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Abstract
Until recently, the Human Genome Project held centre stage in the press releases
concerning sequencing programmes. However, in October 2001, it was announced
that the Japanese puffer fish (Takifugu rubripes, Fugu) was the second vertebrate
organism to be sequenced to draft quality. Briefly, the spotlight was on fish genomes.
There are currently two other fish species undergoing intensive sequencing, the green
spotted puffer fish (Tetraodon nigroviridis) and the zebrafish (Danio rerio). But this
trio are, in many ways, atypical representations of the current state of fish genomic
research. The aim of this brief review is to demonstrate the complexity of fish as a
group of vertebrates and to publicize the ‘lesser-known’ species, all of which have
something to offer. Copyright  2003 John Wiley & Sons, Ltd.
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Background

Fish have the potential to be immensely useful
model organisms in medical research, as evidenced
by the genomic sequencing programmes mentioned
above. Indeed, there is an increasing number
of alternative species, such as Xiphophorus and
medaka, which are being promoted in this area.
However, it is fair to say that, in general,
fish are the poor relations of high-throughput
molecular biology. To put fish into context, they
comprise over half of all known vertebrates and are
economically very important. They are a significant
source of revenue, with the fisheries industry
(national fishing fleets, aquaculture and associated
processing) generating ¤20 billion per year for the
EU alone (without taking into account recreational
or game fishing and aquarium supplies). This
contrasts with the fact that the species undergoing
sequencing programmes were chosen due to their
potential as model genomes/organisms, rather
than their commercial importance. Globally in
aquaculture, the three most important fish are
carp, Atlantic salmon and trout; with anchoveta,
Alaska pollock and Chilean jack mackerel leading

the wild-caught fisheries production figures. The
equivalents within the EU are trout, Atlantic
salmon and sea bass/bream for aquaculture;
with herring, mackerel and sprat for wild-caught
fisheries. None of these species is the subject of a
high-profile genomics programme.

Fish relationships

The term ‘fish’ is not a taxonomic rank, but a con-
venient label for a diverse group of organisms (for a
comprehensive review, see Nelson, 1994). Overall,
this convenient grouping of ‘fish’ varies depend-
ing on different sources, but can include the jaw-
less vertebrates (Agnatha), sharks and rays (Chon-
drichthyes), the lobe-finned fishes (Sarcopterygii)
and the ray-finned fishes (Actinopterygii, including
the Teleostei).

The lobe-finned fishes are in an evolutionarily
critical position leading to the human lineage.
The ray-finned fishes diverged from this ‘main’
lineage approximately 450 million years ago and
have since undergone massive diversification
in morphology, physiology and habitat. Their
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Figure 1. Phylogenetic relationships among living teleosts. Fish coloured in grey represent orders in which species are
undergoing intensive mapping or sequencing programmes. Reproduced from The Diversity of Fishes by Helfman, Collette
and Facey, by permission of Blackwell Science
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genomes did not remain static and they are
still evolving, with the phylogenetic relationships
uncertain in many cases. Within this particular class
(Actinopterygii) are those regarded as the more
‘ancient fishes’. This latter category includes the
sturgeons, paddlefishes and bichirs, which have
relatively few extant members when compared to
the rest of the class. This review will be largely
restricted to a sub-set of the ray-finned fishes,
the Teleostei or bony fishes (Figure 1), where the
model and (most) commercial species are found.
Table 1 lists the more commonly known members
of each order (Nelson, 1994).

