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Abstract
Background and Objectives
Exome sequencing (ES) and genome sequencing (GS) are expected to be critical to further
elucidate the missing genetic heritability of Alzheimer disease (AD) risk by identifying rare
coding and/or noncoding variants that contribute to AD pathogenesis. In the United States, the
Alzheimer Disease Sequencing Project (ADSP) has taken a leading role in sequencing AD-
related samples at scale, with the resultant data being made publicly available to researchers to
generate new insights into the genetic etiology of AD. To achieve sufficient power, the ADSP
has adapted a study design where subsets of larger AD cohorts are collected and sequenced
across multiple centers, using a variety of sequencing platforms. This approach may lead to
variable variant quality across sequencing centers and/or platforms. In this study, we sought to
implement and evaluate filters that can be applied fast to robustly remove variant-level artifacts
in the ADSP data.

Methods
We implemented a robust quality control procedure to handle ADSP data. We evaluated this
procedure while performing exome-wide and genome-wide association analyses on AD risk
using the latest ADSP whole ES (WES) and whole GS (WGS) data releases (NG00067.v5).

Results
We observed that many variants displayed large variation in allele frequencies across sequencing
centers/platforms and contributed to spurious association signals with AD risk. We also ob-
served that sequencing platform/center adjustment in association models could not fully
account for these spurious signals. To address this issue, we designed and implemented variant
filters that could capture and remove these center-specific/platform-specific artifactual variants.

Discussion
We derived a fast and robust approach to filter variants that represent sequencing center-related
or platform-related artifacts underlying spurious associations with AD risk in ADSP WES and
WGS data. This approach will be important to support future robust genetic association studies
on ADSP data, as well as other studies with similar designs.
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Late-onset Alzheimer disease (AD) ismarked by a strong genetic
component, with heritability estimates ranging from 59% to
79%.1,2 Largely supported by single-nucleotide polymorphism
(SNP) genotyping arrays and variant imputation, large-scale
meta-analyses of genome-wide association studies have so far
implicated more than 50 loci relevant to AD in individuals of
European ancestry.2-6 Despite these important advances, most
risk variants identified so far have common allele frequencies,
and it is estimated that only approximately half of the genetic
heritability of AD has been captured, such that much of the
genetic component of AD remains to be identified.2 In response
to this observation, there has been a shift to start using exome
sequencing (ES) or genome sequencing (GS) to help capture
rare and/or coding variants that contribute to AD risk, which has
led to several recent initial successes.7-15

In the United States, the Alzheimer Disease Sequencing Project
(ADSP) has taken a leading role in the sequencing of AD-related
samples at scale, with resultant data being made publicly avail-
able to researchers to generate new insights into the genetic
etiology of AD. The ADSP has pursued both “whole” ES (WES)
and “whole” GS (WGS) approaches (although it should be
noted that these for now do not actually provide whole coverage
due to technical limitations), where most recently, the focus is
increasingly on GS. To achieve sufficient power to support
analyses of sequencing data and rare variants, the ADSP has
adapted a study design where subsets of larger AD cohorts are
collected and sequenced across multiple centers, using a variety
of sequencing platforms.16-18 This in turn can lead to “center” or
“platform” effects that traditionally are accounted for by using
center/platform covariate adjustment. However, a prior study
using a prior version of the ADSP WES discovery phase ob-
served that center/platform covariate adjustment could not ac-
count for variable variant qualities across centers and platforms,
which in turn may lead to spurious associations or affect the
identification of AD-associated risk variants.19

Since then, the ADSP has further expanded its efforts and as of
2021, provides their WES andWGS data sets on 20.5 and 16.9 k
individuals, respectively, across diverse ancestries.18 In our ex-
ploratory analyses of these data, we observed many variants that
displayed large variation in allele frequencies across centers/
platforms and contributed to spurious association signals with
AD risk, that is, associations that passed at least the common
suggestive significance for genome-wide association studies (p <
1 × 10−5) but were of a (likely) artifactual nature. Similar to the
prior study,19 we also observed that platform/center adjustment
could not fully account for these signals.

Beyond center/platform adjustment, several strategies have
been proposed to handle such artifacts in ES and GS data.20-22

Notably, preprocessing of UK Biobank SNP array data has
previously shown that filters that capture variants displaying
large genotype variations across batches/arrays (assessed by
the Fisher exact tests) can importantly help remove variants
that represent batch or array effects.23 Because the latter ap-
proach is reasonably fast to implement and robust, in this study,
we designed and implemented similar filters that aimed to
capture and remove center-specific/platform-specific artifac-
tual variants in ASDP WES and WGS data. We additionally
tested filters containing putatively artifactual variants identified
in the Genome Aggregation Database (gnomAD) reference
database.24 All filters were designed such that they can be
implemented post hoc to association analyses, leaving flexibility
to researchers to either run full-sample analyses with robust
variant quality control (QC) or to identify variants that require
targeted analyses. This study summarized the effect of these
filters on genome-wide and exome-wide AD association find-
ings in ADSP and proposed they can be used as a fast approach
to robustly remove artifactual variants, thereby supporting
initial explorations of the ADSP data.

