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Seeking patterns of antibiotic resistance in ATLAS,
an open, raw MIC database with patient metadata
Pablo Catalán 1,2✉, Emily Wood1, Jessica M. A. Blair 3, Ivana Gudelj 1, Jonathan R. Iredell4,5,6 &

Robert E. Beardmore 1✉

Antibiotic resistance represents a growing medical concern where raw, clinical datasets are

under-exploited as a means to track the scale of the problem. We therefore sought patterns

of antibiotic resistance in the Antimicrobial Testing Leadership and Surveillance (ATLAS)

database. ATLAS holds 6.5M minimal inhibitory concentrations (MICs) for 3,919 pathogen-

antibiotic pairs isolated from 633k patients in 70 countries between 2004 and 2017. We

show most pairs form coherent, although not stationary, timeseries whose frequencies of

resistance are higher than other databases, although we identified no systematic bias towards

including more resistant strains in ATLAS. We sought data anomalies whereby MICs could

shift for methodological and not clinical or microbiological reasons and found artefacts in over

100 pathogen-antibiotic pairs. Using an information-optimal clustering methodology to

classify pathogens into low and high antibiotic susceptibilities, we used ATLAS to predict

changes in resistance. Dynamics of the latter exhibit complex patterns with MIC increases,

and some decreases, whereby subpopulations’ MICs can diverge. We also identify pathogens

at risk of developing clinical resistance in the near future.
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Antibiotic resistance is a peculiarly multiscale phenomenon.
Small molecule antibiotics bind sites measurable on the
nanoscale and yet those molecules, the pathogens they

target and their resistance genes traverse our planet. As a result,
understanding global changes in antibiotic resistance and its
economic burden is particularly difficult. Governments have tried
this, predicting future increases in resistance, disease morbidity
and mortality1,2 but, possibly because of low fidelity antibiotic
usage and resistance data, those long-term predictions have been
criticised for relying on a narrow range of clinical conditions3.

How antibiotic usage mediates resistance is key. Self-evidently,
reduced consumption should reduce resistance2,4 but this can be
surprisingly difficult to establish. Some countries have success-
fully rationalised antibiotic use in farming5 but one problem
when studying medical use may be timescales: theory predicts
resistance rises faster than it decays following antibiotic
withdrawal6, helping explain why a successful theory of antibiotic
stewardship is so hard to develop7. The removal of an antibiotic
may, or may not, lead to detectable reductions in resistance8 and
so the body of evidence of how changing stewardship practice
alters resistance has been described as ‘inconclusive’9.

More positively, resistance has reduced following pathogen-
specific changes in antibiotic usage10, city-wide observations have
also shown decreases in resistance11, as have hospital scale
interventions, like hand-washing with alcohol12 or the isolation of
patients carrying multidrug-resistant infections13. At the micro-
bial scale, amplified resistance genes can be rapidly lost from
microbial genomes following drug withdrawal14 although resis-
tant species need not rescind completely from microbial com-
munities post-treatment15.

In the clinic, longitudinal pathogen isolates from single patients
can exhibit volatile resistance patterns, such as 500-fold weekly
changes in antibiotic susceptibility that includes resistance
changes to antibiotics not used for treatment16. However, such
volatility may reflect a sampling problem of in vivo conditions
whereby single clones are assayed that are not representative of
the wider pathogen population.

Given the complexities, whether we can mitigate, or even
reverse, resistance17 systematically is a difficult open problem. As
a means to assess changes in resistance, hopefully reductions,
high fidelity spatiotemporal data on the status quo is needed and
Pfizer’s minimal inhibitory concentration (MIC) database, Anti-
microbial Testing Leadership and Surveillance (ATLAS)18, pub-
lished by Micron (https://micron-group.com), the Wellcome
Trust and Open Data Institute, seeks this. To the best of our
knowledge, ATLAS is the only open access MIC database where
patient data are stored with clinical metadata (Table 1), making it

a potentially important resource for assessing patterns in the
dynamics of resistance.

ATLAS can, in principle, be used to infer spatiotemporal
changes in resistance for potentially hundreds of pathogen-
antibiotic (PA) pairs and so we compare its MIC data both to
fractions of resistance and to MIC histograms held in other
databases, we then summarise the predictions ATLAS makes for
MICs of important clinical pathogens. This analysis indicates
MIC distributions exhibit hallmarks of phenotypic evolution
whereby multi-modal MIC distributions have subpopulations
that cluster around different MICs that shift each year. Some PA
pairs exhibit mean MIC decreases even though high level resis-
tance continues to increase. However, we show that some MIC
dynamics in ATLAS may, in fact, be artefacts resulting from
methodological choices made when the database was assembled.

Results
Each ATLAS datum is a vector of antibiotic MICs assayed for one
pathogen isolated from one patient in a known country, where
each MIC is a dose that completely inhibits growth of the
pathogen in an in vitro drug-susceptibility assay. Pathogens are
classified as resistant and an antibiotic is not recommended for
treatment if the MIC lies above a published clinical
breakpoint19–21 (i.e. susceptible isolates are those with MICs
below the breakpoint, resistant isolates have MICs above the
breakpoint). Thus MICs are a standardised, albeit variable, even
laboratory- and assay-dependent22,23 resistance measure. Indeed,
EUCAST (the European Committee on Antimicrobial Suscept-
ibility Testing) acknowledges this when they determine so-called
epidemiological cut-off values (ECOFFs24,25) that define
breakpoints.

While paying attention to any noise, biases and anomalies that
could result from discrepancies in MIC protocols, we seek signals
in the ATLAS data collated during 2004–2017 that represent
6.5M MICs for pathogens from approximately 633k patients in 70
countries. While there are data for 284 pathogens, only those
represented by more than 500 antibiotic susceptibility tests over 2
or more years were included in our initial sift that retained 43
pathogens and 827 pathogen-antibiotic pairs from all 3919 for
later analysis (unless stated otherwise below). Of those 827, only
544 have published clinical breakpoints (defined by CLSI19) thus
ATLAS has data for more PA pairs than are in current clinical
use. So although all data derive from clinical assays, not all those
assays were used to make clinical decisions.

Between-database consistency: resistanceMap, ECDC, ESPAUR
and EUCAST. ATLAS curators use different data sources, they

Table 1 The 5 different antibiotic resistance databases used in this study: only ATLAS stores patient metadata which means that
it can be compared with other databases in terms of their derived datatypes, but the converse is not possible.

database datatype patient metadata (pathogen, antibiotic and ...)