Genome sizes and karyotypes

Fish certainly appear to have a much more dynamic
and plastic genome than that of mammals, with
genome sizes varying from 400 Mb in some of
the Tetraodontidae to over 1000 Mb in the African
lungfishes (Hinegardner, 1968; Hinegardner and
Rosen, 1972; Ohno, 1974; Tiersch et al., 1989).
This wide range of genome sizes is also reflected
in huge karyotypic variation, with diploid num-
bers as low as 2n = 22–26 in some Nototheriidae
(Ozouf-Costaz et al., 1997), up to 2n = 240–260
in some anadromous Acipenseridae (Fontana et al.,
1997). However, these diploid numbers hide the
fact that many species are polyploid. Although the

salmonids are the best known example of such,
many other species, such as members of the Cobiti-
dae, Catostomidae and Asipenseridae also contain
different ploidy levels, even up to 8× (Ohno, 1974;
Bailey et al., 1978, and references therein). Hence
fish, as a group of vertebrates, do not seem to
have the same stringent genomic controls that exist
within other groups of vertebrates, a property which
may be due in part to their lack of a rigid sex chro-
mosome system. Data on the more common species
is given in Table 2.

Polyploidy and fish-specific duplications

It is known that many fish are polyploid, the
prime example given above being that of the
salmonids, in which members such as trout and
salmon are actually partial tetraploids, 2n = 4×
(Lee and Wright, 1981; Wright et al., 1983; Allen-
dorf and Thorgaard, 1984). The term ‘partial’
means that the species have undergone an ancient
extra whole genome duplication (i.e. in addition
to the two rounds of whole genome duplication
which occurred in the vertebrate lineage, pro-
posed by Ohno, 1970) and are currently revert-
ing to diploidy via a process of gene loss. How-
ever, there is currently much debate as to whether
the whole of the Euteleostei have undergone an
extra whole genome duplication, or just isolated

Table 1. Main orders of the Teleostei accompanied by their more commonly known family members.
Most examples are listed against the Percomorpha, as these comprise approximately 50% of all known
extant fishes. Species discussed in this review are also indicated

Teleostei
sub-division Common families Family members

Osteoglossomorpha Elephantfishes, mooneyes
Elopomorpha Tarpons, eels
Clupeomorpha Herrings, anchovies
Ostariophysi Carps, suckers, loaches, catfishes Catfish, zebrafish
Protocanthopterygii Pikes, mudminnows, smelts, salmonids Salmon, trout
Stenopterygii Lightfishes, bristlemouths
Cyclosquamata Telescopefishes, greeneyes
Scopelomorpha Lanternfishes
Lampridiomorpha Ribbonfishes, oarfishes
Polymixiomorpha Beardfishes
Paracanthopterygii Cavefishes, cods, hakes, rattails, anglerfishes
Mugilomorpha Mullets
Atherinomorpha Killifishes, rainbowfishes, flying fishes, silversides,

medakas
Medaka, Xiphophorus

Percomorpha Basses, perches, jacks, chubs, snappers, cichlids,
mackerels, flounders, pufferfishes, swordfishes, tunas

Tilapia, Tetraodon, Fugu, sea
bass, sea bream
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Table 2. Fish genome sizes and chromosome complements of some of the more commercially important species. X
indicates data not known. Where possible, species discussed in this review have been included. Brackets indicate that
the chromosome number given is that of a closely related family member, not the exact species named (data taken
from Bejar et al., 1997; Hinegardner, 1968; Hinegardner and Rosen, 1972; Ohno, 1974; Sola et al., 1993; Tiersch et al.,
1989; http://www.genomesize.com/fish.htm; http://www.fishbase.org; Angelo Libertini, personal communication).
In perspective; the coho salmon, carp and pacific herring are 90%, 50% and 28%, respectively, of the size of the human
genome

Sub-division Latin name
Common

name
Haploid

DNA content (Mb)
Diploid

chromosome no.

Elopomorpha Anguilla rostrata Atlantic eel 1400 38
Clupeomorpha Engraulis mordax Californian anchovy 1500 46–48

Clupea pallasi Pacific herring 770 52

Ostariophysi Cyprinus carpio Common carp 1700 50
Danio rerio Zebrafish 1800 50
Ictarulus punctatus Channel catfish 1050 58

Protocanthopterygii Onchorhynchus kisutch Coho salmon 3000 60
Onchorhynchus tshawytscha Chinook salmon 3300 68
Salmo salar Atlantic salmon 3100 60
Onchorhynchus mykiss Rainbow trout 2600 60
Salmo trutta Brown trout 2800 80