Methods
Ascertainment of Genotype and
Phenotype Data
Genotype data for individuals with AD-related clinical out-
come measures were available from the ADSPWES andWGS
data. Notably, the ADSP performed targeted sequencing of
samples in case-control (majority), family-based, population-
based, and longitudinal cohorts, performing sequencing
across multiple sequencing centers and using various se-
quencing platforms (eTable 1 and 2, links.lww.com/NXG/
A536). Ascertainment of genotype/phenotype data for these
samples is described in detail elsewhere.18,25 In addition to the
ADSP samples, we also had access to several publicly available
SNP microarray and WGS data sets (eTable 1), largely
comprising data from the Alzheimer Disease Genetics Con-
sortium. The latter have a large degree of sample overlap with
ADSP. To ensure the most up-to-date and parsimonious
phenotypes, we performed a cross-sample genotype/
phenotype harmonization, which is summarized in eMethods.

Standard Protocol Approvals, Registrations,
and Patient Consents
Participants or their caregivers provided written informed
consents in the original studies. This study protocol was
granted an exemption by the Stanford Institutional Review

Glossary
AD = Alzheimer disease; ADSP = Alzheimer Disease Sequencing Project; APP = amyloid precursor protein; CHIP = clonal
hematopoiesis of indeterminate potential; ES = exome sequencing; gnomAD = Genome Aggregation Database; GS = genome
sequencing; MC = Monte Carlo; PC = principal component; QC = quality control; SNP = single-nucleotide polymorphism;
WES = whole-exome sequencing; WGS = whole-genome sequencing.
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Board because the analyses were conducted on “de-identified,
off-the-shelf” data.

Genetic Data QC and Processing
The ADSP WES and WGS data (NG00067.v5) were joint
called by the ADSP following the SNP/Indel Variant Calling
Pipeline and data management tool used for analysis of GS and
ES for the ADSP.25 TheWES data were currently released only
for biallelic variants, which the ADSP has quality controlled.
The WGS data were released for biallelic and multiallelic var-
iants separately, which the ADSP had not yet quality controlled.
The current analyses of ADSP WGS were restricted to biallelic
variants, to which we applied the Variant Quality Score Reca-
libration QC filter (PASS variants; GATK v4.1).26 The WES/
WGS data were available in genome build hg38, which we
annotated using dbSNP153 variant identifiers.

Genetic data underwent standard QC. Detailed descriptions
of all processing procedures and sequential sample filtering
steps are listed in eMethods and eTables 3 and 4 (links.lww.
com/NXG/A536). For the purpose of the presented genetic
association analyses, only non-Hispanic individuals of Euro-
pean ancestry were considered to focus on the largest ancestry
population (SNPweights v2.1; eFigure 1).27 Principal com-
ponent (PC) analysis of genotyped SNPs provided PCs
capturing population substructure (PC-AiR, eFigure 2).28 In
both the WES and WGS data, variants with a genotyping rate
less than 95%, deviating from the Hardy-Weinberg equilib-
rium in the full sample or in controls (p < 10−6), and a minor
allele count less than 10 were excluded. After this standard
QC, the total number of remaining variants was 224,270 for
ADSP WES and 14,772,936 for ADSP WGS.

Primary Filters to Remove Sequencing Center-
Related/Platform-Related Variant-
Level Artifacts
We designed filters to assess whether there were significant
deviations in genotype distributions for any given variant
across sequencing centers and platforms. To avoid bias from
frequency differences across cases and controls, we assessed
only genotypes in control individuals.

The primary filters made use of the fast Fisher exact test as
implemented by Plink (v.1.9; command: fisher).29However, this
test can currently be implemented by comparing only 2 groups
at a time (e.g., 2 genotyping centers), while we observed variant
issues across multiple groups. We therefore compared every
individual sequencing center/platform with all others and
combined the p values from the multiple tests through the
Cauchy combination test29 (code available at: github.com/yao-
wuliu/ACAT). Variants with a combined p value lower than the
heuristic threshold of 1 × 10−5 were flagged to be filtered. We
note that in this design, there is no need to adjust the p value
threshold regarding the number of centers/platforms because
the Cauchy combination test inherently accounts for this.

We additionally tested 2 other types of sequencing center-
based/platform-based variant filters. On one hand, we per-
formed the χ2 tests (R v.3.6.0; command: chisq.test) that con-
sidered all sequencing centers or platforms at once. Variants with
a p value lower than the heuristic threshold of 1 × 10−5 were
flagged to be filtered. On the other hand, we performed the
Fisher tests with Monte Carlo (MC) simulation of p values (R
v.3.6.0; command: fisher.test(simulate.p.value = T)) that con-
sidered all sequencing centers or platforms. The MC approach
was chosen to allow feasible run times. Variants with a p value
lower than the heuristic threshold of 1 × 10−3 were flagged to be
filtered (this threshold reflects that the p values from MC sim-
ulation are less small than those obtained for the other tests).

The 3 filters were compared for speed by calculating the time
needed to derive the respective variant filters on a 1 MB
genetic region of chromosome 1 in ADSP WGS. Computing
time was evaluated on a single central processing unit from an
80-core Xeon Gold 6138T processor @ 2.00 GHz.

