an energy-
efficient computing architecture for solving cognitive tasks, which critically depend on the development 
of reliable synaptic weight storage (i.e., synaptic device). Although various nanoelectronic devices 
have successfully reproduced the learning rules of biological synapses through their internal analog 
conductance states, the sustainability of such devices is still in doubt due to the variability common to 
all nanoelectronic devices. Alternatively, a neuromorphic system based on a relatively more reliable 
digital-type switching device has been recently demonstrated, i.e., a binarized neural network (BNN). 
The synaptic device is a more mature digital-type switching device, and the training/recognition 
algorithm developed for the BNN enables the task of facial image classification with a supervised 
training scheme. Here, we quantitatively investigate the effects of device parameter variations on the 
classification accuracy; the parameters include the number of weight states (Nstate), the weight update 
margin (ΔG), and the weight update variation (Gvar). This analysis demonstrates the feasibility of the 
BNN and introduces a practical neuromorphic system based on mature, conventional digital device 
technologies.

Conventional computing architectures (von Neumann architectures) consume large amounts of energy when 
solving cognitive tasks due to the unavoidable inefficiency of data transfer between the processor and the off-chip 
memory. This inefficiency is referred to as the von Neumann bottleneck. Alternatively, by mimicking both the 
functional and structural advantages of the biological neural system, power-efficient computing systems (i.e., 
neuromorphic systems1) have recently been developed and are expected to offer promising breakthroughs. The 
practical implementation of the neuromorphic system depends on the development of ideal synaptic weight 
storage (i.e., the synaptic device). Highly integrated synaptic devices with sufficient reliability are essential for the 
on-chip implementation of a neuromorphic system that can process big data in real time, similar to the human 
brain.

Currently, various nanoelectronic synaptic devices based on two-terminal resistive switches (i.e., memristors) 
have demonstrated promising results by emulating the functionalities of biological synapses using their intrinsic 
analog conductance states2–8. Furthermore, using an integrated memristor network, functional neuromorphic 
systems have been experimentally applied to practical calculation tasks involving pattern recognition9, sparse 
coding10, matrix equations11, and differential equations12. Nevertheless, the sustainability of such devices is still 
in doubt due to the variability that is common to all nanoelectronic devices13–15. Because the physical mechanism 
of the conductance modulation in most prospective synaptic devices is a random process, that is, an atomic-level 
change based on electro/thermodynamics16, both cycle-to-cycle and device-to-device variations of conductance 
modulation are unavoidable17.

This concern may result from a misunderstanding of the neuromorphic system. The neuromorphic system 
simulates and exploits the characteristics and advantages of the brain, but this simulation and exploitation do not 
mean that the system must exactly imitate all of the structural and functional features of the brain. Unfortunately, 
with the goal of realizing a neuromorphic system that resembles the brain, most previous synaptic device studies 
blindly worked to demonstrate devices that were as similar as possible to biological synapses. As a result, most of 

1Department of Electrical Engineering, Sejong University, Seoul, 05006, Korea. 2School of Electrical Engineering, 
Kookmin University, Seoul, 02707, Korea. *email: sjchoiee@kookmin.ac.kr

OPEN

https://doi.org/10.1038/s41598-019-51814-5
http://orcid.org/0000-0003-1301-2847
mailto:sjchoiee@kookmin.ac.kr


2Scientific Reports |         (2019) 9:15237  | https://doi.org/10.1038/s41598-019-51814-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

the previous studies have focused only on the development/improvement of the analog conductance modulation 
dynamics, attempting to make them more similar to the dynamics of biological synapses while ignoring the var-
iability issues2–8.

Alternatively, the sustainability and reliability of digital-type switching devices have been consistently ensured 
over the past 20 years18. Using current NAND flash technology, stable multiple memory states (4-bit = 16 states) 
with three-dimensional stackability have already been applied to a product. Therefore, if well-qualified conven-
tional digital devices can contribute to a synaptic device, the aforementioned variability issues from memristors 
can be addressed. We have demonstrated a binarized neural network (BNN) in our previous study19, in which the 
synaptic device was a mature digital-type switchable device—a gate-all-around (GAA) silicon nanosheet transis-
tor. By applying a supervised online training scheme, a set of multiple digital-type synaptic devices (buckets) were 
able to represent the analog synaptic weight. The BNN had an image classification capability that was verified by 
simulation and experiment19. However, our previous simulation was limited because the effect of synaptic device 
variations was ignored; the simulation was performed under the assumption that all synaptic devices in the sys-
tem had equivalent characteristics without any variations. Therefore, in this study, the BNN is applied to facial 
image classification, and the effect of the synaptic device variations such as the number of weight states (Nstate), 
the weight update margin (ΔG), and the weight variation (Gvar) is included. The effect of device variations on the 
classification accuracy is analyzed quantitatively using the simulation. These results demonstrate the feasibility of 
BNNs, which provide higher immunity to synaptic device variability than conventional neuromorphic systems 
based on analog synaptic devices do.