Paracanthopterygii Merluccinus bilinearis Silver hake 930 —

Atherinomorpha Oryzias latipes Medaka 800 48
Xiphophorus maculatus Xiphophorus 950 48

Percomorpha Dicentrarchus labrax European sea bass 1600 48
Lutjanus campechanus Red snapper 1400 —
Sparus aurata Gilthead sea bream 1650 48
Tilapia nilotica Nile tilapia 1200 44
Scomber scombrus Atlantic mackerel 970 (48)
Pseudopleuonectes americus Winter flounder 700 48
Fugu rubripes Japanese pufferfish 365 44
Tetraodon nigroviridis Freshwater Pufferfish 380 42

species. This debate arose mainly from the results
of mapping studies of zebrafish, which showed
that approximately 25% of loci are duplicated
(Gates et al., 1999 and references therein; Bar-
bazuk et al., 2000) and led to the proposal that
this is also a partial tetraploid (Amores et al.,
1998; Woods et al., 2000; Postlethwait et al., 2000;
Babuzuk et al., 2000). Indeed, as molecular studies
on fish expand, many ‘extra’ genes are being dis-
covered in this class of vertebrates (Wittbrodt et al.,
1998). The exact origin of these ‘extra’ genes is
hotly debated, with two main camps; those that
believe that these genes arose due to a basal
(extra) whole genome duplication in the Euteleostei
(Taylor et al., 2001a,b) and those who take the view
that many different independent gene or chromo-
somal duplications have occurred in the fish lin-
eage (Robinson-Rechavi et al., 2001a,b,c; Hughes
et al., 2001). It is doubtful whether there will ever

be complete agreement between the two sides,
even with the imminent sequencing of three fish
genomes.

The choice of current fish sequencing
models

So why is it that the second draft vertebrate genome
is that of an infamous, potentially deadly fish, avail-
able only in Japan? The answer is largely historical.
When Fugu was originally proposed as a model
genome, over 10 years ago, the high-throughput
sequencing technologies were just being developed
to cope with the sequencing of yeast and C. ele-
gans. The complete sequence of the human genome
was viewed as a very distant possibility and work
concentrated on EST programmes and sequencing

Copyright  2003 John Wiley & Sons, Ltd. Comp Funct Genom 2003; 4: 182–193.
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of individual genes. Fugu was proposed as a ‘cut-
price’ vertebrate, with a genome one-eighth the size
of human but with a similar repertoire of genes
and a potential bridge between the sequence of
the nematode and human. However, in a bizarre
twist of events, the human genome was completed
first and, with a requirement to fuel the enormous
world-wide sequencing capacity, Fugu was retro-
spectively sequenced.

Tetraodon is a freshwater species and therefore
more easily maintained when compared with the
marine Fugu. More importantly, it is readily avail-
able in most aquarium shops and this was proposed
as a more accessible source of material, hence
prompting the sequencing programme at Geno-
scope. Additionally, Tetraodon can be kept in a
tank on the laboratory windowsill, whereas Fugu
is only available from Japan, and grows up to 1 kg
in the first year, necessitating swimming pool-sized
aquaria as a minimum. However, both Fugu and
Tetraodon will only be used as model genomes, as
neither breeds easily (if at all) in captivity, therefore
ruling out linkage maps, transgenics, inbred lines,
etc. They will mainly be used as models for in silico
comparisons with human, aiding gene prediction
(Roest Crollius et al., 2000) and identification of
conserved non-coding regulatory motifs (Rothen-
berg, 2001). It is intended to complete the Fugu
genome to reference standard; however, the whole
genome shotgun of Tetraodon currently stands at
8.3× coverage (H. Roest Crollius, personal com-
munication) with, as yet, no publicized aim of fin-
ishing the complete genome.

