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Arboviruses (arthropod-borne viruses), such as Zika (ZIKV), West Nile (WNV), and

dengue (DENV) virus, include some of the most significant global health risks to human

populations. The steady increase in the number of cases is of great concern due to

the debilitating diseases associated with each viral infection. Because these viruses all

depend on the mosquito as a vector for disease transmission, current research has

focused on identifying immune mechanisms used by insects to effectively harbor these

viruses and cause disease in humans and other animals. Drosophila melanogaster are

a vital model to study arboviral infections and host responses as they are a genetically

malleable model organism for experimentation that can complement analysis in the virus’

natural vectors. D. melanogaster encode a number of distinct mechanisms of antiviral

defense that are found in both mosquito and vertebrate animal systems, providing a

viable model for study. These pathways include canonical antiviral modules such as RNA

interference (RNAi), JAK/STAT signaling, and the induction of STING-mediated immune

responses like autophagy. Insulin signaling plays a significant role in host-pathogen

interactions. The exact mechanisms of insulin-mediated immune responses vary with

each virus type, but nevertheless ultimately demonstrates that metabolic and immune

signaling are coupled for antiviral immunity in an arthropod model. This mini review

provides our current understanding of antiviral mechanisms in D. melanogaster, with a

focus on insulin-mediated antiviral signaling, and how such immune responses pertain

to disease models in vertebrate and mosquito species.
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INTRODUCTION

Mosquitoes are a prominent vector for various arboviruses including West Nile virus (WNV),
Zika virus (ZIKV), and dengue virus (DENV). These viruses pose a significant concern to human
populations as themosquitoes’ continual encroachment into previously unexposed regions expands
(1, 2). This habitat expansion renders more individuals at risk of exposure with limited, if any,
treatments available. Climate change has also resulted in alterations in mosquito seasonal activity
(3) and feeding behavior (4) resulting in increasing frequency and severity of arboviral cases. There
is a direct correlation between the expansion of vector-competentmosquitoes and disease incidence
within afflicted regions [reviewed in (5, 6)] indicating that vector activity is a significant risk factor
for arboviral disease.
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Figure 1 outlines the transmission cycle of various arboviruses
as they move within host populations and how Drosophila
melanogaster can be used to study arboviral immunity for each
system. Transmission from mosquito to vertebrates requires a
bloodmeal exchange where infected saliva is ejected into the
new host. Viral replication then permits the spread of virus
from infected host to mosquito to continue the transmission
cycle (Figure 1). Research is required to identify the signaling
responses used in regulating these viruses at the vector and
human level. Studies regarding immune responses initiated
during the initial bloodmeal exchange (7) are important as this
event is a key determinant whether transmission occurs (8). An
emphasis as to how immune and nutritional signaling interact
with one another is of particular interest as both would be active
during ingestion of an infected bloodmeal. Insulin-mediated
signaling regulates numerous viruses by inducing activation of
canonical immune pathways (9). Because insulin is ingested
during the bloodmeal, a recent study has shown that vertebrate
insulin is able to regulate the type of innate immune response
that occurs during viral infection in insect vector hosts (10).

Previous work has identified the signaling pathways that
respond to arboviral infection and their significance with respect
to disease outcome and severity (11–13). Drosophila have proven
to be a significant model organism for studying arboviruses as
many of the signaling pathways identified are conserved amongst

FIGURE 1 | Drosophila melanogaster are an ideal model organism for studying host-arboviral interactions. Various arboviruses utilize mosquitoes as reservoirs and

vectors for transmission into vertebrate hosts. This can include species that are either involved in viral replication and spread (such as bird populations for West Nile

virus) or dead-end host that become infected without being able to properly propagate viral replication for further spread (i.e., humans). Transmission is accomplished

via a bloodmeal exchange. Drosophila possess orthologous host response pathways found in mosquitoes and humans, making it an ideal model organism for

studying transmission dynamics and host-pathogen interactions at both vector and human level.

insect species [reviewed in (14)]. These studies have utilized the
genetic power provided by the Drosophila system to demonstrate
the effect that nutritional status poses on host immunity.

Immune responses during various arboviral infections
are evolutionarily conserved among insects and include the
canonical RNA interference (RNAi) (13, 15, 16), JAK/STAT (10,
12), and STING-mediated signaling (17). These pathways are
associated with the insulin/insulin-like growth factor signaling
(IIS) pathway and have been established as key determinants
in vector competency and disease outcome (9, 18). It has
been demonstrated that ingestion of vertebrate insulin regulates
whether an RNAi- or JAK/STAT-mediated response is active
during infection against WNV (10). STING-mediated immunity
has been previously linked to induce JAK/STAT signaling (19)
and affects nutritional homeostasis during infection (20, 21)
implying that it may be regulated by insulin as well. Since
insulin-mediated signaling appears to have a broad impact on
insect immunity, recent studies have sought to establish how
insulin connects each antiviral pathway to respond to different
arboviruses. Because vector competency and transmission is
so closely dependent on gut-associated immune signaling, the
connection that nutrition and immunity has is indicative of
their importance in regulating infection (9, 22). This mini
review presents a condensed understanding regarding the major
responses that occur during arboviral infection using Drosophila,
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the role that insulin signaling plays, and a summation of current
and future efforts taken within this field.