Results and Discussion
In our previous work, we demonstrated a BNN and its supervised training scheme for an image classification 
application19. Briefly, Fig. 1a depicts the architecture of a BNN with M inputs and N outputs. The input image 
information is delivered into the network by two types of vectors u1(i) and w1(i), which denote the probability- 
and write-vector, respectively (subscripted numbers indicate the order of each network when multiple networks 
are involved). When an input pattern needs to be distinguished from previously trained patterns (i.e., recognizing 
phase), u1(i) is applied to the network. The vector u1(i), which is rescaled to 0 ≤ u1(i) ≤ 1, directly corresponds to 
the intensity of each pixel. When an input pattern needs to be trained by updating the synaptic weight (i.e., train-
ing phase), w1(i) is applied to the network instead of u1(i). The vector w1(i), which is defined as w1(i) = {0 or 1}, is 

Figure 1.  (a) The architecture of the binary neural network with M inputs and N outputs. The input image 
information corresponds to u1(i) and w1(i). The vector s1(i) enables supervised training by selecting a specific 
row, and z1(i) is the output of the network. (b) The schematic of a synaptic transistor array, where s1(i) involves 
VG, and either u1(i) or w1(i) involves VD. The integration of IS along a row corresponds to z1(i). (c) Schematics of 
the applied pulse trains used to characterize the channel conductance modulation property of the GAA silicon 
nanosheet transistor. Each pulse train consists of potentiation and depression pulses applied to the gate (Vpot 
and Vdep for 100 μs). Control of the Vpot level contributes to the different conductance-switching behaviors of 
Nstate, ΔG, and Gvar.
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stochastically determined by the learning probability p, defined as p = γ∙u1(i) (γ is the learning rate). Note that the 
most distinctive feature of the BNN is that the synaptic weights in the network G1(i, j) are given within a binary 
value: G1(i, j) = {Ghigh or Glow}, where Ghigh and Glow represent the high- and low-conductance states of the synaptic 
device, respectively. To represent actual analog weights using only Ghigh and Glow, the network G1 is partitioned 
into sub-buckets (the size of each bucket is B1). Each bucket is trained with a single specific input image accord-
ing to the label. In addition, the selection vector s1(i), defined as s1(i) = {1 or −1 or 0}, directs the training on the 
input image according to the label, where 1, −1, and 0 represent “potentiation,” “depression,” and “no update” of 
the synaptic weight, respectively. Consequently, a set of binary values stored in the bucket can represent analog 
synaptic weights, which are related to the input image according to the label. Additional explanations for the 
operational principles of the BNN are presented in Supplementary Information Note 1.

In this study, the performance of the BNN is evaluated through the task of classifying images of faces from 
the Yale Face Database20, which contains a total of 165 grayscale images (32 × 32 pixels) of 15 individuals. In the 
database, there are 11 images per subject, and each image represents a different facial expression or configura-
tion (center light, with glasses, happy; left light, without glasses, normal; right light, sad, sleepy, surprised, and 
winking). Here, we select 8 of the 11 images for the training set, and the remaining 3 images are used as the test 
set. Only the images in the training set are inputted to the network during the training phase. To evaluate the 
classification accuracy during the recognizing phase, only the images in the test set are inputted into the network.