ATLAS raw patient MICs multiple MICs per patient/year/location/infection site
- TEST a subset of ATLAS multiple MICs per patient/year/location/infection site

covering years 2004-2017
- INFORM a subset of ATLAS multiple MICs per patient/year/location/infection site

covering years 2012-2017
- AWARE a subset of ATLAS multiple MICs per patient/year/location/infection site

data not analysed herein covering years 2008-2017
EUCAST aggregated MIC histograms no patient metadata; drug & pathogen are specified
ESPAUR frequency of resistance no patient metadata; drug & pathogen are specified
Resistance Map frequency of resistance no patient metadata; drug & pathogen are specified
ECDC frequency of resistance no patient metadata; drug & pathogen are specified

The acronyms used are: ATLAS (Antimicrobial Testing Leadership and Surveillance), EUCAST (the European Committee on Antimicrobial Susceptibility Testing), ECDC (European Centre for Disease
Prevention and Control) and ESPAUR (English Surveillance Programme for Antimicrobial Utilisation and Resistance).
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acknowledge variability between those sources and address some
inconsistencies in their documentation18. Descriptive statistics
(Supplementary Fig. 1) indicate increases in data quantity
through time, showing that US patients, Staphylococcus aureus
and Escherichia coli infections dominate. ATLAS has a labelling
bias whereby it can distinguish within-country MIC hetero-
geneities in the US because it contains state metadata, but it
cannot do this for any other country.

ATLAS holds raw, anonymised patient MICs and metadata
whereas some antibiotic programmes only report fractions of
resistance longitudinally, like the English Surveillance Programme
for Antimicrobial Utilisation and Resistance (ESPAUR) report in
England26. There, the use of an essentially binary filter based on
clinical breakpoints limits the analyses that can be performed.

To test the consistency of ATLAS, we applied the CLSI
susceptible-resistant classifier to ATLAS and compared that
against recent ESPAUR26, European Centre for Disease Preven-
tion and Control (ECDC)27 and ResistanceMap28 databases (also
denoted RMap herein). This shows ATLAS has significantly
many PA pairs with higher frequencies of resistance (skewed
distribution tests; Fig. 1A, Supplementary Fig. 2) where between-
database point differences can be as large as 60% for some PA
pairs (even 100% for rare pairs, Fig. 1A, Supplementary Tables 2
and 3) Comparing ATLAS’s UK sub-dataset with ESPAUR’s
2013-2018 data, we find a moderate but statistically significant
bias in ATLAS towards greater resistance (Fig. 1A, Supplemen-
tary Fig. 2). Moreover, within-country correlations between
ATLAS and ECDC data can vary: they are high for France and
Portugal but low for Denmark, Netherlands and others
(Supplementary Fig. 3). Database differences are partially
explained by larger PA datasets having statistically significantly
smaller between-database discrepancies: where PA pair datasets
have more than 500 points, all 3 databases agree with ATLAS to
within a circa 20% frequency of resistance (Supplementary Fig. 2B
quantifies the 3 correlations).

However, database comparisons like these can be affected by
reporting methodologies. To understand how, consider that CLSI
revises its breakpoints on occasion29 and because raw MICs do not
change, resistance fractions reported by ATLAS one year need not
be consistent with fractions reported following a revision which
could affect comparisons between ATLAS, ECDC, ResistanceMap
and ESPAUR. So while ATLAS reports raw MIC data labelled with
CLSI breakpoints defined in 2018, reports for the 3 other databases
are based on the breakpoints used each year of publication.

To assess the variation caused by breakpoint revisions, we re-
analysed ATLAS based on its fractions of resistance, mimicking
the reporting methods of ECDC, ResistanceMap and ESPAUR
but this time, we used revised CLSI breakpoints29 (Supplementary
Table 1) and re-analysed PA pairs where revisions occurred. This
shows (Supplementary §8) that breakpoint revisions can affect
between-database comparisons by an approximately 20% fre-
quency of resistance and only where PA pairs have large enough
sample sizes, above ~ 100 patients, is this percentage lower
(Supplementary Fig. 14).

We compared ATLAS with MIC histograms published by
EUCAST, noting the latter do not publish time or location
metadata with each MIC. ATLAS data must, therefore, be pre-
processed to remove all metadata before this comparison can be
made (“Methods”). The degree of ATLAS-EUCAST correlation
differs between PA pairs (Fig. 2A) which is expected because
EUCAST have curated PA pair data for a longer period of time
and typically have larger datasets. However, despite this, we found
10 PA pairs in ATLAS with MICs residing above the
corresponding CLSI breakpoint whereas the analogous EUCAST
entries lie below those breakpoints (Fig. 2C and Supplementary
Fig. 25).

Potential for bias in ATLAS. Given the tendency to report
higher frequencies of resistance, we asked whether biases might
be encoded in the ATLAS methodology. Statistical modelling
shows a systematic bias towards greater resistance would not be
consistent with the above observation of greater between-database
similarities at larger PA database sizes (Supplementary §3). Thus,
ATLAS’s differences from other public databases appear more
subtle than there simply being a systematic bias towards sampling
more resistant strains.

Plausible biasing mechanisms could arise if (1) data on
resistance to particular drugs is specifically targeted, then there
could be an unintentional human operative or programme-
encoded bias towards submitting resistant isolates at all
contributing centres. Or, (2) if small numbers of contributing
centres sampled large numbers of strains, this could result in
some geographically-localised strains (e.g. US-based) being over-
represented. We can partially address (2) by stratifying our
analyses by geography and we will do this below when comparing
MIC dynamics of the most resistant strains.

To address (1), we note ATLAS comprises data from so-called
TEST and INFORM surveillance programmes developed by
Pfizer and AstraZeneca, respectively, which were designed to
quantify tigecycline and ceftazidime-avibactam (a.k.a. CAZ-AVI:
the β-lactamase inhibitor avibactam inhibits class C enzymes,
restoring ceftazidime susceptibility30) MICs and this necessitates
careful consideration. Contributing centres to these 2 pro-
grammes could, consciously or unconsciously, choose to test
and submit more resistant isolates because these companies were
interested in the efficacy of their drugs against problematic clones.
However, documentation authored by the Wellcome Trust and
the Open Data Institute, with advice from bodies such as Public
Health England (now Health Security Agency UK), claims data in
ATLAS are of high quality18,31 (Supplementary §1-2).

Now, CAZ-AVI is often tested against strains resistant to
frontline treatments so the likelihood of reporting as resistant by
INFORM may be biased due to cross resistance because it uses
strains that already proved themselves resistant against other
treatments. Thus, when CAZ-AVI MICs are contrasted with
earlier surveys to determine its wider efficacy, this could appear in
ATLAS as a resistance shift that merely reflects INFORM’s design
and this issue may affect the newest antibiotics, like CAZ-AVI,
most. On that basis, is ATLAS data quality impaired if it over-
represents resistant isolates that were thereafter submitted for
testing against the newest antibiotics?

According to its publishers, this is not how ATLAS was
designed and this is consistent with the lack of modelling support
above for a systematic bias hypothesis. Instead, hospitals that
agreed to contribute to surveillance programmes chose isolates as
part of routine clinical practice who then tested clones against
antibiotics suggested by Pfizer or AstraZeneca. Database
curators18,31 claim there is no bias in isolate selection, stating
that submitted clones were already due to be tested (Supplemen-
tary §2) supports this with quotations. If this is true, criticising
ATLAS because isolate bias is the result of targeting CAZ-AVI-
resistant strains would not appear justified, although CAZ-AVI
testing does have a large representation in ATLAS (Supplemen-
tary Fig. 6), exactly as the programme set out to achieve.