Filters From the gnomAD
In addition to the filters proposed earlier, we used the gnomAD
data base (v3.1.1) reference to identify potential variant arti-
facts.24 Specifically, we created filters for variants that have the
following: (1) a “non-PASS” flag in gnomAD, corresponding to
those that did not pass gnomAD sample QC filters and may
thus be more prone to sequencing issues; (2) an “LCR” flag in
gnomAD, corresponding to those located in a low complexity
region and may thus be more prone to low coverage, read
misalignment, and subsequent genotype issues; (3) a differ-
ential frequency of more than 10% between our current sam-
ples and non-Finish European participants in gnomAD, which
may indicate an issue with those variants in our samples. The 3
gnomAD filters were evaluated with the goal of supporting the
primary ADSP WES/WGS center-based/platform-based vari-
ant filters.

Filters for Discordant Variants Across
Duplicate Samples
A final set of filters was designed to flag variants that had a
discordant genotype across any duplicate sample. Notably,
the ADSP WES and WGS data contain a few hundred du-
plicate samples, generally covering multiple sequencing cen-
ters and/or platforms. Discordant variants across such
duplicates therefore provide a reference of artifactual variants
that should be removed and are largely reflecting center-
related/platform-related genotyping issues. We evaluated
these filters with the primary goal of comparing them with the
primary ADSP WES/WGS center-based/platform-based
variant filters, as well as the gnomAD-based variant filters.
In a secondary goal, we also assessed to what extent these
duplicate discordant variant filters themselves could handle
center-related/platform-related variant issues that drove ob-
servations of spurious association signals.
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Statistical Analyses, Variant Annotation,
and Visualization
Exome-wide and genome-wide association studies on AD case-
control status were conducted on ADSP WES and WGS, re-
spectively, using LMM-BOLT (v.2.3.5). LMM-BOLT uses a
Bayesian mixture model that allows the inclusion of related in-
dividuals by adjusting for the genetic relationship matrix,30

thereby maximizing sample size and power. Given the current
minor allele count thresholds, the approximate 50-50 ratio
of cases to controls and sample sizes exceeding 5,000 participants
for both ADSP WES and WGS, the resultant test statistics
are expected to be well-calibrated.30 After analyses, association
statistics were transformed back to a logistic scale taking into
account the case fraction.30 Per convention, variants were con-
sidered at suggestive (p ≤ 1 × 10−5) or genome-wide (p ≤ 5 ×
10−8) significance.

Case-control association analyses considered 2 models.
Model 1 included covariates for sex, APOE*4 dosage,
APOE*2 dosage, and the first 5 genetic PCs. We did not
adjust for age because we previously showed that this can
lead to significant power loss when the age of cases is
younger than that for controls,15 which is true for ADSP,
given their initial design to prioritize old controls and young
cases (Table 1 and eTables 5 and 6, links.lww.com/NXG/
A536). Model 2 was the same as model 1 but additionally
included covariates for sequencing center and platform.
Variant filters were then applied to summary statistics using
data.table functions in R v.3.6.0.

The APOE locus (1 Mb region centered on APOE) was
removed from all summary statistics. Independent loci were
determined by sliding window when no variants with p ≤ 1 ×
10−5 were observed within 200Kb from one another. The
Manhattan plots provide RefSeq curated gene annotations
for the gene closest (<500Kb) to the top significant variant
per locus. Only variants with p ≤ 1 × 10−6 were annotated to
improve visualization. Suggestive significance levels were
indicated by gray dotted lines and green dots for variants.
Genome-wide significance levels were indicated by black
solid lines and red dots for variants. Variant densities were
indicated at the bottom of theManhattan plots (dark green =

low density, yellow = medium density, and red = high den-
sity). Plots were generated using the R package CMplot.31

Data Availability
The specific data repository and identifier for each cohort is
indicated in eTable 1 (links.lww.com/NXG/A536) of the
supplement. Code for the Cauchy combination test is avail-
able at: github.com/yaowuliu/ACAT. Summary statistics and
variant filters are available on application at: niagads.org/. All
data used in the discovery analyses are available on application
to the following:

c dbGaP (ncbi.nlm.nih.gov/gap/)
c NIAGADS (niagads.org/)
c LONI (ida.loni.usc.edu/)
c Synapse (synapse.org/)
c Rush (radc.rush.edu/)
c NACC (naccdata.org/).

Results
Sample demographics are summarized in Table 1, with per
center/platform demographics in eTables 5 and 6 (links.lww.
com/NXG/A536). In initial exome-wide and genome-wide
analyses using model 1, we observed many spurious associa-
tions (p ≤ 1e−5). We identified that variants underlying these
spurious signals displayed increased variation in allele fre-
quency across sequencing centers/platforms for the full fre-
quency range (Figure 1, A and B). We also observed that such
variants could not consistently be accounted for by adjust-
ment for sequencing center/platform in model 2; a specific
example of such a variant is provided in Figure 1C.