For the storage of binarized synaptic weights in the BNN, a GAA silicon nanosheet transistor is used as the 
synaptic device (Fig. S2, Supplementary Information Note 2). The embedded charge-trap layer (silicon nitride, 
SiN) in the gate dielectric enables adjustable channel conductance (i.e., a synaptic weight update). The synaptic 
device array is configured such that s1(i) corresponds to the gate voltage (VG) of the synaptic transistors in a par-
ticular row, and either u1(i) or w1(i) corresponds to the drain voltage (VD). The source current of each synaptic 
transistor (IS) is determined by the channel conductance (Ghigh or Glow) and VD. The integrated IS of each row 
( I G VS D∑ = ∑ ⋅ ) is the summation vector z1(i). Figure 1c shows the evolution of channel conductance in synaptic 
transistors as a pulse train is applied. Negative VG (VG = Vpot) leads to the detrapping of electrons in the SiN layer, 
which results in an increase in channel conductance up to Ghigh (i.e., potentiation). In contrast, positive VG 
(VG = Vdep) results in the decrease in channel conductance down to Glow (i.e., depression). The number of trapped 
electrons in the SiN layer depends on the level of VG. This dependence allows Ghigh or Glow to be adjusted, which 
enables control of the weight update margin (ΔG = Ghigh/Glow) and the multiple weight state (Nstate). The 
cycle-to-cycle weight variation (Gvar = [max(G) - min(G)]/mean(G)) is relatively smaller even after thousands of 
switchings, and ΔG is larger than the previous two-terminal memristors whose ΔG is below 10 with severe fluc-
tuations21–24. The remainder of the paper discusses how the improved reliability of the digital-type weight update 
will contribute to the sustainability of the entire neuromorphic system.

First, we investigate the impact of the number of weight states (Nstate) on the classification accuracy of the 
BNN. Conventional memristors can theoretically have infinite internal conductance states (Nstate = ∞), but con-
sidering only the states that can guarantee reliability (e.g., data retention time or endurance), Nstate = 8–16 is 
the current technological limit25–27. Considering this reliability limitation, Nstate that can be obtained with cur-
rent digital-type switching devices (e.g., Nstate of a quad-level cell NAND flash is 16) is not inferior to memris-
tors. To identify the effect of Nstate on the classification accuracy in the BNN, two different cases are compared: 
one with Nstate = 2 (Fig. 2a) and the other with Nstate = 16 (Fig. 2b). The comparison assumes that there is no 
device-to-device variation. The simulated accuracy of facial image classification is shown in Fig. 2c,d as a function 
of the training epoch, where the number of networks alters the accuracy. With a single network (gray curve), the 
accuracy reaches approximately 50% with B1 = 200. By deploying an additional network (red curve), the accu-
racy improves to approximately 70% with B1 = 200 and B2 = 100. The accuracy continues to improve with more 
networks, up to 80% (blue curve). However, as shown in Fig. 2d, a larger Nstate is less effective in improving the 
accuracy; rather, a greater number of training epochs are required. In the case of typical neuromorphic system 
based on the memristors, as the synaptic weight should be adjustable exactly as we desired to achieve the higher 
accuracy, a larger Nstate is advantageous for more precise G control. However, in the case of our BNN, as binarized/
quantized weight is gathered to represent a specific analog weight, the effect of the controllability in each synaptic 
weight on the accuracy is relatively reduced. Additionally, the pattern classification in the BNN is performed 
based on the bucket grouping multiple synaptic weights, and the effect of each weight value is also inevitably 
reduced. This unique feature of the BNN allows a feasible implementation of the neuromorphic system; engi-
neering of the synaptic device to have a larger Nstate is not required any more like a conventional memristor-based 
neuromorphic system. Consequently, although only binarized/quantized weight is used, a reasonable accuracy 
can be obtained from a BNN with a higher training speed. This result indicates that a neuromorphic system 
without analog-type synaptic weights can perform a cognitive task by exploiting both BNN architecture and its 
supervised training scheme.

Next, a similar analysis was performed to study the effect of the weight update margin (ΔG) on the classi-
fication accuracy. In a conventional memristor-based neuromorphic system, increasing ΔG can improve the 
classification accuracy28,29. The ΔG of common memristors is about 1021–24, thus, much research has been devoted 
to further increasing ΔG. In contrast, our digital-type synaptic device (i.e., a GAA silicon nanosheet transistor) 
can obtain larger ΔG of up to 106 (Fig. 1c) by modulating the amplitude of Vpot or Vdep. In this BNN simulation, 
as shown in Fig. 3a, ΔG is adjusted from 2 to 103, assuming no device-to-device variation. Figure 3b shows the 
classification accuracy as a function of ΔG. The modulation of ΔG (as well as the increased Nstate) has little effect 
on the accuracy, which is contrary to the behavior of conventional memristor-based neuromorphic systems. The 
reason for this conflicting result is as follows: The memristor-based neuromorphic system uses multiple analog 
states defined within Ghigh and Glow for image training and recognizing, and the distinguishability and stability of 
each analog state critically affect the performance of the system. A larger ΔG leads to better distinction of each 
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analog state, resulting in better distinction between the patterns to be distinguished and the background (noise)30. 
However, since BNN uses only binarized synaptic weight values (Ghigh and Glow), the amount of difference between 
Ghigh and Glow is not critical. Therefore, the classification accuracy in BNN is independent of ΔG. This feature of 
the BNN can be a great advantage in realizing practical on-chip neuromorphic systems, because current nanoe-
lectronic device technology is already sufficient to produce a ΔG of more than 10 without any further engineering 
of synaptic device.