RNA INTERFERENCE PATHWAY

One of the most broadly restricting antiviral responses used by
insects is the RNAi pathway (13, 16). RNAi signaling occurs in
response to detection of viral nucleic acids within the cytosol
of infected cells. In Drosophila, recognition of viral nucleic
acids by the endonuclease Dicer-2 results in the recruitment of
proteins Argonaute-2 (AGO2) and r2d2 to form an RNA-induced
silencing complex (RISC) (13, 23). This results in the cleavage and
degradation of bound viral nucleic acids (13, 23, 24). While this
antiviral response is a significant component of insect immunity
against RNA viruses like Sindbis virus (SINV) (24) and ZIKV
(25), an arthropod-borne alphavirus and flavivirus, respectively,
RNAi has also been shown to respond to DNA viruses like
Invertebrate iridescent virus 6 (IIV-6) (26) (Figure 2A). While
Harsh et al. showed that the loss of the RNAi component, Dicer-2,
resulted in increased ZIKV replication and mortality, they
linked the increased susceptibility of these flies to dysregulated

homeostasis of the gut and fat body. Moreover, studies have
shown that another RNAi component, namely AGO2, is
dispensable for an antiviral response against ZIKV (17, 25).
Additionally, there are flaviviruses that encode viral suppressors
of RNAi (VSR) (27). Not only do VSRs function in Drosophila
model systems (28), but they also function during WNV, DENV,
and Yellow fever virus infections in Culex mosquitoes (29, 30).
Thus, the antiviral role of RNAi depends not only on the host
but also virus type. Further studies are needed to clarify the
antiviral role of RNAi in model and vector organisms, especially
with respect to flaviviruses and the VSRs they may encode.
Mosquitoes become infected and spread disease via bloodmeal
exchanges. Because of the direct role that nutritional acquisition
has during infection, its role in antiviral immunity is mediated
in part by regulating RNAi. In both insect and mammalian
systems, IIS regulates the transcription factor forkhead box O
(FOXO), and FOXO is predominately associated with longevity
and nutritional signaling as it induces dInR (insulin-like receptor)
in Drosophila (31, 32). FOXO possesses a secondary role in
host immunity through its induction of RNAi-specific genes.
Specifically, FOXO regulates the transcription of Dicer-2 and

FIGURE 2 | Innate immune antimicrobial pathways are conserved in arthropods. Insects utilize RNAi (A), STING-mediated immunity (B), and JAK/STAT signaling (D)

in order to effectively respond to various arboviruses at different stages of infection. The IIS pathway (C) is an important mediator in host immunity as it regulates which

immune responses are active or suppressed. During times of starvation, RNAi is more active while the bloodmeal provides the needed insulin to suppress RNAi and

activate JAK/STAT. STING-mediated immunity has not yet been directly linked to IIS but may be affected by broader nutritional signaling. Each of these pathways, to

varying degrees, are conserved in fly, mosquito, and human systems with different efficiencies in responding to viral infection.
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AGO2 in Drosophila and is demonstrated to enhance RNAi
signaling during Cricket paralysis viral infection (18). Since
IIS regulates FOXO transcriptional activity, there is a direct
connection between RNAi immunity and insulin signaling. In
Drosophila, the IIS pathway is induced by insulin-like peptides
(ILPs) binding to dInR (33). Upon binding, a phosphorylation
cascade commences that includes phosphorylation of PI3K and
Akt. This results in the phosphorylation of nuclear FoxO at three
residues, its association with the 14-3-3 chaperone protein, and
export into the cytosol (32, 34) (Figure 2C). Insulin treatment is
demonstrated to result in transcriptional suppression of Dicer-2
and AGO2 to reduce RNAi signaling (10). This insulin-mediated
suppression of RNAi proposes that mosquitoes have evolved
multiple immune responses to pathogens that is dependent on
its nutritional status.