Zebrafish differs from the previous two fish in
that it breeds easily and is very amenable to manip-
ulation. It is used as a developmental model, due
to the transparent nature of the embryos (Nusslein-
Volhard, 1994) and is very popular in medical com-
parative functional genomics studies (Dodd et al.,
2000; Briggs, 2002). As an organism, it is very
amenable to ENU mutagenesis technology, with
two large screening programmes producing numer-
ous mutants of medical importance (Solnica-Krezel
et al., 1994; Driever et al., 1996; Haffter et al.,
1996). Whilst the genome is one-third the size of
human, it is still intended to sequence this organism
to reference standard within the next year or two.
Whilst these three fish are not necessarily repre-
sentative species of the whole grouping, they have
raised the profile of fish as models within medical
research.

Contribution of other fish species

Fish are an immensely diverse group of organisms,
inhabiting an enormous variety of habitats. Some
live in almost pure freshwater, whilst others sur-
vive in very salty lakes at three times the salinity of
seawater. Certain tilapia species can live quite hap-
pily in hot soda lakes with a temperature of 44 ◦C;
conversely, the cod icefishes prefer around −2 ◦C
(Nelson, 1994). The consequential protein diversity
is potentially fascinating, both from an evolutionary
point of view and also for pharmaceutical exploita-
tion. The classic example of the latter, so far, is the
increased potency of salmon calcitonin and its use
as a therapeutic agent for inhibiting calcium loss
from bone in humans (Wisneski, 1990).

At the moment, fish are contributing significantly
to medical research. They provide a wide range
of experimental tumour models, which are cheaper
and easier to keep than mammalian models. Also
they can be bred in such numbers to produce
statistically meaningful results. It has long been
known that Xiphophorus interspecies hybrids pro-
vide genetically controlled models of cancer for-
mation [extensively reviewed in a special edition
of Marine Biotechnology 2001; 3(1)]. However, a
survey of the archives of the Registry of Tumours
in Lower Animals (RTLA; Harshbarger and Slat-
ick, 2001) uncovered a list of over 215 cultured
fish species, which display a broad range of sponta-
neous or induced tumours. These represent a valu-
able collection for finding appropriate surrogates
for research with which to enhance our knowl-
edge of carcinogenesis and other human diseases.
Some of the lesser-known models include carci-
noma of the urinary bladder in oscar (Astronotus
ocellatus; Petervary et al., 1996) and nephroblas-
toma resembling Wilm’s tumour in Japanese eels
(Anguilla japonica; Masahito et al., 1992). Medaka
is also being using in tumour genetics (Rotchell
et al., 2001), but has been promoted more specifi-
cally for the study of germ cell mutagenesis and
genomic instability (Shima and Shimada, 2001).
One example of the latter is its use to estimate
germ cell mutations in Astronauts exposed to high
atomic number, high-energy (HZE) nuclei present
in cosmic rays (Setlow and Woodhead, 2001). In
addition to these specific medical uses, fish are also
valuable tools for deciphering essential biological
processes (Bolis et al., 2001; Clark et al., 2002;
Grunwald and Eisen, 2002; Korpi et al., 2002).
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Fish have many advantages over mammals for
research purposes. Many are small, with short
reproductive cycles and are relatively easy to main-
tain. Therefore they are ideally suited to lifetime,
multigenerational and population studies. One par-
ticular high-profile use is that of endocrine dis-
rupters and environmental monitoring of toxic
compounds (often called ‘biomonitoring’; Bai-
ley 1996, 2000; Bonaventura, 1999). The variety
within fish species allows the researcher to pin-
point the most susceptible species for each partic-
ular compound under study. Rainbow trout have a
long history of such a use (extensively reviewed
in Thorgaard et al., 2002) and an increasing num-
ber of different fish are being employed to mon-
itor our increasingly polluted environment. These
include the three-spined stickle back, sheepshead
minnow, sunshine bass and medaka to measure
environmental oestrogens (Katsiadaki et al., 2002;
Larkin et al., 2002; Todorov et al., 2002; Metcalfe
et al., 2001). A number of other fish species can
be used to monitor chemicals such as dioxins,
polycyclic aromatic hydrocarbons (PAHs), poly-
halogenated biphenyls (PCBs), alkylphenols, DDT
isomers, etc. (Bailey et al., 1996; Ballatori and Vil-
lalobos, 2002; Fent, 2001; Hahn, 2001; Thorgaard
et al., 2002; Wester et al., 2002).