Based on these observations, 3 versions of filters were designed
and evaluated for their capacity to capture putative center-
related/platform-related variant artifacts. In assessing comput-
ing time, the filter using the Fisher exact test implemented in
Plink followed by the Cauchy combination of p values imple-
mented in R proved to be the fastest, taking 32 seconds to be
constructed using a single central processing unit for a 1 Mb
region in ADSP WGS (5,402 variants). Comparatively,

Table 1 Sample Demographics

Samples Diagnosis
Sex
Female, N (%)

Age
Age, mean (SD)

APOE status

Name Participants after QC (N) Type N APOE*4-pos APOE*2-pos

ADSP WES 11,573 CN 5,418 3,152 (58.2) 85.4 (6.5) 926 (17.1) 1,057 (19.5)

AD 6,155 3,619 (58.8) 75.4 (8.6) 2,938 (47.7) 493 (8.0)

ADSP WGS 6,533 CN 2,949 1,791 (60.7) 81.6 (6.6) 1,075 (36.4) 204 (6.9)

AD 3,584 2,051 (57.2) 76.7 (8.3) 2,078 (58.0) 177 (4.9)

Abbreviations: AD, Alzheimer disease; ADSP, Alzheimer Disease Sequencing Project; CN, cognitively normal; QC, quality control; WES, whole-exome se-
quencing; WGS, whole-genome sequencing.
Samples were restricted to those passing genetic/phenotypic QC, being non-Hispanic, and being of European ancestry.

4 Neurology: Genetics | Volume 8, Number 5 | October 2022 Neurology.org/NG

http://links.lww.com/NXG/A536
http://links.lww.com/NXG/A536
http://links.lww.com/NXG/A536
https://github.com/yaowuliu/ACAT
https://www.niagads.org/
https://www.ncbi.nlm.nih.gov/gap/
https://www.niagads.org/
https://ida.loni.usc.edu/
https://www.synapse.org/
https://www.radc.rush.edu/
https://naccdata.org/
http://links.lww.com/NXG/A536
http://links.lww.com/NXG/A536
http://neurology.org/ng


constructing the χ2 test filter implemented in R took 93 sec-
onds, while the Fisher test with MC filter implemented in R
took 128 seconds. Given the faster speed, as well as the expected
higher robustness provided by an exact test, we present the filter
using the Fisher exact test implemented in Plink as the primary
filter, while the other 2 represent supporting analyses.
Throughout the remainder of the article, we will use the term
“filtered” to describe variants that were removed by filters and

the term “non-filtered” to describe variants that were not re-
moved by filters.

The Fisher exact center-based/platform-based variant fil-
ters showed they strongly reduced the number of spurious
associations observed with model 1 in ADSP WES
(Figure 2, A and C) and WGS (Figure 3, A and C). When
further adjusting for sequencing center/platform in model

Figure 1 Variant Artifacts Across Different Sequencing Centers/Platforms Drive Spurious Associations in ADSP WES and
WGS data

In initial exome-wide and genome-wide association studies of ADSPWES andWGS, we observedmany spurious associations (p ≤ 1e−5) usingmodel 1 (i.e., not
adjusting for sequencing center/platform; cf. Figures 2A and 3A). On inspection of these signals, it was notable that these variants displayed large variation in
genotype counts across sequencing centers/platforms. TheMAF variation in controls for all analyzed variants is visualized in (A.a-b) for ADSPWES and in (B.a-
b) for ADSP WGS. (C.a-b) A specific example of a variant showing spurious association is provided. This variant, rs199707443, has an MAF of 0.003% in non-
Finnish Europeans in Genome Aggregation Database v3.1.1, contrasting the 411 heterozygote counts in the Broad sequencing center. Notably, this particular
variant still showed genome-wide significant association with Alzheimer disease risk even after sequencing center/platform adjustment (cf. Figure 2B). ADSP,
Alzheimer Disease Sequencing Project; CN, cognitively normal; HET, heterozygote; HOM, homozygote; MAF, minor allele frequency; WT, wild type; WES,
whole-exome sequencing; WGS, whole-genome sequencing.
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Figure 2 The Proposed Center-Based/Platform-Based Variant Filters Remove Spurious Associations in Alzheimer Disease
Sequencing Project Whole-Exome Sequencing

Figure shows theManhattan (left) and quantile-quantile (right) plots. (A) Model 1 indicatesmany spurious hits. (B) Model 2 shows that adjustment for center/
platform can reducemany, but not all, spurious hits. The variant described in Figure 1C is highlighted by the blue arrow. (C) Filters removemost spurious hits.
(D) Further adjustment for center/platform removes few additional spurious hits.
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Figure 3 Proposed Center-Based/Platform-Based Variant Filters Remove Spurious Associations in Alzheimer Disease
Sequencing Project Whole-Genome Sequencing

Figure shows the Manhattan (left) and quantile-quantile (right) plots. (A) Model 1 indicatesmany spurious hits. (B) Model 2 shows that adjustment for center/
platform can reducemany, but not all, spurious hits. (C) Filters removemost spurious hits. (D) Further adjustment for center/platform removes few additional
spurious hits.
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2, spurious associations appeared essentially absent in
ADSP WES (Figure 2D) and WGS (Figure 3D). Notably,
the spurious associations were not detected by the genomic
inflation, as for instance, the genomic control factor (λ) was
consistent prior to and after applying variant filters in
ADSP WGS for the respective models (Figure 3). The
slightly larger λ for ADSPWES in model 1 prior to applying
the variant filters (Figure 2A) indicated that the large
number of spurious variants regarding the relatively small
total set of variants was likely driving some modest in-
flation. Consistent observations were made for the other 2
center-based/platform-based variant filters (eFigures 3-6,
links.lww.com/NXG/A536). When intersecting variants
identified across these 3 sets of filters, the filter derived
from the Fisher exact test implemented in Plink overlapped
strongly (>96%) with the other 2 filters that in turn showed

less overlap (eFigure 7). This was consistent with the
Fisher exact test being the most conservative and robust.