RNAi is evolutionarily conserved across organisms; however,
its role in antiviral immunity varies between insects and
mammals. While the signaling cascade and proteins involved are
conserved, mammals have evolved other sensing mechanisms to
detect and respond to viruses. RIG-I and MDA5 RNA sensing
are canonical pathways for vertebrate innate immunity and have
developed from RNA sensors like Dicer (35). In particular, RIG-
I and MDA5 are shown to be critical immune regulators in
response to flaviviruses like ZIKV (36) and WNV (37) and
alphaviruses like SINV (38). This would imply that while RNAi is
still fully functional in mammals, its role in responding to viruses
is less stringent than in insect systems [reviewed in (39, 40)].
Other invertebrate and plant species utilize RNAi signaling as a
means of antiviral immunity [reviewed in (41, 42)]. Researchers
interested in studying RNAi immunity against arboviruses utilize
Drosophila as the signaling cascades described are well-conserved
in the more relevant mosquito vector. While the functional
antiviral role of RNAi varies in mammalian systems, the proteins
and signaling events involved are conserved. Because of this,
studies utilizing Drosophila have proven it to be a viable model
for study in host immunity and other regulatory functions.

JAK/STAT PATHWAY

Innate immunity uses various responses to different viruses.
These responses include phagocytosis of viral particles or by
inducing production of downstream cytokines and antiviral
effectors (43). Whereas, the RNAi pathway provides a broad
means of protection through the degradation of viral nucleic
acids (16), the JAK/STAT pathway is a signaling cascade
where detection of infection or other stimuli results in the
induction of antiviral effectors like vir-1, Vago, and TotM (12,
24, 44). In Drosophila immunity, this pathway is activated
upon detection of infection (45), resulting in induction of
the unpaired ligands (46, 47). Unpaired ligands bind to the
receptor domeless (48), resulting in the Janus kinase (JAK)
ortholog hopscotch to be phosphorylated and form docking
sites for phosphorylation and dimerization of the STAT92E
transcription factor (12, 49). The activated STAT92E protein
complex is imported into the nucleus to induce transcription
of downstream antiviral effectors. This includes TotM during

early stages of infection (24) and vir-1 during later stages
(12) (Figure 2D). JAK/STAT has been shown to be involved
in the immune response against the insect virus Drosophila
C virus but not SINV (24) in Drosophila, and JAK/STAT
is antiviral against WNV in both Drosophila and Culex
mosquitoes (10, 50).

The connection between JAK/STAT and IIS is not as direct
as insulin’s effect on the RNAi pathway, but recent research
has demonstrated that insulin signaling in insects controls a
switch between RNAi- and JAK/STAT-dependent responses.
Specifically, when insulin treatment causes transcriptional
suppression of RNAi, insects induce enrichment of JAK/STAT
(10). This is mediated by insulin’s phosphorylation and activation
of downstream Akt and ERK proteins during SINV and
DENV infection (9, 22) that was further evaluated to induce
immunity through JAK/STAT against WNV (10). Insulin-
mediated induction of JAK/STAT then induces the transcription
of downstream antiviral effector proteins vir-1 and TotM (10,
12, 24). JAK/STAT immunity responds to pathogens during
early stages of infection in the mosquito which corresponds
to ingestion of an infected bloodmeal and escape from the
midgut to distal tissues (51). This association between IIS
and JAK/STAT signaling is indicative that vector-competent
insects have evolved immune mechanisms that are responsive
to nutritional acquisition. While mosquitoes use an RNAi-
dependent response during times of starvation, the bloodmeal
provides the insulin needed to activate a JAK/STAT-dependent
response during infection. While the ability to regulate immune
responses based on nutritional status and how it impacts viral
efficacy and transmission has yet to be established, it is plausible
that insulin-mediated signaling could be targeted in future
vector-control protocols. Its potential as a target depends on
whether insulin’s antiviral activity in the salivary glands is just
as important as it is in midgut or fat body, critical digestive and
immune organs (8, 9).

JAK/STAT signaling is an evolutionarily conserved immune
response utilized in both insect and mammalian systems.
Induction of JAK/STAT inmammals results in a Type I interferon
(IFN) response against viral infection (52). The JAK/STAT
pathway is similarly regulated by RIG-I-like receptor (RLR)
signaling in mammalian systems (35, 53). This pathway is an
important means of responding to WNV in both insects (10, 44)
and mammals (52, 53). Because JAK/STAT is related to other
regulatory processes like cell proliferation and differentiation
[reviewed in (54)], researchers have also used the Drosophila
model to study the pathway’s role in a non-immunological
context like cellular growth (47), differentiation (48), polarization
(49), and oogenesis (55). Drosophila provide a unique system
for studying JAK/STAT signaling at various levels of complexity
in both an immune and regulatory context to provide clarity
regarding the pathway’s significance in the organism.