Medical and environmental models aside, it can-
not be denied that the main commercial purpose of
fish is as a source of food. However, the world’s
fisheries are in crisis, with serious discussion within
Europe of a total ban on capturing certain species,
such as cod and haddock, to prevent their extinc-
tion. This comes at a time when there is growing
concern over the health of the European population,
with problems such as clinical obesity becoming
more common and fish are being promoted as part
of a ‘healthier’ diet. The nutritional benefits of a
balanced diet, which includes seafood, are well
known. Seafood contains a range of ingredients
that have a positive effect on health and which,
through the premise of ‘functional’ food, could be
enhanced to meet a response for these needs. There
is an increasing world deficit between supply and
demand for fish and fish products, which is only
partially being met through aquaculture. Atlantic
salmon and trout are world leaders in fish aqua-
culture, with catfish the major aquaculture species
in the USA and the two Spiridae, sea bream and
sea bass, particular European favourites. Whilst
aquaculture systems have long been established

for some species, there are still considerable prob-
lems concerning environmental pollution, diet qual-
ity and rearing difficulties, involving a high inci-
dence of skeletal abnormalities and captive stress.
Biotechnology, including genomics programmes,
can aid in our understanding of these problems
and optimization of production processes. Although
mapping programmes exist for the most impor-
tant aquaculture species, our genetic knowledge
of wild-caught fisheries stock is comparatively
low. The latter is particularly disturbing, as many
species are either at, or approaching, their mini-
mum levels of sustainability in the wild and there
are few markers with which to monitor popula-
tion structure and associated genetic bottlenecks.
It also means that, should captive breeding pro-
grammes be initiated, there are not sufficient tools
to rapidly develop marker-assisted selection breed-
ing programmes.

Tools for fish mapping and genome
sequencing

ESTs

A relatively quick and easy way to generate gene
data from any species is via the construction and
sequencing of EST libraries. Indeed, this has been
carried out for many fish species including win-
ter flounder (Douglas et al., 1999), tilapia (Hamil-
ton et al., 2000), Japanese eel (Miyahara et al.,
2000), catfish (Ju et al., 2000; Cao et al., 2001;
Karsi et al., 2002) and salmon (Davey et al., 2001),
although many ESTs find their way into the pub-
lic databases (GenBank and EMBL) without being
written up for publication. All contribute to our
knowledge on protein diversity in fish and pro-
vide markers for placement on genetic maps and
annotation data for genomic sequence. ESTs also
provide the raw clones for the development of
microarrays, a potentially very powerful tool for
expression analysis.

BACs

Large insert libraries, such as BACs, are essen-
tial tools in any genome sequencing project. BAC
libraries are increasingly being produced for fish
species, including red seabream (Katagiri et al.,
2002), rainbow trout, carp and tilapia (Katagiri
et al., 2001) and medaka (Matsuda et al., 2001).
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BACs can provide useful data on short-range link-
age and a tool from which to genomically clone
sequences of interest. The latter is of particular
use for studying regulatory elements and control
regions. A fingerprinted BAC library can pro-
vide the framework for a directed sequencing pro-
gramme on any scale. Whilst whole genome shot-
guns (WGS) are effective for smaller fish genomes,
the problem of producing contigs of useful size
by this method becomes increasingly complex with
the larger genomes, as the amount of ‘junk’ DNA
increases and the problem of polyploidy has to
be addressed. Most of the highly repeated ele-
ments have to be removed from the WGS dataset
to prevent erroneous joining of fragments. Cer-
tainly it has been found to be advantageous to use
only one animal, if possible, in the construction of
the libraries, and indeed sequencing programmes,
to minimize problems of polymorphic variation
between individuals.