A closer inspection of the center-based/platform-based vari-
ant filters showed that nonfiltered variants displayed fairly
concordant p values across models 1 and 2, whereas filtered
variants showedmany discrepancies (Figure 4, A and C). This
was consistent with the filtered variants driving spurious as-
sociations. In addition, it was apparent that filters removed
variants across the full frequency range (Figure 4, B and D)
consistent with the increased minor allele frequency variation
across all frequency ranges for variants underlying spurious
association signals (Figure 1, A and B).

We then assessed to what extent the gnomAD-based filters
could remove the observed spurious associations. A visual

Figure 4 Metrics of Variants Removed by the Proposed Center-Based/Platform-Based Variant Filters

(A.a, A.b, and B) ADSPWES. (C.a, C.b, and D) ADSPWGS. (A.a and C.a) Variants that passed filters showed largely consistent p values acrossmodel 1 andmodel
2 case-control association analyses, with only few variants remaining that reach suggestive significance inmodel 1 but lose suggestive significance on center/
platform adjustment inmodel 2 (lower right quadrant). (A.b and C.b) Variants that were removed by filters showedmany inconsistent p values acrossmodels
1 and 2, consistent with center-related/platform-related variant artifacts that could not fully be accounted for by model 2. (B and D) Frequency density plots,
comparing variants that were filtered/removedwith those that were not filtered. Note that variants were consistently filtered across the full frequency range,
with increased density at frequencies <1% or >10% in ADSPWES. ADSP, Alzheimer Disease Sequencing Project; WES, whole-exome sequencing; WGS, whole-
genome sequencing.
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Table 2 Alzheimer Disease Sequencing Project Whole-Exome Sequencing Variants Passing Suggestive Significance After Applying Center-Based/Platform-Based Filters

Variant info Model 1 Model 2 Filters

GENE CHR BP dbSNP153 ID
Effect
allele

Other
allele

Effect allele
frequency (%) OR

95% CI
(lb)

95% CI
(ub) p Value OR

95% CI
(lb)

95% CI
(ub) p Value

Center
Fisher P

Platf.
Fisher P

gnomAD
filter

Duplicate
check

DRAXIN 1 11,709,400 rs769650621 C A 0.45 2.44 1.69 3.53 2.2E2
06

1.83 1.28 2.63 1.0E−03 2.2E−04 0.97 Non-PASS Discordant

SLC50A1 1 155,136,277 rs765315443 C T 0.37 2.82 1.88 4.22 5.3E2
07

2.06 1.38 3.05 3.6E−04 2.3E−05 0.99 PASS Ok

LAMC1-AS1 1 183,135,182 rs1385675950 A C 0.18 3.69 2.08 6.56 8.4E2
06

2.70 1.54 4.72 5.2E−04 0.10 0.99 PASS Discordant

LOC150935 2 239,780,397 rs1355381797 C A 0.15 4.39 2.34 8.25 4.3E2
06

3.17 1.71 5.86 2.4E−04 0.99 0.99 PASS Ok

RASGEF1C 5 180,127,602 rs57288534 T C 18.67 0.87 0.81 0.92 9.0E2
06

0.86 0.81 0.92 2.3E2
06

0.76 0.34 PASS Ok

TREM2 6 41,161,514 rs75932628 T C 0.69 2.82 2.10 3.79 5.0E2
12

2.58 1.94 3.44 8.2E2
11

0.02 0.09 PASS Ok

HNRNPUL2-
BSCL2

11 62,724,366 rs772898628 C A 0.24 3.14 1.92 5.13 5.3E2
06

2.21 1.37 3.57 1.2E−03 6.1E−03 0.98 Non-PASS Discordant

CDKL1 14 50,390,164 rs61981931 T C 4.82 0.79 0.71 0.89 5.6E−05 0.77 0.69 0.86 4.2E2
06

1.1E−05 0.02 PASS Ok

C16orf92 16 30,025,807 rs11544328 C A 46.34 0.89 0.85 0.94 1.0E2
05

0.91 0.87 0.95 8.0E−05 0.83 1.7E−03 PASS Discordant

ZNF750 17 82,831,739 rs751362098 G A 0.39 2.61 1.77 3.85 1.4E2
06

2.02 1.38 2.96 2.8E−04 1.5E−04 0.99 Non-PASS Discordant

ABCA7 19 1,042,810 rs3764645 G A 46.71 0.89 0.85 0.94 3.5E2
06

0.89 0.85 0.94 3.8E2
06

0.22 3.9E−04 PASS Ok

DHX35 20 39,018,815 rs779184241 A G 0.32 3.49 2.26 5.38 1.8E2
08

2.56 1.67 3.91 1.4E−05 2.5E−04 0.99 PASS Discordant

Abbreviations: BP, base pair; CHR, chromosome; CI, confidence interval; gnomAD, Genome Aggregation Database; OR, odds ratio; PASS, flag indicating variant passed gnomAD quality control.
Variants shownpassed suggestive significance in eithermodel 1 ormodel 2. Note thatmany variants that lose suggestive significance after center/platform adjustment inmodel 2 have fairly smallp values (but above threshold)
in the center/platform Fisher tests and/or have anon-PASS flag in gnomADor are flagged by the duplicate discordant variant filter. This suggests there is added value in usingmodel 2 and/or applying the gnomADandduplicate
discordant variant filters to reduce spurious signals or that model 1 without gnomAD filters can be used contingent on post hoc assessment of the association signal’s robustness. Bolded entries indicate p ≤ 1 × 10−5.
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assessment of the Manhattan plots showed that the gnomAD-
based filters could only account for a part of the spurious
associations (eFigures 8 and 9, links.lww.com/NXG/A536).
Similarly, a closer inspection of the gnomAD-based filters
showed that they mainly removed variants with frequencies
<1% (eFigure 10). The p values across models 1 and 2 further
showed many discrepancies for both nonfiltered and filtered
variants (although fewer for nonfiltered variants). In sum, the
gnomAD-based filters could remove some spurious signals
but were less effective than the center-based/platform-based
variant filters.