Finally, the effect of the weight variation (Gvar) on the classification accuracy was analyzed. The intrinsic insta-
bility and lack of control of analog conductance switching behavior in memristors critically degrade the perfor-
mance of neuromorphic systems24,28, although these systems are capable of tolerating device-to-device variation 

Figure 2.  The distribution of synaptic device conductance (G) in the BNN when (a) Nstate is 2 and (b) Nstate is 
16. It is assumed that there is no device-to-device variation, that is, all synaptic devices in the simulation have 
equivalent Ghigh and Glow values. The evolution of the classification accuracy as a function of the training epoch is 
shown for when (c) Nstate is 2 and (d) Nstate is 16. The simulated accuracy is obtained by repeating the simulation 
10 times.

Figure 3.  (a) The distribution of synaptic device conductance (G) in the BNN with different ΔG. It is assumed 
that there is no device-to-device variation, that is, all synaptic devices in the simulation have equivalent Ghigh 
and Glow values. (b) The simulated accuracy as a function of ΔG, which is obtained by repeating the simulation 
10 times.
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or noise to a certain degree. In our digital-type synaptic device, shown in Fig. 1c, Ghigh and Glow fluctuate during 
repeated switching. Gvar can be defined as [max(G) - min(G)]/mean(G), where G is either Ghigh or Glow. In this 
BNN simulation, shown in Fig. 4a, Gvar is adjusted from 0.2 to 1.0 with fixed ΔG = 10. As the weight of all synap-
tic devices is determined stochastically within a given Gvar range during the weight update process, this simulation 
considers not only cycle-to-cycle variation but also device-to-device variation. Figure 4b shows the classification 
accuracy as a function of Gvar. An increase of Gvar leads to the degradation of the accuracy. When ΔG = 2 (blue 
curve), the accuracy is severely degraded, to below 40%. However, when ΔG is above 5 (green and red curves), 
the effect of an increase of Gvar is not critical. As a BNN uses only binarized synaptic weight values, the immunity 
of cycle-to-cycle or device-to-device variations is considerably higher than for memristor-based neuromorphic 
systems. The high immunity to device variability is not the result of a well-demonstrated digital-type synaptic 
device. Instead, the BNN architecture and its supervised training scheme contribute to the high sustainability of 
the system. Therefore, further research efforts to implement a practical neuromorphic system should be devoted 
to developing the architecture and training scheme, rather than focusing on the improvement of analog proper-
ties in the synaptic device.

In summary, we have analyzed the impact of synaptic device variations on image classification accuracy in a 
BNN. The BNN has the following unique characteristics: 1) By using only binarized weight, the BNN can classify 
the input images with reasonable accuracy through the supervised training scheme. 2) The classification accuracy 
is independent of the weight update margin (ΔG) of the synaptic device. 3) The BNN is highly immune to var-
iability (such as Gvar). Due to characteristics 2 and 3, current device technology is sufficient to create a synaptic 
device without any further research effort. Actually, prior to our study, memristor-based BNNs has been proposed 
to reduce the memory access by binarizing the weight31–33. But it is still an open question how to build and train a 
neural network with binarized weight. So far, each previous study has proposed different BNN operation schemes, 
and each study has a different point of view. The main goal of previous memristor-based BNNs is to focus on more 
energy-efficient processing of deep neural network algorithms. However, our research rather focuses on provid-
ing an architecture and operation scheme that is less sensitive to synaptic device variations. Consequently, our 
BNN can provide a device-level breakthrough for neuromorphic systems, which are currently based on conven-
tional memristors, and provide a novel direction and inspiration for future neuromorphic engineering.