Linkage maps
These provide valuable tools for the positional
cloning of genes and analysis of complex traits
(QTLs) and also act as a useful reference frame-
work for genome sequencing studies. However,
they do require the production of inbred lines
and the development of a set of polymorphic
markers. In fish, a wide range of marker types
has been used: amplified fragment length poly-
morphisms (AFLPs), randomly amplified polymor-
phic DNA (RAPD); intervening repeat sequences
(IRSs); expressed sequence tags (ESTs); sequence
tagged sites (STSs); interspersed nuclear repeats
(INRs); simple sequence repeats (SSRs); vari-
able number tandem repeats (VNTRs); short inter-
spersed elements (SINEs) and expressed sequence
marker polymorphisms (ESMPs). These have been
very effective at promoting genetic analysis and
building detailed maps for a number of species,
such as zebrafish (Woods et al., 2000; Bar-
bazuk et al., 2000), catfish (Liu et al., 1999a,b,c),
trout (Young et al., 1998; Sakamoto et al., 2000),
medaka (Naruse et al., 2000), tilapia (Kocher et al.,
1998, Agresti et al., 2000; McConnell et al., 2000),
salmon (Linder et al., 2000) and Xiphophorus
(Kazianis et al., 1996). The result is that trans-
fer of markers between species and comparison
of map data between species is difficult. Genomic
sequencing and the development of gene markers
will circumnavigate this problem.

The issue of ‘extra’ genes and different ploidy
levels does represent a potential problem for the
development of markers and a genetic map. In
salmon, some of the markers are duplicated, i.e.
they show up to four alleles and cause problems
with genotyping. These effectively have to be
ignored when scoring the genotypes and so the
tetraploid areas are under-represented in the genetic
map. BAC contigs and SNPs used in conjunction
with genotyping may help resolve this (Hoyheim,
personal communication). This is an issue that will
arise with other fish species.

Microarray technology

Whilst a relatively recent technology, published
uses include studying cold acclimation in catfish
(Ju et al., 2002) and the use of sheepshead min-
nows for environmental monitoring (Larkin et al.,
2002). There are microarrays currently being devel-
oped for most of the ‘popular’ fish species, such
as Atlantic salmon (w. Davidson, personal com-
munication.) and sea bream (M. S. Clark, unpub-
lished). With the large number of fish ESTs avail-
able in the public databanks and numerous libraries
distributed in labs world-wide, microarrays will
inevitably be targeted in new projects and pro-
vide valuable insights into fish biochemistry and
physiology.

Linkage maps are usually the first tool to be
developed in fish genomics, due to the rela-
tive ease of manipulating the fish and produc-
ing inbred and backcross lines. These are also
comparatively cheaper than launching straight into
a genome sequencing programme. However, the
spin-off from the human genome project is that
genomics techniques, such as the development
of BAC libraries, are more readily available and
cheaper than ever before. A genome programme
(although impressive on the grant proposals) is not
always the best option in many cases. QTL map-
ping of commercially important traits may be more
efficiently achieved using crosses between contrast-
ing fish populations, or expression analysis using
microarray technology.

Progress in mapping and sequencing fish
genomes

The sequence information on many fish is spo-
radic, often restricted to a few particular genes or
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microsatellites. However, it is possible to identify
the front-runners in genomics studies, which rep-
resent the best candidates for genomic sequencing
in the near future. Websites have been given for
some of the BAC libraries in the various species.
However, please note that these may not necessar-
ily represent the particular libraries being used in
the mapping projects described.

Atlantic salmon

Linkage map: 522 microsatellite markers represent-
ing 28 linkage groups (plus two small ones con-
sisting of two markers each). There are 29 linkage
groups expected in the European strain.
BAC library : constructed.
BAC library available: http://www.chori.org/
bacpac/salmon214.htm
BAC contig map: Fingerprint map representing
15× coverage under construction at BC Cancer
Agency’s Genome Sciences Centre, Canada.
Genome sequencing : none planned at present.