We further assessed to what extent the duplicate discordant
variants filters could remove the observed spurious associations.
The Manhattan plots showed that the duplicate discordant
variant filters could account for many of the spurious associa-
tions, but several remained when using model 1, while when
usingmodel 2, theManhattan plots looked similar to those using
the center-based/platform-based variant filters (eFigures 11 and
12, links.lww.com/NXG/A536). A closer inspection of the du-
plicate discordant variant filters similarly showed they mainly
removed variants with frequencies >10% and did not remove a
set of variants that lose suggestive significance when going from
model 1 to model 2 (eFigure 13). An illustrative example of such
a variant is listed in eTable 7, confirming these variants represent
genotyping issues that more ideally should be removed from
the data. In sum, the duplicate discordant filters could remove
many spurious signals but were less effective than the center-
based/platform-based variant filters, yet more effective than the
gnomAD-based variant filters.

We also sought to understand the overlap between the different
proposed filters. The 3 gnomAD-based variant filters appeared
to show little overlap with one another (eFigure 14, links.lww.
com/NXG/A536) and overlapped with less than 20% of the
variants in the center-based/platform-based variant filters
(eFigure 15). Furthermore, in ADSPWES and WGS, 32% and
14% of duplicate discordant variants overlapped center-based/
platform-based variant filters, respectively, while vice versa 31%
and 15% of center-based/platform-based filtered variants
overlapped duplicate discordant variants (eFigure 16). In the
same comparison, 28% and 49% of duplicate discordant vari-
ants overlapped gnomAD-based variant filters, respectively,
while vice versa 53% and 17% of gnomAD-based filtered var-
iants overlapped duplicate discordant variants (eFigure 17). In
sum, this confirmed that all 3 types of filters captured over-
lapping as well as unique variants. Notably, the center-based/
platform-based and gnomAD-based variant filters could cap-
ture a subset of reference artifactual variants present in the
duplicate discordant variant filters but identified many addi-
tional signals that represented likely artifactual variants and
contributed to spurious association signals. An overview of the
number of variants and spurious signals removed for all re-
spective filters and models is summarized in eTable 8.

Then, we sought to assess whether the use of these different
types of variant filters could omit the need for adjusting for

sequencing center/platform as implemented in model 2, which
may be desirable for certain studies or research questions. We
thus inspected all variants that passed suggestive significance in
either model 1 or model 2 in ADSP WES (Table 2) and WGS
(eTable 9, links.lww.com/NXG/A536) after applying the
center-based/platform-based filters (which we showed removed
the most spurious signals). We observed that many variants that
lose suggestive significance after center/platform adjustment in
model 2 have fairly small (above threshold) p values in the
center-based/platform-based Fisher exact tests and/or are cov-
ered in the gnomAD-based and duplicate discordant variant
filters. Similarly, assessing the Manhattan plots and variant
metrics suggested that the gnomAD-based and/or duplicate
discordant variant filters removed few additional variants un-
derlying spurious signals (eFigures 18-23). Notably, we also
observed in ADSP WGS that center/platform adjustment for
some variants led to somewhat more significant p values, thereby
increasing the number of suggestive hits (eTables 8 and 9). This
could reflect improved model fits after center/platform adjust-
ment by accounting for case/control imbalances or other factors.
Overall, these observations suggest there may be added value in
using model 2 and/or applying the gnomAD-based filters to
reduce spurious signals. Obviously, adding the duplicate dis-
cordant variant filters will inherently remove artifactual signals
and help reduce spurious signals.

Last, as a robustness check, we compared association statistics
from the current ADSP WES analyses with variants that we
identified in a prior study using a prior version of the ADSP
WES data and observed highly concordant findings (eTa-
ble 10, links.lww.com/NXG/A536).15

Discussion
We present a fast and robust approach to filter variants that
represent sequencing center-related or platform-related artifacts
underlying spurious associations with AD risk in ADSPWES and
WGS data, which cannot fully be accounted for by center/
platform covariate adjustment. In addition, we showed that filters
comprising variants thatmay be prone to artifacts, as identified by
gnomAD, were less efficient in removing spurious signals but
may still have added value on top of the center-based/platform-
based filters. Similarly, filters containing variants that were dis-
cordant across duplicate samples could removemany, but not all,
spurious signals and added onto the center-based/platform-
based filters. In sum, the presented filters are important to sup-
port future robust studies on ADSP data. In addition, these filters
allow flexibility, given that they can be applied in post hoc QC.
Researchersmay thus inspect filtered variants in targeted analyses
in subsets of the ADSP data where no artifactual genotype en-
richment is observed (e.g., excluding a single sequencing center/
platform that showed an artifactual increase in genotype counts
compared with the others, cf. Wickland et al.19).