We were then concerned ATLAS could bias towards low MICs
following years in which pathogen sampling methods changed.
For instance, could heightened awareness of resistance have lead
to increased clinical susceptibility testing that could, in turn,
increase the reporting of low MICs? Or could improvements in
molecular identification methodologies32,33 have an analogous
effect?

To address this, we sought PA pairs with a changepoint in the
size of their ATLAS dataset: of all 3,919 PA pairs, 1,718 have a
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data size changepoint of which 203 occur in 2012, while 657
occur in 2013 when both TEST and INFORM increased in size
(ATLAS doubled in size in 2012 following the inclusion of
INFORM and it increased again in 2013 by around 50%,
Supplementary Fig. 1C).

We then sought PA pairs that initially exhibited an increasing
MIC until a significant increase in data occurred at the same time
as a significant decrease in MIC (a positive-then-negative MIC
change). These increases and decreases were tested using
statistically significant linear regressions (using p < 0.05, noting
smaller p values would detect fewer PA pairs) and the number of
PA pairs exhibiting this MIC change in its data size changepoint
year is 11 (Supplementary Fig. 7A), suggesting that growing or
merging TEST and INFORM impacted the inference of MIC
dynamics for at least 11/3919 PA pairs. We then asked whether
the data size changepoint occurred in the same year as a negative-
then-positive MIC change, finding a further 25/3919 PA pairs

exhibit this property (Supplementary Fig. 7B). This provides 36
putative PA pairs for which changes in data availability may have
a methodological significance that we must account for in any
analysis of the clinical predictions ATLAS makes. Interestingly, 7/
36 of these involve tigecycline, the target drug of TEST
(Supplementary Fig. 7).

Within-database consistency: ATLAS year by year. ATLAS
comprises patient samples that are not longitudinal on a per patient
basis. It is therefore plausible that MICs of a given PA pair exhibit no
between-patient correlation or between-year coherency and, instead,
resemble a noise process. As MICs are resolved only by year, each
PA pair is not associated to an MIC timeseries but, rather, to a set of
MICs of different cardinalities for each year.

We therefore asked whether MIC distributions for PA pairs from
year yi would correlate with year yj. We call the symmetric matrix of
all year-year correlations, Cij, “correlelograms”, examples of which are

Fig. 1 Between database comparisons with ATLAS. A Each point represents a PA (pathogen-antibiotic) pair in a given country, for a given year with
frequency of resistance (fR as a %age) on x and y axes. ATLAS tends to over-estimates fR relative to ResistanceMap, ECDC and ESPAUR data: differences
between fR in ATLAS and other databases are positively skewed, however between-database differences are smaller for larger PA pair datasets
(Supplementary Fig. 2 has statistics). B Between-year correlations for many ATLAS PA pairs form correlelograms, called `C' here, that are close to the
(pure green) unity matrix of ones, Ones(N), for N years. 5 PA pairs for Enterococcus faecium are shown. (Supplementary Fig. 8C has some correlelogram
statistics, Supplementary Fig. 9 shows many are close to Ones(N) but not all, see Fig. 3 and Supplementary Fig. 10). The left column shows the global MIC
(minimal inhibitory concentration) distribution of E. faecium and linezolid is stable from year to year and its correlelogram is close to Ones(N). The middle
panel shows 4 correlelograms with banded structures that occur when MIC distributions experience change. C This correlelogram of Streptococcus
pneumoniae and erythromycin have a block structure because their MIC distributions correlate poorly between years: a high-MIC cluster diminishes and is
replaced by a cluster with lower MIC in 2010–2011 (c.f. Fig. 4).
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shown for Enterococcus faecium, linezolid and 4 other antibiotics
(Fig. 1B). Testing the distributions of singular values of Cij shows
ATLAS has significantly greater correlations between-years for PA
pairs than expected for noise processes (p < 10−16, Supplementary
Fig. 8) and PA pairs with the lowest between-year correlations
typically have data for the fewest years (Fig. 3 and Supplementary
Fig. 10). However, many PA pairs have coherent but slowly changing
datasets for several years’ duration (Fig. 1B, Supplementary Fig. 9).

We did not remove PA pairs with the lowest between-year
correlations (Fig. 3 and Supplementary Fig. 10) from analysis at
this point because it is plausible that absences of correlation have
a microbiological basis in those cases where the data are recorded
for sufficiently many years. For instance, low correlations could
result if a highly resistant strain swept a pathogen population very
quickly in some part of the globe in year Y, creating low MIC
correlations in the years before Y and those after Y. We discuss
this idea in more detail below.

An example of TEST-INFORM inconsistency following their
2012 merge. Some MIC distributions change abruptly so we

investigated why. Streptococcus pneumoniae and erythromycin
have a modular correlelogram structure (Fig. 1C) reflecting the
apparent loss of a high-MIC subpopulation in 2011, call it
R-strep. On examining this PA pair, we found international
definitions of susceptibility for S. pneumoniae were revised in
2008 resulting in more strains appearing susceptible34. While this
could affect the sampling behaviour of clinicians which would
impact R-strep data, it does not alter a reported MIC following a
susceptibility test so it is unclear whether this is sufficient to
explain the reduction in the R-strep subpopulation.

Furthermore, the introduction of conjugate vaccines (7-valent in
2000, 13-valent in 2010) reduced the incidence of antibiotic resistant
invasive clones and, in particular, clindamycin resistance fell
following the 2010 vaccine in developed countries35,36. As erm
genes confer resistance to both erythromycin and clindamycin37,38.
Fig. 1C may reflect a correlated change in high-level resistance to
both antibiotics and, supporting this, we observe a similar 2011 shift
for S. pneumoniae and clindamycin (Fig. 4A, B).

However, these clinical factors are probably irrelevant to
ATLAS. Deeper investigation reveals a problem to the extent that