Catfish

Linkage map: 454 markers, resolved into 43 link-
age groups (2n = 2× = 58).
BAC library : constructed.
BAC library available: http://www.chori.org/
bacpac/catfish212.htm
BAC contig map: none planned at present.
Genome sequencing : none planned at present.

Medaka

Linkage map: 1300 markers have been mapped,
representing an average marker distance of less
than 0.85 cM.
BAC libraries: Constructed from the Southern and
Northern strains of medaka.
BAC library available: http://www.rzpd.de and
http://biol1.bio.nagoya-u.ac.jp:8000/bac-lib.html
BAC contig map: currently under progress at the
Max-Planck Institute.
Genome sequencing : commenced August 2002, 1×
WGS (whole genome shotgun) due end of 2002,
5× WGS due to start early 2003. Sequencing
Centre, National Institute of Genetics, Japan.

Sea bass/sea bream

Linkage maps: development of microsatellite and
EST markers in progress.

BAC libraries: Developed for EU Consortium use.
BAC contig map: none available.
Genome sequencing : none planned at present.

Tilapia
Linkage map: 550 microsatellites and 15 genes.
BAC library : constructed.
BAC library available: http://hcgs.unh.edu/BAC/
BAC contig map: 22 000 already fingerprinted with
plans to complete 35 000 clones (5× genome
coverage by the end of 2002).
Genome sequencing : none planned at present.

Trout
Linkage map: two maps have been produced; that
of Young et al. (1998) comprises 476 markers
segregated into 31 major linkage groups and 11
small groups and Sakamoto et al. (2000) has 109
markers segregating into 29 linkage groups. 2n =
2× = 60.
BAC library : four have been constructed, two in
Japan (Katagiri et al., 2001), coverage 5.3× and
6.7×, and two in the USA, coverage 4× and 10×.
BAC library available: http://www.genomex.
com/AEX zone/AEX BAC Library List.xls
BAC contig map: none planned at present.
Genome sequencing : none planned at present.

Xiphophorus
Linkage map: two recombination-based maps have
been produced in hybrid backcross lines. The first
was constructed using a cross between X. mac-
ulatus and X. helleri ; it comprises 320 markers
(mainly RAPDs with some isozyme and microsatel-
lites), which provides approximately 8.2 cM cov-
erage and segregates in 24 linkage groups. The
second was created using a cross between X. macu-
latus and X. andersi and comprises approximately
220 microsatellite loci, 38 isozyme loci and a lim-
ited number of cloned genes. This map is still being
worked on (Kazianis, personal communication).
BAC library : constructed.
BAC contig map: not available.
Genome sequencing : none planned at present.

Prospects

The phylogenetic juxtaposition of the three species
currently undergoing sequencing may prove piv-
otal to the expansion of fish genomics research.
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Zebrafish is relatively distant (Ostariophysi) from
the two pufferfish species (Percomorpha) and it will
be interesting to evaluate how similar gene struc-
ture and gene positioning are within the same order
(Percomorpha) and within different euteleost orders
(Ostariophysi vs. Percomorpha; Figure 1). This
should provide a reasonable gauge of evolutionary
change within fish and therefore the potential for
data mining of model species with regard to other
fish. If gene structures and orders are significantly
different between zebrafish and the pufferfish, this
will add to the pressure to sequence (at least to
draft quality) additional species. At a minimum,
this should include a member of the salmonids for
their commercial importance, a marine perciform,
again for their commercial importance but also
because most marine species have a chromosome
complement of 2n = 48, unlike the model species
now under study, and a strong case could be made
for one of the fish cancer models. Fish have a lot
to offer to humans, not only in terms of health (diet
and medication) but also in terms of our guardian-
ship of the environment — sequencing a range of
fish genomes would certainly help to unlock that
potential. One thing is certain: fish genomics now
has a higher profile and a greater number of tools
than ever before.
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Web-based resources

General Information on fish, sequencing
projects and phylogeny

Fishbase

Main site: www.fishbase.org
French mirror site: http://ichtyonbl.mnhn.fr/
German mirror site: http://filaman.uni-kiel.de/
The global information system with everything
you ever wanted to know about fishes. Contains
an excellent search facility (by common or Latin
name) and lists numerous facts for each fish, such

as importance, distribution, environment, genet-
ics, etc.