Methods
Test images form the yale face database.  We are compliant with Yale’s policy of reuse/use of these 
images (http://vision.ucsd.edu/content/yale-face-database).
Received: 14 August 2019; Accepted: 8 October 2019;
Published: xx xx xxxx

References
	 1.	 Mead, C. Neuromorphic Electronic Systems. Proc. IEEE 78, 1629–1636 (1990).
	 2.	 Zamarreño-Ramos, C. et al. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. 

Front. Neurosci. 5, 26 (2011).
	 3.	 Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G. & Linares-Barranco, B. STDP and STDP variations with 

memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 2 (2013).
	 4.	 Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).
	 5.	 Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D. & Wong, H. S. P. An electronic synapse device based on metal oxide resistive switching 

memory for neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737 (2011).
	 6.	 Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic 

plasticity. Nano Lett. 15, 2203–2211 (2015).

Figure 4.  (a) The distribution of synaptic device conductance (G) in the BNN considering Gvar. The device 
conductance of all synaptic devices is determined stochastically within a given Gvar range during the weight 
update process. Here, ΔG = mean(Ghigh)/mean(Glow) is fixed to 10. (b) The simulated accuracy as a function of 
Gvar, which is obtained by repeating the simulation 10 times.

https://doi.org/10.1038/s41598-019-51814-5
http://vision.ucsd.edu/content/yale-face-database


6Scientific Reports |         (2019) 9:15237  | https://doi.org/10.1038/s41598-019-51814-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 7.	 Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic Implementation of Synaptic Functions with Oxide Memristors 
through Internal Ionic Dynamics. Adv. Funct. Mater. 25, 4290–4299 (2015).

	 8.	 Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic 
systems. Nat. Commun. 5, 333–342 (2014).

	 9.	 Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 
61–64 (2015).

	10.	 Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotechnol. 12, 784–789 (2017).
	11.	 Sun, Z. et al. Solving matrix equations in one step with cross-point resistive arrays. Proc. Natl. Acad. Sci. USA 116, 4123–4128 (2019).
	12.	 Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron. 1, 411–420 (2018).
	13.	 Narayanan, P. et al. Parameter Variability in Nanoscale Fabrics: Bottom-Up Integrated Exploration. In 2010 IEEE 25th International 

Symposium on Defect and Fault Tolerance in VLSI Systems 24–31, https://doi.org/10.1109/DFT.2010.10 (IEEE, 2010).
	14.	 Zhao, W., Querlioz, D., Klein, J.-O., Chabi, D. & Chappert, C. Nanodevice-based novel computing paradigms and the neuromorphic 

approach. In 2012 IEEE International Symposium on Circuits and Systems 2509–2512, https://doi.org/10.1109/ISCAS.2012.6271812 
(IEEE, 2012).

	15.	 Pouyan, P., Amat, E. & Rubio, A. Reliability challenges in design of memristive memories. In 2014 5th European Workshop on CMOS 
Variability (VARI) 1–6, https://doi.org/10.1109/VARI.2014.6957074 (IEEE, 2014).

	16.	 Ielmini, D. Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE 
Trans. Electron Devices 58, 4309–4317 (2011).

	17.	 Kuzum, D., Yu, S. & Philip Wong, H.-S. Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013).
	18.	 Monzio Compagnoni, C. et al. Reviewing the Evolution of the NAND Flash Technology. Proc. IEEE 105, 1609–1633 (2017).
	19.	 Kim, S. et al. Binarized neural network with Silicon nanosheet Synaptic transistors for Supervised pattern Classification. Sci. Rep. 9, 

11705 (2019).
	20.	 Belhumeur, P. N., Hespanha, J. ~ P. & Kriegman, D. J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. Ieee 

Transactions on Pattern Analysis And Machine Intelligence 19 (1997).
	21.	 Park, S. et al. Neuromorphic speech systems using advanced ReRAM-based synapse. In Technical Digest - International Electron 

Devices Meeting, IEDM 25.6.1–25.6.4, https://doi.org/10.1109/IEDM.2013.6724692 (IEEE, 2013).
	22.	 Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-

change memory as the synaptic weight element. In 2014 IEEE International Electron Devices Meeting 29.5.1–29.5.4, 10.1109/
IEDM.2014.7047135 (IEEE, 2014).