Fig. 2 Comparing ATLAS with MIC histograms from EUCAST: from the worst to best correspondences. A If an MIC (minimal inhibitory concentration)
histogram from EUCAST is the vector x and an analogous histogram is determined from ATLAS (by aggregating across all years) and denoted y, this
heatmap shows the Euclidean distance ∥x− y∥2 for each pathogen-antibiotic (PA) pair in both databases: squares indicate distances on a colour scale,
black denotes close agreement and pink denotes poor agreement, white shows no comparison can be made. Axis labels are ordered whereby the biggest
ATLAS-EUCAST disagreements are generally found leftmost and uppermost. B Two MIC histograms are shown whereby the open black and green squares
superimposed on A highlight S. pneumoniae and clindamycin and erythromycin as having among the biggest disagreements between ATLAS and EUCAST.
C The case of S. pneumoniae and amoxycillin clavulanate is one of 10 antibiotic PA pairs for which ATLAS has resistant subpopulations according to CLSI
breakpoints, but EUCAST does not (also Supplementary Fig. 25).
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Streptococcus pneumoniae, erythromycin and clindamycin illus-
trate how the ATLAS methodology can create artefactual MIC
distributions. Figures 1C and 4B show a sudden decrease in
frequency of a highly-resistant subpopulation in the MIC
distribution of these two PA pairs but Fig. 4C, D reveal what
actually happened: both TEST and INFORM components of
ATLAS have distinct subpopulations within respective bimodal
MIC distributions that consist of susceptible and resistant strains
where the MICs of these subpopulations are different. So, when
TEST and INFORM were combined in 2012, data from Fig. 4C
and D merged to form Fig. 4B. As the latter has the apparent shift
in resistance but Fig. 4C, D do not, this shift must be an artefact
of merging databases. Moreover, the long-term stable presence of
different MIC clusters in Fig. 4C, D indicates that TEST and
INFORM must differ in their methodologies: either they are using
test laboratories that report very different MIC values for the
same strains (unlikely) or they are sampling phenotypically
distinct S. pneumoniae subpopulations.

To identify PA pairs with curation problems systematically, we
sought TEST-INFORM discrepancies using a metric-like statistic,
Δ, that quantifies (Supplementary §6) differentially susceptible
subpopulations in TEST and INFORM based on an ‘S-R’
clustering methodology that is described in detail below. Ranking
PA pairs according to Δ indicates S. pneumoniae, erythromycin
and clindamycin have the biggest TEST-INFORM discrepancies
followed by Haemophilus influenzae and ceftazidime, Staphylo-
coccus aureus and ampicillin, Streptococcus pyogenes and
meropenem, and then Klebsiella oxytoca and ceftazidime
(Supplementary Fig. 11). These 4 pairs have MIC distributions
with high year-year correlations within each database and yet
between-database correlations are low, with different modal MIC
dosages, again as if TEST and INFORM sampled from different
populations (Supplementary Fig. 12).

We hypothesised EUCAST’s MIC histograms might also help
identify curation problems in ATLAS. After removing all
temporal metadata so ATLAS can be compared with EUCAST
(Methods), we found S. pneumoniae, erythromycin and clinda-
mycin have among the greatest ATLAS-EUCAST discrepancies in
that comparison too (Fig. 2A). Despite this, both ATLAS and
EUCAST do share some features for these PA pairs in the sense
that both have trimodal MIC histograms where the modes lie at
similar MIC values (Fig. 2B). Thus, following the removal of
metadata, aggregating TEST and INFORM yields a dataset that is
similar to EUCAST, even for PA pairs where TEST and INFORM
are dissimilar.

Despite these problems, we assume from here on that
methodological problems are sufficiently rare that some clinical
signals can still be found within ATLAS but, as the above cases
highlight, we must be aware of the potential for finding artefacts
as we proceed.

Directional changes in resistance: the cluster of greatest MIC
(R). The finding that ATLAS is not an ensemble of uncorrelated
MICs though nor is it a set of stationary MIC distributions is
consistent with pathogens undergoing evolutionary change with
the MIC as a phenotype. A standard quantitative genetics
approach to elucidating MIC dynamics would be to linearly
regress MIC against time so we did this for every PA pair, both
for global data (Fig. 5A, B) and for Europe (Fig. 5C, Supple-
mentary Fig. 15A). The predicted changes in MIC are curious:
apart from South-East Asia and Central America, particularly
India, China and also Ireland, Serbia and Croatia (Fig. 5C),
regressions predict more PA pairs have global MIC reductions
than increases from 2005 to 2015 (Fig. 5B, p < 0.001, skewness test
using scipy.stats.skewtest). This observation is analogous if just
US or European data are used instead of global data (Supple-
mentary Fig. 15A). Given the wide reporting of increased resis-
tance and the fact that ATLAS typically exhibits greater
frequencies of resistance than other datasets, this skew seems
anomalous. One explanation could be that MIC distributions
have highly-resistant tails that exhibit different dynamical beha-
viour to their means, so we tested this, as follows.

A clustering methodology was employed to replace the clinical,
binary categorisation of pathogens into susceptible (S) and
resistant (R) strains by, instead, seeking clustered subpopulations
in MIC distributions with the highest and, thereafter, lower MICs.
For this we noted that MIC data is said to be log-normally
distributed25,§3.1.4] and so we are justified in the following
procedure. By modelling log-transformed MIC distributions as
Gaussian mixtures, namely a superposition of k different
normally distributed clusters, we determined an information-
optimal value of k for each PA pair for each year (Supplementary
Figs. 16, 17). The most-resistant sub-population, R, is then
defined to be the cluster with greatest mean MIC and S is the
complement of the R cluster. The boundary between S and R is
that MIC value which has an equal likelihood of being in either
sub-population. According to this definition R need not represent
clinically resistant strains, rather it is the cluster of strains with
the lowest antibiotic susceptibility for the PA pair under study, a
property that makes it a useful filter for conducting a “worst case

Fig. 3 Four of the “worst” pathogen-antibiotic (PA) pair year-year correlations ranked by τ (as defined in Supplementary §5): these satisfy τ < 1/4. PA
pairs typically have low values of τ because their correlelograms exhibit block structures consistent with high year-year correlations between MIC
distributions that incorporate sudden changes. The particular MIC correlations shown here are for PA pairs that satisfy τ < 1/4 that are also classified as
both D and M, as described in the text. An M label refers to a PA pair where sampling was very low in one particular year and pairs with high sampling
variability across years are labelled with a V. Not shown here are other PA pairs with low sampling size across years (labelled as N) and ones where the
discrepancy between TEST and INFORM MICs is high (labelled as D). Pairs that do not fall under any of these categories are labelled with a U and
Supplementary Fig. 10 shows corelelograms for all the remaining PA pairs that satisfy τ < 1/4.
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analysis” over a defined geographical region or time period. For
these analyses, the mean MIC the R cluster will be called the R-
MIC, the S-MIC is defined analogously.

Although we found no evidence of systematic resistance bias in
ATLAS, we remark that, even if we did, the R-MIC is useful
because it has a robustness property to positive resistance bias
that the S-MIC and the mean MIC do not share: unless the bias is
extreme and only leads to the sampling of data in the very high-
resistance tail of the MIC distribution, R-MIC values determined
from resistance-biased sampling are less affected than samples
that contribute to the S-MIC (Supplementary §3, Supplementary
Fig. 5). Indeed, the latter are more likely to be excluded from
analysis by a methodology biased towards sampling data with
high MICs. So even if ATLAS has methodological biases towards
sampling more resistant strains, this should affect R-MIC
dynamics less than it would S-MIC dynamics.