Larvalbase

http//www.larvalbase.org: developed in close con-
junction with Fishbase and contains comprehensive
information on fish larvae which are relevant in the
field of fisheries research and finfish culture. Is a
similar format to Fishbase.

FAO fisheries web site

http://www.fao.org/fi/default.asp
Major site containing world production figures and
statistics, plus numerous reports on the state and
management of world fisheries.

Tree of Life

http://tolweb.org/phylogeny.html
Work out the phylogenetic relationships of your
favourite fish with this web site.

Animal genome size database

http://www.genomesize.com/fish.htm
Find out the genome size and chromosome number
of your favourite fish.

GOLD Genomes OnLine Database

http://igweb.integratedgenomics.com/GOLD/#1
This site lists all complete and ongoing genome
projects.

Genome mapping and sequencing information
on specific fish species

Catfish

http://www.ag.auburn.edu/dept/faa/index.htm
The home page of Department of Fisheries and
Allied Aquacultures at Auburn University. Access
to recent publications and staff listings, plus brief
research resumés.

Fugu

ENSEMBL: www.ensembl.org/Fugu rubripes
HGMP, UK: http://www.fugu.hgmp.mrc.ac.uk
Institute of Molecular and Cellular Biology, Singa-
pore: http://www.fugu-sg.org
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Joint Genome Institute, USA: http://genome.jgi-
psf.org/fugu6/fugu6.home.html
The Fugu draft sequence information is available
on four sites at the moment, all with different
sequence viewers, so take your pick.

Medaka

http://bio11.bio.nagoya-u.ac.jp:8000/
Home of the medaka genome project with many
links to research projects and resources.

Salmonids

http://locus.jouy.inra.fr/cgi-bin/lgbc/mapping/
common/intro2.pl?BASE=rainbow
INRA Rainmap database for the mapping of the
rainbow trout genome.
http://www.thearkdb.org/
Salmon mapping database based at the Roslin
Institute, UK.
http://www.bcgsc.bc.ca/gc/salmon.shtml
The Genome Sciences Centre, Canada: Genomics
of Atlantic salmon home page.

Sea bass

www.bassmap.org
This is the official site of the EU sponsored
project, listing aims, participants and download-
able reports.

Sea bream

www.intelligence.tuc.gr/∼bridgemap
Another EU-funded project. The site provides
information on project objectives, participants and
achievements.

Tetraodon

Genoscope, France: www.genoscope.cns.fr/
externe/English/Projets/Projet C/C.html
Whitehead Institute, USA: www-genome.wi.mit.
edu/annotation/tetraodon
The Tetraodon draft sequence data is available on
two sites, with an option on the French language
version at Genoscope.

Tilapia

http://tilapia.unh.edu/WWWPages/TGP/TGP.
html

This site describes current research projects and
map status, plus resources available and links to
tilapia aquaculture and recipes.
http://www.thearkdb.org/
Tilapia mapping database based at the Roslin
Institute, UK.

Xiphophorus

www.xiphophorus.org
Home page of the Xiphophorus Genetic Stock
based at Southwest Texas State University. Con-
tains details of current research programmes, con-
tact details for live fish requests and related sites
including several for hobbyists.

Zebrafish

ZFIN: http://zfin.org/cgi-bin/webdriver?Mival
=aa-ZDB home.apg
ENSEMBL: www.ensembl.org/Danio rerio
Sanger Institute, UK: www.sanger.ac.uk/
Projects/D rerio/
ZFIN is an extensive database of information
for zebrafish researchers which aims to inte-
grate zebrafish genetic, genomic and developmen-
tal information. ENSEMBL contains the latest
draft sequence of the zebrafish genome, whilst the
Sanger site provides a more comprehensive service
with latest news, data downloads, mapping sta-
tus, resources available and descriptions of teams
and people.
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