Certain study designs or research questions may benefit from
not adjusting by sequencing center/platform (i.e., cohort
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adjustment). For example, a study that considers specific
strata and/or low-frequency variants may observe some co-
linearity between variant genotype observations and se-
quencing centers/platforms. However, this does not
necessarily indicate artifactual variants and may be driven by
chance or variable cohort study designs across samples se-
quenced by different centers. We observed that the presented
center-based/platform-based variant filters could handle
nearly all spurious associations when not adjusting for se-
quencing center/platform in model 1. Inspecting the
remaining signals passing suggestive significance, it was ap-
parent that the gnomAD-based and duplicate discordant
variant filters could remove a few additional spurious signals.
Similarly, the p values from the Fisher exact tests across se-
quencing centers/platforms was fairly small for several vari-
ants that passed suggestive significance in their association
with AD risk in model 1 but lost suggestive significance on
center/platform adjustment in model 2. In sum, we suggest
that model 2 with application of center-based/platform-
based, gnomAD-based, and duplicate discordant variant filters
is the most conservative approach, but model 1 using only
center-based/platform-based and duplicate discordant variant
filters may reasonably be implemented, contingent on post
hoc assessment of the association signals’ robustness.

The center-based/platform-based filtering approach will fur-
ther be valuable beyond the currently presented exome-wide
and genome-wide univariate AD risk association analyses in
European ancestry samples. Notably, the removal of artifactual
variants may lead to improved association statistics in gene-
based testing, which is particularly relevant for ES/GS data.7

The filter approach can also be applied to non-European
samples available in ADSP WES/WGS. Last, the approach to
check for variant artifacts by comparing genotype distributions
across sequencing centers/platforms may also be used in other
studies with a similar design as the current ADSP data. Notably,
our approach is similar to the one previously applied to the
preprocessing of UK Biobank SNP array to remove variants
that may represent batch or array effects.23 In turn, the ap-
proach described here and applied to ES/GS data could also be
applied to the large amount of SNP array data sets used in large-
scale genetic studies of AD.3

This study reports exome-wide and genome-wide AD risk asso-
ciation findings for the newly released ADSP 20.5k WES and
16.9k WGS data. After QC and filter implementation, we ob-
served few signals passing the genome-wide significance thresh-
old. In the ADSP WES data, TREM2 and ABCA7—well-
established AD risk genes2,6—were observed with variants, re-
spectively, at genome-wide and suggestive significance, consistent
with observations for similar models in prior studies on the prior
ADSP WES discovery phase data.7,15 Despite observing only 4
variants in ADSP WES that passed suggestive significance in
model 2, our findings were overall highly consistent with prior
work.15 We also observed that certain variants identified pre-
viously were not present in our current summary statistics
(eTable 10, links.lww.com/NXG/A536), reflecting differences in

joint calling, QC, and the fact that currently only biallelic data
were available for the new ADSP WES data. Notably, the com-
mon protective variant on ABCA7 identified here has not been
previously reported (and we confirm it appears to not have been
successfully joint called in the prior ADSP WES data; dbGaP
accession ID: phs000572). In the ADSPWGSdata, in addition to
several suggestive hits, BIN1—a well-established AD risk
gene2,6—and CNTN4 were identified with variants at genome-
wide significance. The common protective variant on CNTN4
appears novel and may be of relevance to AD pathogenesis given
that Contactin 4 (CNTN4) is a binding partner of amyloid
precursor protein (APP) and CNTN4/APP interactionmay play
a role in promoting target-specific axon arborization.32,33 Overall,
these initial findings appear promising but suggest that the current
ADSP WES/WGS data may still face power limitations limiting
the discovery of novel risk variants. As such, gene-based testing,
analyses on available non-European ancestry samples, and novel
methodological approaches to gain additional power12,15 will all
be crucial to support future advances into disentangling the
missing heritability of AD using ADSP samples and other com-
plimentary large-scale sequencing data.