To determine S and R clusters robustly, we repeated the
Gaussian clustering on 50 synthetic replicates of ATLAS, each
with small-variance noise added to every MIC (“Methods”). We
then determined MIC changes, a.k.a. derivatives, for each
replicate by applying longitudinal regression to S and R separately
to estimate time derivatives dS/dt and dR/dt (Fig. 6A). In
summary, this procedure found dR/dt statistics are increasing
and not decreasing for many PA pairs (Fig. 6B). The above
anomaly arises, therefore, because many PA pairs have mean
MIC or S-MIC decreases and yet their R-MIC is increasing
(Fig. 6C and Supplementary Fig. 18).

Phase planes formed from (dS/dt, dR/dt) summarise patterns
of longitudinal MIC change. Consistent with longitudinal
regressions performed above, S-MICs and R-MICs do not always
increase in time: cases of divergent MICs are present in ATLAS
whereby the S-MIC is static or decreasing while the R-MIC

Fig. 4 Evidence S. pneumoniae and clindamycin MIC dynamics are the result of database curation methodologies. Show an analogous structural shift to
Fig. 1B, C for S. pneumoniae and erythromycin: the correlelogram (in A) and MIC dynamics (in B) shift towards lower MICs around 2011. The result of
separating ATLAS into its (C)) TEST and (D)) INFORM components are then shown. These indicate the loss of the most-resistant cluster from B around
2011 is due to TEST and INFORM both having bimodal MIC distributions with different high-MIC clusters (see C(right) and D(right)). When both the latter
are amalgamated to form ATLAS, noting (D) has data only after 2012, this appears (in (B)) to change the structure and dynamics of the MIC distributions
when, in fact, these are artefacts reflecting the merging of 2 datasets.
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increases (Fig. 6A). Similarly, there are cases where the S-MIC
and R-MIC tend towards a common value, the most clinically
optimistic case whereby the S-MIC is stable, or decreasing, while
the R-MIC is decreasing can also be found. Divergent MICs are
the most common of these cases where R-MIC increases are
typically greater than the respective change in the S-MIC or mean
MIC; all these behaviours are found in data (Fig. 6 and
Supplementary Fig. 18).

Clinical observations. We investigated (R, dR/dt) phase planes
which indicate where R was in 2017 and estimate where it could
be heading (Fig. 7A, B). For completeness, phase planes of the

entire ATLAS database are summarised as a heatmap (Fig. 7B)
and phase planes of 8 important pathogens (Fig. 7A) visually
skew towards R-MIC increases. These phase planes exhibit
clinically relevant trends consistent with previous reports but
some observations were less expected, as follows. In the following,
references to ‘label CX’ appear in Fig. 7A.

Acinetobacter baumannii resists all antibiotic classes with scant
evidence of R-MIC reductions (Fig. 7A). Reports of colistin
resistance in A. baumannii39 are consistent with an R cluster first
detected in ATLAS in 2015 (Supplementary Fig. 16B). The most
rapid R-MIC increases in ATLAS are for ceftazidime avibactam
(CAZ-AVI; label C0) which has a novel R-cluster first detected

Fig. 5 Coarse changes in mean MIC (minimal inhibitory concentration) for all pathogen-antibiotic (PA) pairs: some decreases with increases in Asia.
A The distribution of mean MICs for PA pairs aggregated globally: a potential reduction is apparent from 2005 to 2015 in some countries with increases in
India and China. B The slope of a linear regression attempts to predict mean MIC changes globally for all PA pairs and is shown as a dot. A blue-to-red
colour scale indicates normalised log2 MIC change per year: red is +ve, blue is -ve, light grey is no change, grey countries in A and C have insufficient data,
as do white regions in B. Dots are clustered into PA pairs of similar change, indicative of a global motif of predicted increases and decreases; the same
analysis using European-only data is Supplementary Fig. 15A. C European MICs aggregated across all PA pairs in 2017 shown by country indicate possible
differences between eastern and western Europe. Colourbars in A and C show normalised log2 MIC units.
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for Klebsiella pneumoniae in 2014 that has an increasing R-MIC
(Supplementary Fig. 16A). Enterobacteriaceae E. coli and E.
cloacae have a large change in R-MIC for CAZ-AVI (label C0)
because an R cluster recently appeared with R-MIC transitioning
from sub- to super-breakpoint (Supplementary Fig. 19). A
positive change in R-MIC is predicted for H. influenzae and
aztreonam (label C0) but it is not significant under synthetic
ATLAS replication.

Erythromycin and clindamycin exhibit analogous behaviour
against S. aureus whereby resistance is increasing at similar rates

(label C1), consistent with the function of erm genes37,38.
Conversely, and consistent with other reports of a plateau40,
erythromycin resistance in S. pneumoniae is high but not
increasing (label C2) and its “corrected” MIC distributions
(formed by separating INFORM and TEST into 2 databases)
support this observation (Fig. 4C, D).

S. aureus resistance to trimethoprim sulfamethoxazole (TMP-
SMX) and oxacillin are increasing (label C3). Oxacillin has
substituted methicillin and TMP-SMX is used against methicillin-
(thus oxacillin-) resistant S. aureus41 and this trend suggests

Fig. 6 The R-MIC and its global dynamics for pathogen-antibiotic (PA) pairs are different from mean MIC dynamics shown in Fig. 5. A Example
dynamics of the S-MIC (blue dash) and R-MIC (red dash) are shown for 4 PA pairs: these have 1, 2 or 3 clusters in their MIC distributions and linear
regressions predict the changes of the R-MIC (red) and S-MIC (blue). B Predicted global R-MIC changes per year for each PA pair (log2 MIC change per
year) are shown as a clustergram (the analogous plot with European data is similar, Supplementary Fig. 15B). C Changes in R-MIC (y-axis) and mean MIC
(x-axis) are not well correlated (one dot per PA pair, ρ= 0.33, red dash shows `y=x' to highlight equal changes, crosshairs indicate s.d. from synthetic
ATLAS replication, n= 50) because many PA pairs have R-MIC decreases and mean MIC increases and vice versa (c.f. Figs. 5B and 6B or Supplementary
Figs. 15A and B). D These 4 PA pairs illustrate 4 MIC dynamics whereby R clusters have either sub- or super-breakpoint MICs which either increase or
decrease (making 4 possible cases).
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TMP-SMX is failing to mitigate resistance in S. aureus, as noted
elsewhere42. Secondary prescribing behaviour may be important
as methicillin-resistant S. aureus clones emerged from antibiotic-
susceptible community lineages and TMP-SMX became an
important oral agent for community-acquired non-multiresistant
MRSA (CA-MRSA)42 which may have driven TMP-SMX
resistance. The R-MIC of TMP-SMX is significantly above the
clinical breakpoint with a positive time derivative (label C3),
indicating treatment of MRSA with TMP-SMX may be at risk.