	23.	 Chen, P. Y. et al. Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. In 2015 IEEE/ACM International 
Conference on Computer-Aided Design, ICCAD 2015 194–199, https://doi.org/10.1109/ICCAD.2015.7372570 (IEEE, 2016).

	24.	 Yu, S. et al. Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect. In Technical Digest - 
International Electron Devices Meeting, IEDM 17.3.1–17.3.4, https://doi.org/10.1109/IEDM.2015.7409718 (IEEE, 2015).

	25.	 Prakash, A. et al. Demonstration of Low Power 3-bit Multilevel Cell Characteristics in a TaOx-Based RRAM by Stack Engineering. 
IEEE Electron Device Lett. 36, 32–34 (2015).

	26.	 Kim, W. et al. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic. Sci. Rep. 6, 36652 (2016).
	27.	 Stathopoulos, S. et al. Multibit memory operation of metal-oxide bi-layer memristors. Sci. Rep. 7, 17532 (2017).
	28.	 Burr, G. W. et al. Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-

Change Memory as the Synaptic Weight Element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).
	29.	 Kim, S. et al. Pattern Recognition Using Carbon Nanotube Synaptic Transistors with an Adjustable Weight Update Protocol. ACS 

Nano 11, 2814–2822 (2017).
	30.	 Kim, S., Lim, M., Kim, Y., Kim, H.-D. & Choi, S.-J. Impact of Synaptic Device Variations on Pattern Recognition Accuracy in a 

Hardware Neural Network. Sci. Rep. 8, 2638 (2018).
	31.	 Bocquet, M. et al. In-Memory and Error-Immune Differential RRAM Implementation of Binarized Deep Neural Networks. In 2018 

IEEE International Electron Devices Meeting (IEDM) 20.6.1–20.6.4, https://doi.org/10.1109/IEDM.2018.8614639 (IEEE, 2018).
	32.	 Huang, P. et al. Hardware implementation of RRAM based binarized neural networks. APL Mater. 7, 081105 (2019).
	33.	 Yu, S. et al. Binary neural network with 16 Mb RRAM macro chip for classification and online training. In 2016 IEEE International 

Electron Devices Meeting (IEDM) 16.2.1–16.2.4, https://doi.org/10.1109/IEDM.2016.7838429 (IEEE, 2016).

Acknowledgements
This research was supported by the Nano·Material Technology Development Program (2016M3A7B4910430) 
funded by the Ministry of Science, ICT and Future Planning, research programs supported by the 
National Research Foundation of Korea (NRF) grant (2019R1A2C1002491, 2019R1A2B5B01069988, and 
2016R1A5A1012966), and the Future Semiconductor Device Technology Development Program (Grant 
10067739) funded by MOTIE (Ministry of Trade, Industry & Energy) and KSRC (Korea Semiconductor Research 
Consortium).

Author contributions
The manuscript was prepared by S.K. and S.-J.C. Device fabrication, measurement, and simulation were 
performed by H.-D.K. and S.K.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-51814-5.
Correspondence and requests for materials should be addressed to S.-J.C.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-019-51814-5
https://doi.org/10.1109/DFT.2010.10
https://doi.org/10.1109/ISCAS.2012.6271812
https://doi.org/10.1109/VARI.2014.6957074
https://doi.org/10.1109/IEDM.2013.6724692
https://doi.org/10.1109/ICCAD.2015.7372570
https://doi.org/10.1109/IEDM.2015.7409718
https://doi.org/10.1109/IEDM.2018.8614639
https://doi.org/10.1109/IEDM.2016.7838429
https://doi.org/10.1038/s41598-019-51814-5
http://www.nature.com/reprints


7Scientific Reports |         (2019) 9:15237  | https://doi.org/10.1038/s41598-019-51814-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-51814-5
http://creativecommons.org/licenses/by/4.0/

	Impact of Synaptic Device Variations on Classification Accuracy in a Binarized Neural Network

	Results and Discussion

	Methods

	Test images form the yale face database. 

	Acknowledgements

	Figure 1 (a) The architecture of the binary neural network with M inputs and N outputs.
	Figure 2 The distribution of synaptic device conductance (G) in the BNN when (a) Nstate is 2 and (b) Nstate is 16.
	Figure 3 (a) The distribution of synaptic device conductance (G) in the BNN with different ΔG.
	Figure 4 (a) The distribution of synaptic device conductance (G) in the BNN considering Gvar.