STING-MEDIATED IMMUNITY

Mediators of mammalian immunity have evolved from
established signaling pathways that are present in invertebrate
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systems (35, 56). One such set of responses is stimulator of IFN
genes (STING)-mediated immunity. Upon detection of viral
nucleic acids in the cytosol, the DNA sensor cGAS metabolizes
cyclic dinucleotides that bind to and activate STING (11), which
induces phosphorylation and activation of various transcription
factors like TBK1, IRF3, and STAT6 (19, 57). These transcription
factors regulate the induction of Type I IFN responses through
the secretion of IFN-α and β (11, 19, 57). STING-mediated
immunity has been heavily studied within mammalian systems;
however, it is only recently that STING and its role in innate
immunity have been identified in insects and other invertebrates
(17, 56, 58–60) (Figure 2B).

In Drosophila, STING signaling provides immunity against
both bacterial and viral infections. During infection with
Listeria monocytogenes, cyclic dinucleotides are produced which
results in STING-mediated signaling and nuclear import of
Relish, the fly ortholog of mammalian NF-κB (56). This
immune response induces transcription and secretion of IMD-
characteristic antimicrobial peptides to reduce bacterial burden
(56). STING-mediated antiviral immunity also occurs through
Relish and IKKβ, which regulate expression of the antiviral factor
Nazo (58). In the silkmoth, Bombyx mori, STING signaling
activates antiviral activity through Dredd and IMD, leading
to Relish signaling and induction of antimicrobial peptides
against nucleopolyhedrovirus (NPV) (59). Other studies using
the Drosophila system have further evaluated STING-mediated
immunity by autophagy (17).

Autophagy is a cellular process in which intracellular
structures and proteins are degraded in a lysosomal-
dependent manner [reviewed in (61)]. Because viruses are
obligate intracellular pathogens, autophagy is an established
antiviral response that is partially regulated by nutritional
and STING-mediated signaling (62). While STING-mediated
autophagy has been established in responding to numerous
viruses in mammals, recent studies using Drosophila have
demonstrated that insects can utilize autophagy to respond
to ZIKV in neuronal tissues (17). Specifically, ZIKV infection
results in a pro-inflammatory response in Drosophila brains
which induces STING-mediated activation of autophagy and
immunity (17). This form of antiviral immunity is indicative
that neuronal protection against arboviruses is mediated
through STING-mediated signaling. This study provides
another example of the versatility provided in using the
Drosophila system as the fly model is a viable means for
studying antiviral immunity conserved between invertebrates
and vertebrates.

Unlike the RNAi and JAK/STAT pathways, which are
both regulated in part by insulin signaling, a direct link
between IIS and STING has yet to be shown. However, since
autophagy is partially regulated by nutritional status [reviewed
in (63)] and STING has been previously shown to induce
STAT6 in the mammalian system (19), it is plausible that
STING-mediated immunity may also be partially regulated
by insulin signaling. Since STING has only recently been
discovered in the insect model, future research is needed
to further evaluate how STING connects to other canonical

immune and nutritional pathways and its involvement in
vector competency.

PROSPECTIVE

Both the Centers for Disease Control and Prevention (CDC) and
World Health Organization (WHO) agree that mosquito-borne
arboviruses will be of great concern in the following years due to
the expansion of mosquitoes’ habitation range and activity into
previously unexposed regions (64, 65). Research usingDrosophila
have permitted investigators to identify the key signaling events
that occur during infection and develop more effective vector
control protocols that target viral replication and likelihood of
transmission. Recently, Drosophila have been used to identify
ingestion of mammalian insulin as a key regulator in controlling
WNV replication in the insect model. The genetic screen to
identify insulin receptor was performed using Drosophila, and
the role of insulin signaling was then validated in the mosquito
model (10).

While Drosophila have been an invaluable tool in the study
of arboviruses in place of the more relevant arthropod vector,
there are limitations. For example, JAK/STAT signaling, while
protective in the mosquito model against arboviruses such
as WNV and DENV (10, 44, 66), may not be protective in
Drosophila during SINV or vesicular stomatitis virus infections
(12, 24). Because Drosophila are not the natural host for
these arboviruses, there are limitations surrounding whether the
responses observed are indeed what occurs in natural hosts. As
such, work involving Drosophila must ensure that their findings
are further evaluated in the more relevant model, whether that be
the insect vector or human host.

Developing disease response protocols that aim at preventing
transmission from arthropods to humans would be the most
beneficial in terms of cost-efficiency and alleviating disease
burden at a global scale. Research efforts also aim to identify
novel therapeutics that are effective at treating humans post-
exposure. Because many of the immune pathways discussed
here are also present in humans (Figure 2), future research
aimed at identifying novel human-specific antiviral therapeutics
could benefit from the use of Drosophila. The use of Drosophila
to model host immunity at both the mammalian and vector
level during arboviral infection has provided a greater depth
of knowledge regarding which signaling pathways are involved
during infection and how they can be targeted in the arthropods
that transmit disease.
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