In terms of beta lactams, ATLAS exhibits the following.
Carbapenem MICs for K. pneumoniae have been reported as
bimodally distributed where high MICs reflect outer membrane
protein (OmpK36) defects43–45, this is consistent with distinct S
and R clusters (Supplementary Fig. 17). Increasing carbapenem
MICs46 are found in ATLAS (label C4; enterobacteriaceae E. coli,
K. pneumoniae, E. cloacae and the Gram-positive S. pneumoniae)

as are increasing ertapenem MICs against E. cloacae47 (label C4).
Ceftazidime is following known trends in uropathogenic E. coli48

(label C5) that derive from mobile CTX-M genes49 that may
contribute to the R-MIC increases of ertapenem in E. coli and K.
pneumoniae50 (label C4), possibly reflecting changes in OmpK36;
the rate of ceftazidime R-MIC increases for K. pneumoniae are
greater than for E. coli (label C5).

In contrast with smaller studies51,52 where differences in
carbapenem resistance were not detected, the R-MIC of
doripenem in ATLAS is increasing more quickly than other
carbapenems against P. aeruginosa (label C8). This may be due to
changes in efflux-mediated cross-resistance between
carbapenems53. More speculatively, it might even have resulted
from a change in manufacturing or usage base as carbapenem
patents expired in the decade after 2010. Seeking to better
understand this, we found doripenem has the fastest increasing

Fig. 7 Eight clinically important pathogens and their R-MIC dynamics. A Each panel shows the (R, dR/dt) phase plane (x-axis: 2017 data, the most recent
value in ATLAS; the normalised log2ðMICÞ ¼ 0 axis represents the clinical breakpoint, see “Methods”). Data are means and crosshairs are s.d. under
synthetic ATLAS replication with n= 50 (“Methods”). Acinetobacter baumannii exhibits clinical resistance to all ATLAS antibiotics and the other phase
planes visibly skew towards resistance. Labels C0-C8 refer to clinical observations made in the main text. Data with low year-year correlations satisfying
τ < 1/4 (Fig. 3 and Supplementary Fig. 10) are circled red. B A 2d heat map counts which regions contain 544 pathogen-antibiotic pairs in the (R, dR/dt)
phase plane. C Example changes in R-MIC using global data for Pseudomonas aeruginosa and 3 carbapenems: doripenem MICs are increasing from sub- to
super-breakpoint whereas meropenem appears stable. Linear regression of R (red dashes) indicate the R-MIC of imipenem is slowly decreasing whereas, in
fact, inspection of the underlying data shows this R-cluster is merging with an S sub-population as both achieve super-breakpoint dosages and the
population transitions from a bimodal to unimodal MIC distribution.
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carbapenem R-MIC in almost all countries (Supplementary
Fig. 20) thus between-country differences do not explain
doripenem’s R-MIC rise in ATLAS. S- and R-MICs of doripenem
against P. aeruginosa are converging towards those of merope-
nem (Fig. 7C) and we speculate doripenem’s increase might result
from recommendations shifting to mitigate resistance in other
carbapenems54–56. Consistent with this, a 2019 survey of 20 US
hospitals shows while doripenem has more variable usage data, it
was the most used carbapenem measured in days of treatment per
patient day whose defined daily dosage was as high as half of the
most-used carbapenem57, Tables 1 and 3.

H. influenzae is susceptible to minocycline with no significant
increase in R-MIC (label C6) so we predict this drug can be used
against beta lactam-resistant H. influenzae. We find no evidence
of azithromycin resistance in H. influenzae and, interestingly,
resistance may be marginally decreasing (label C7). However, the
number of clinical cases supporting this observation is fewer than
100 per year in a narrow year range (2015 to 2017) and this
prediction is not statistically significant under synthetic ATLAS
replication.

To highlight the potential for unreliability in (R, dR/dt) phase
planes, correlelograms of PA pairs in labels C1-8 with year-to-
year correlations that satisfy τ < 1/4, where τ is a measure of year-
year correlation (Supplementary §5) are indicated (19 in
Supplementary Fig. 23 in addition to S. pneumoniae and
erythromycin), making 20 PA pairs with τ < 1/4 in Fig. 7A.

We then investigated all 128 PA pairs satisfying τ < 1/4, classifying
them using the following scheme: a letter N denotes 49/128 pairs
that have low mean sample sizes, M denotes 66/128 pairs with a low
minimal sample size observed somewhere within their time period,
V denotes 34/128 pairs with highly variable sample sizes, D denotes
25/128 pairs with high TEST-INFORM discrepancies which leaves
33/128 pairs labelled with a U (for “unclear”, Fig. 3 and
Supplementary Fig. 10, Supplementary §7). Some pairs suffer from
multiple problems simultaneously within this classification.

Why would these 33 PA pairs have low τ? These cases have
various MIC changes, both increasing and decreasing, above and
below the clinical breakpoint (Supplementary Fig. 13). Technical
problems with colistin and colistinP80 testing might explain poor
year-year correlation in some cases (Supplementary Fig. 13). Some
colistin PA pairs exhibit a trend whereby a slowly moving S cluster
centred around−2.5 in breakpoint-normalised log2 units suddenly
jumps to around−5.0 (deduced from INFORM data only).
Importantly, the material of the microtitre plate affects colistin
susceptibility testing58 and P80, a surfactant, was used to improve
in vitro testing by preventing colistin from adhering to surfaces, a
practice discontinued in 201459. INFORM curators claim they
followed CLSI methodologies60 and, consistent with this, there is no
INFORM data for colistinP80 after 2014 (although colistin data is
available after 2014: Supplementary Fig. 13, see C. freundii and K.
oxytoca). Of the 33 U-classified PA pairs, 11 involve colistin, 9 have
data for just 4 years, or less and 12 change markedly between 2014
and 2015 (Fig. 3 and Supplementary Fig. 10) and, as these occur in
the same year, this degree of coincidence could indicate anomalies in
data curation processes.

The only remaining PA pair of the 128 identified not suffering
one of these issues is Haemophilus influenzae and ampicillin
sulbactam which has low year-year correlations because it
exhibits quickly changing MICs close to, but mainly below, the
clinical breakpoint. Moreover, MIC variance increases through
time, first with a decreasing and then an increasing mean MIC
(Supplementary Fig. 13) whereby the frequency of resistance in
ATLAS is broadly consistent with other recent reports61.

Finally, to ascertain whether regional differences might affect
analyses of ATLAS we did the following. Stratifying data

according to their origins in either US, Europe or Rest of the
World, we constructed 3 sub-databases of nearly equal size and
asked whether R-MIC dynamics differed between them (Supple-
mentary Fig. 21). Accordingly, there is good agreement between
regions provided the cardinality of each PA pair dataset is
sufficiently large (within 10% for all but 9 PA pairs; Supplemen-
tary Fig. 21D). However, the largest differences between regions
occur for colistin, ertapenem and CAZ-AVI (Supplementary
Fig. 21C). This is noteworthy because CAZ-AVI was the target
drug of INFORM and one should therefore expect high between-
region consistency for this drug, given its high level of
representation in ATLAS (Supplementary Fig. 6).

Discussion
We compared ATLAS against ResistanceMap, ECDC and
ESPAUR, which only provide frequencies of resistance, not raw
MICs, and we found ATLAS generally biases towards higher
frequencies of resistance. We also compared ATLAS with
EUCAST MICs curated from a wide variety of sources, finding
different degrees of consistency between them for different PA
pairs. EUCAST does not employ the R-MIC statistic and
although one could apply it to their histograms, we have not done
so because one cannot then infer rates of R-MIC change due to
the absence of metadata.

Our computational approach, which, for openness, can be
downloaded freely (Methods) clusters MICs of PA pairs and
assigns MICs to an S or R class according to whichever has the
maximum likelihood under the assumption of lognormally dis-
tributed clusters. This provides one advantage relative to the
standard clinical classification based on published breakpoints: it
can track the dynamics of the least antibiotic susceptible cluster,
R, from the time it first emerges and not the time it first crosses
the breakpoint. By contrast, databases that only publish fre-
quencies of resistance are compelled to report the value zero until
the time that crossing first occurs. As a result, the R-MIC would
prove useful for tracking changes in susceptibility for the newest
antibiotics that are yet to exhibit clinical resistance.

Applying R-MIC to data aggregated across all countries in
ATLAS or across multi-country regions, like the EU, provides a
worst case analysis of MICs for those regions. However, ATLAS is
not well-suited to studying differences within countries and yet
these exist, whether because of resistance heterogeneities, differ-
ences in farming policy, clinical stewardship practice and pre-
scribing culture, climate even, all of which contribute to a
fluctuating, heterogeneous microbiological dynamic whereby all
pathogen strains are not necessarily circulating in all countries at
all times. As a coarse exploration of between country hetero-
geneities, we used linear regression to estimate mean MICs and
their changes for 50 important PA pairs in each country sepa-
rately (Supplementary Fig. 22). Some pairs have highly correlated
MICs between countries (e.g. Staphylococcus aureus and dapto-
mycin) but others vary in MIC by as much as 2 orders of mag-
nitude (e.g. Streptococcus pneumoniae and azithromycin),
illustrating that ATLAS does capture some geographical
heterogeneities.

To better quantify heterogeneities we asked this: do S and R
clusters for each PA pair for each year contain data from similar,
or different, countries? For instance, could (1) some country ‘A’
have a diversity of MICs and contribute many datapoints to both
S and R clusters, or (2) does country ‘A’ tend to contribute data to
S and some other country ‘B’ tend to contribute to R? To answer
this, we found the Jaccard index between the set of countries that
appear in the S cluster and R cluster of a given PA pair in a given
year tend to be very similar whereby only 27% of all PA pairs are
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below 1/2 Jaccard similarity (Supplementary Fig. 24). Thus pos-
sibility (1) is more common than (2) which would be explained
by different strains circulating stably in different countries at the
same time, but (2) does occur.

Despite the issues in data quality we sought clinically relevant
predictions by deriving metadata that we queried to detect PA
pairs with important properties. For instance, we detected pro-
blematic PA pairs where (i) the R-MIC is above the clinical
breakpoint and still increasing: Acinetobacter baumannii and
doripenem is one such pair (Fig. 6D). Conversely, we sought PA
pairs where, arguably even more importantly, (ii) the R-MIC is
sub-breakpoint but increasing and Streptococcus pneumoniae and
moxifloxacin is one such case (Fig. 6D). Hoping for optimism, we
sought pairs where (iii) the R-MIC is sub-breakpoint and
decreasing, like H. influenzae and azithromycin (Fig. 6D), and
also ones where (iv) the R-MIC is super-breakpoint but
decreasing, like S. aureus and levofloxacin (Fig. 6D). Importantly,
other PA pairs exhibiting property (ii) can be identified (E. coli
and H. influenzae in Fig. 7A).

Our investigations highlight how raw MICs must be curated
carefully, particularly where differently sized databases, covering
different regions and different periods in time are merged.
Indeed, the rapid R-MIC changes found for CAZ-AVI (Fig. 7A,
label C0) may yet prove to be the result of bias because CAZ-AVI
has a large representation in ATLAS by design (Supplementary
Fig. 6). This design feature could have recruited strains with
higher MICs into ATLAS than other databases, increasing its
MICs due, for example, to metallo-β-lactamase (MBL) and
penicillin-binding protein (PBP3) mediating cross-resistance
between CAZ-AVI and other antibiotics62. A comparison of
ATLAS with other raw MIC databases would be needed to
establish whether this has unduly biased the rate of ascent of the
CAZ-AVI R-MIC seen in ATLAS.

As ATLAS is composed of TEST and INFORM, we checked
their mutual consistency: R-MIC dynamics for both sub-
databases indicate a tendency towards increased resistance
through time (Fig. 8A, B). For PA pairs appearing in both
datasets, between-database differences in R-MIC dynamics are
greatest for amoxycillin clavulanate (aka co-amoxiclav: amox-
ycillin combined with clavulanic acid), tigecycline and levo-
floxacin (Fig. 8C). Moreover, TEST predicts a smaller degree of
R-MIC change in co-amoxiclav in comparison with INFORM
and the converse is true for the target drug tigecycline (Fig. 8C).
Frequencies of resistance statistics have a small but statistically
significant between-database bias towards more resistance in
INFORM than TEST (skew test with statistic 3.67,
p ≈ 0.0002,− 0.29% mean difference in frequency of resistance;
Fig. 8D).

These observations are noteworthy when we recall that TEST
and INFORM were designed to evaluate the activity of tigecycline
and CAZ-AVI, respectively, and they may be indicative of testing
bias for tigecycline whereby highly resistant strains are over-
represented relative to other databases. We speculate that because
CAZ-AVI has a high representation in ATLAS due to INFORM
(Supplementary Fig. 6) this could have increased R-MICs
reported for co-amoxiclav because both are beta lactams with a
beta lactamase-inhibiting adjunct, although the biological
mechanism for this is unclear.

ATLAS is an imperfect but unique resource because, to the best
of our knowledge, it is the only publicly available database con-
taining raw MICs alongside patient metadata and, despite the
problems, we find some signals in ATLAS are consistent with
prior clinical expectations. Moreover, if more databases of raw
MICs were published openly, the issue of data curation artefacts
should rescind because more robust mutual consistency checks
would then be possible. New features could be explored too, like

the recent finding that few clinical MICs exhibit collateral sen-
sitivity between antibiotic pairs63 despite its presence in labora-
tory studies64,65. However, databases built on different
assumptions should be combined with enough care to ensure
automated computational methodologies, like machine learning,
do not make spurious inferences. If such checks were imple-
mented, a global MIC database supplemented with time, location
and other patient metadata would prove an invaluable resource
for understanding resistance patterns that might not be detectable
in smaller cohorts.

Methods
ATLAS data have the following structure: one record represents one patient which
comes with metadata, including the year and country of infection, the isolated
pathogen strain, whether the latter was deemed resistant, susceptible or inter-
mediate against a panel of antibiotics and it lists all MICs used for those classifi-
cations. Data amalgamate different surveillance programmes across approximately
70 countries so there is no uniformity across the database. Following standard
clinical practise, each MIC comes un-replicated, with no measure of variation,
where the panel of antibiotics assayed vary between patients, even for the same
pathogen.

Raw MICs are quoted as scaled powers of 2, A ⋅ 2−d, where A is a baseline dose
quoted in μg/mL and typically d is the critical two-fold antibiotic dilution found
using an antibiotic susceptibility test (AST). Different laboratory protocols and
devices estimate the antibiotic sensitivities that contribute to ATLAS, typically
broth dilution or disk diffusion tests. To ensure uniformity despite changing CLSI
breakpoints, we determine MIC breakpoints by seeking the maximal dose in the
database deemed ‘susceptible’ for each PA pair and we fix this value. The latter was
not found to differ from the latest CLSI breakpoints19. We then divide each MIC by
this breakpoint, thus scaling out the dose constant A, and we log2-transform the
result. Physical units for the subsequent MIC are the numbers of twofold dilutions
relative to the breakpoint, so a value of “MIC= 0” represents “clinically resistant”
throughout. Throughout, wherever the terms ‘MIC’ or ‘log2MIC’ are written,
including in figures, it always refers to the log2 value normalised relative to the
clinical breakpoint, raw database MIC values are never shown.

All computations in the paper were performed using Pandas 1.4.1 in Python 3
and Matlab 9.11.0.1873467 (R2021b) Update 3 including the Statistics and
Machine Learning Toolbox R2021b. Whenever linear regression slopes are
reported, they are always statistically significantly non-zero (p < 0.05). Non-
significant regression slopes are never stated as being non-zero.

Comparison of open databases. We compared resistance data from the 5 main
databases in Table 1 by transforming between datasets in the following way.
ATLAS stores patient MICs that can be transformed into the MIC histograms used
by EUCAST by removing space and time metadata, thus forming a single histo-
gram of MICs (e.g. Fig. 2B, C). For consistency with ATLAS, EUCAST MIC
histograms were scaled relative to the latest CLSI breakpoint19 and then log2
transformed.

It is not possible make the converse comparison of EUCAST with ATLAS
because we cannot transform EUCAST data into the datatype that ATLAS holds,
this is because EUCAST has no spatiotemporal metadata. Similar comments apply
to ESPAUR, ECDC and Resistance Map databases because none of these contain
the raw MIC data from which their frequencies of resistance were originally
inferred.

The frequency of resistance data stored in ESPAUR, ECDC and Resistance Map
databases can be compared with ATLAS by transforming raw MICs of the latter
into frequencies of resistance in a defined geographical region for a defined time
period using the latest CLSI breakpoints19.

MIC variation: additive noise model. Following pre-processing and as is standard
for accredited clinical microbiological testing laboratories, ATLAS MICs are dis-
crete data quoted without uncertainty measures or replication. To test the
robustness of our analyses we therefore created n= 50 synthetic replicates of
ATLAS to provide uncertainty estimates, as follows. We simulated within-replicate
MIC variation of the kind generated by laboratory assays by adding a stochastic
quantity to each MIC which we sampled from a normal distribution with a var-
iance of 1 dilution. This approach permits a form of sensitivity analysis whereby
patterns of resistance and resistance change can be classified as significant, or not,
relative to this degree of uncertainty in MIC. N.B. Comparisons of ATLAS data
with other databases that only contain frequencies of resistance were not per-
formed with any added noise (e.g. Fig. 1A).

Determination of S and R and their time derivatives. We used Gaussian mixture
models to determine the optimal number of clusters in the MIC distribution for
each PA pair and these models identified the cluster with greatest mean MIC,
which we call the R-cluster, or just R. The R-MIC is then defined to be the mean of
the MICs in the R-cluster. The lower MIC boundary of the R cluster defines the
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upper MIC boundary of an ‘S’ (meaning susceptible) sub-population and this was
defined using an equal likelihood criterion: pathogen MICs were labelled ‘S’ if the
estimated probability of residing in the R cluster was less than 1/2. Linear
regressions were then used to determine MIC change versus time for the S-MIC
and R-MIC (Figs. 6A/D and 7C). This procedure is likely to be more accurate for
R-MIC data because the latter is formed from a single normally distributed cluster
whereas S-MICs derive from a sum, potentially, of several normal distributions. In
terms of nomenclature, it is possible that some members of the S subpopulation, in
fact, exhibit clinical resistance where the R cluster has very high levels of clinical
resistance but this is not typically the case in practice.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
ATLAS is available following website registration*. Data and further information can be
downloaded from the following links:

Project overview: https://amr.theodi.org/project-overview
Project description: https://wellcome.ac.uk/sites/default/files/antimicrobial-resistance-

surveillance-sharing-industry-data.pdf
Data download*: https://www.synapse.org/#!Synapse:syn17009517/wiki/585653
The same dataset is available from this link:
https://s3-eu-west-1.amazonaws.com/amr-prototype-data/Open+Atlas_Reuse_Data.

xlsx
Data was extracted from the English Surveillance Programme for Antimicrobial

Utilisation and Resistance (ESPAUR) report from years 2013-2018. These were
downloaded from the following UK government website: https://www.gov.uk/
government/publications/english-surveillance-programme-antimicrobial-utilisation-and-
resistance-espaur-report

ResistanceMap data is published by the Centre for Disease, Dynamics Economics and
Policy28, it can be downloaded from https://github.com/gwenknight/empiricprescribing/
tree/master/data,

Data for the European Centre for Disease Prevention and Control (ECDC) can be
downloaded from https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27#
x00026;HealthTopic=4. The file we used in this paper can be downloaded from https://
github.com/PabloCatalan/atlas/tree/master/data/europe_resistance_data.csv

Fig. 8 Testing ATLAS for self-consistency by comparing TEST and INFORM predictions separately. A Positive (red) and negative (blue) R-MIC changes
for all pathogen-antibiotic (PA) pairs in the TEST sub-component of ATLAS were predicted by regressing R-MIC versus time (as Fig. 6B). B Predicted
positive (red) and negative (blue) R-MIC changes for all PA pairs in the INFORM sub-component of ATLAS. C The difference between R-MIC dynamics in
TEST and INFORM for those PA pairs that appear in both datasets; the 3 antibiotics with the largest absolute changes are indicated with arrows.
D Percentage differences between the frequencies of resistance observed in TEST and INFORM for all PA pairs and all years for which data is available.
Although some differences are large (as much as 100%) note how the between-database differences decline with increasing numbers of datapoints.
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EUCAST data can only be obtained by contacting individuals named on their website
https://www.eucast.org/mic_distributions_and_ecoffs/ and requesting access to MIC
histograms, which we were granted.

Code availability
Analysis codes66 written in Python 3.0 using pandas can be downloaded here: https://
github.com/PabloCatalan/atlas or https://doi.org/10.5281/zenodo.6390565.
Codes have been written to provide straightforward access to data so that figures from

this manuscript can be reproduced and to help facilitate the development of new
analyses. Interested readers are encouraged to seek assistance from corresponding
authors in case it is not clear how those codes are used.
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