One limitation to the proposed center-based/platform-based
and gnomAD-based filters is that, while they robustly remove
many artifactual variants, they may potentially remove non-
artifactual variants (i.e., false negatives) and thus reduce power or
still miss other artifactual variants (i.e., true positives). Theo-
retically, filtered and nonfiltered variants could be verified for
their association with AD in the summary statistics from other
large-scale genome-wide association studies using imputed SNP
data, but this inherently comes with concerns regarding
imputation/genotype quality in those cohorts, as well as chal-
lenges to resolve signals below the suggestive significance
threshold in ADSP (given its relatively limited sample sizes). As
such, a clear assessment of sensitivity and specificity is not di-
rectly feasible at the current time. Some false positives may be
expected in ADSPWES owning to the fact that the ADSP used a
variety of exome capture kits, which were not considered here,
because those metadata were not readily available at the current
time. Additional false positives may also still be expected for any
remaining variants with allele imbalance, which was not assessed
in this study.34 Furthermore, other factors such as imbalance of
ancestry, case/control ratios, or age across centers may affect the
variant filters and lead to false negatives. However, in data not
shown in this study, consistent spurious associations were ob-
served and removed by filters when considering a more ho-
mogenous population of North-western European or African
ancestry individuals, suggesting ancestry imbalance did not
specifically bias the center/platform effects. Similarly, by de-
signing the center/platform filters on controls, there was little
concern regarding case/control ratio and age imbalance. How-
ever, cohort study design differences may cause control indi-
viduals on certain centers/platforms to be enriched in protective
variants (e.g., if a given study specifically recruited protected old
ageAPOE*4 carriers), which could potentially contribute to false
negatives. In addition, age in general may represent a con-
founding factor because clonal hematopoiesis of indeterminate
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potential (CHIP) contributes to an increased rate of somatic
mutations with aging that can confound analyses (particularly in
CHIP-associated genes).35 This may be specifically relevant
when the genetic association model does not account for age, as
was the case in this study. Last, the gnomAD filters flag variants
that were artifactual in gnomAD and are thus prone to technical
issues, but not all these variants are necessarily artifactual in the
current ADSP data. Future studies may further also consider
adapting the gnomAD 10% differential frequency filter to
instead make use of a Fisher test, similar as in the primary
center-based/platform-based filters. In sum, while the cur-
rent filters are clearly useful to increase the robustness of
association finding in ADSP data, future studies may further
implement and evaluate other approaches to handle arti-
factual variants while validating sensitivity and specificity.
Future studies may also consider inspecting
target variants or genes without applying the filters proposed
here but instead using them as a reference or adapting them,
as appropriate.

We present a fast and robust approach to filter variants that
represent sequencing center-related or platform-related arti-
facts underlying spurious associations with AD risk in ADSP
WES and WGS data. This approach will be important to
support future robust studies on ADSP data, as well as other
studies with similar designs.
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from the NIH (the NHLBI, NINDS, NIA, and NIDCD)
and with previous brain MRI examinations funded by R01-
HL70825 from the NHLBI. CHS research was supported by
contracts HHSN268201200036C, HHSN268200800007C,
N01HC55222, N01HC85079, N01HC85080, N01HC85081,
N01HC85082, N01HC85083, N01HC85086, and grants
U01HL080295 and U01HL130114 from the NHLBI with
additional contribution from theNational Institute of Neurological
Disorders and Stroke (NINDS). Additional support was provided
by R01AG023629, R01AG15928, and R01AG20098 from the
NIA. FHS research is supported by NHLBI contracts N01-HC-
25195 and HHSN268201500001I. This study was also supported
by additional grants from the NIA (R01s AG054076, AG049607,
and AG033040 and NINDS (R01 NS017950). The ERF study as
a part of EUROSPAN (European Special Populations Research
Network) was supported by European Commission FP6 STRP
grant number 018947 (LSHG-CT-2006-01947) and received
funding from the European Community’s Seventh Framework
Program (FP7/2007–2013)/grant agreement HEALTH-F4-
2007–201413 by the European Commission under the program
“Quality of Life and Management of the Living Resources” of 5th
Framework Program (no. QLG2-CT-2002-01254). A high-
throughput analysis of the ERF data was supported by a joint
grant from the Netherlands Organization for Scientific Research
and the Russian Foundation for Basic Research (NWO-RFBR
047.017.043).TheRotterdamStudy is fundedbyErasmusMedical
Center and Erasmus University, Rotterdam, the Netherlands
Organization for Health Research and Development (ZonMw),
the Research Institute for Diseases in the Elderly (RIDE), the
Ministry of Education, Culture and Science, the Ministry for
Health, Welfare and Sports, the European Commission (DGXII),
and the municipality of Rotterdam. Genetic data sets are also
supported by the Netherlands Organization of Scientific Research
NWO Investments (175.010.2005.011, 911-03-012), the Genetic
Laboratory of the Department of InternalMedicine, ErasmusMC,
the Research Institute for Diseases in the Elderly (014-93-015;
RIDE2), and the Netherlands Genomics Initiative (NGI)/
NetherlandsOrganization for Scientific Research (NWO)Nether-
lands Consortium for Healthy Aging (NCHA), project 050-060-
810. All studies are grateful to their participants, faculty, and staff.
The content of these studies is solely the responsibility of the
authors and does not necessarily represent the official views of the
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National Institutes of Health or the USDepartment of Health and
Human Services. The FUS cohorts include the following: the
Alzheimer Disease Centers (ADC) (P30 AG019610, P30
AG013846, P50 AG008702, P50 AG025688, P50 AG047266,
P30AG010133, P50AG005146, P50AG005134, P50AG016574,
P50AG005138, P30AG008051, P30AG013854, P30AG008017,
P30AG010161, P50AG047366, P30AG010129, P50AG016573,
P50AG016570, P50AG005131, P50AG023501, P30AG035982,
P30AG028383, P30AG010124, P50AG005133, P50AG005142,
P30AG012300, P50AG005136, P50AG033514, P50AG005681,
and P50 AG047270), Alzheimer Disease Neuroimaging Initiative
(ADNI) (U19AG024904), Amish Protective Variant Study
(RF1AG058066), Cache County Study (R01AG11380,
R01AG031272, R01AG21136, RF1AG054052), CaseWestern
Reserve University Brain Bank (CWRUBB) (P50AG008012),
Case Western Reserve University Rapid Decline (CWRURD)
(RF1AG058267, NU38CK000480), CubanAmerican Alz-
heimer Disease Initiative (CuAADI) (3U01AG052410),
Estudio Familiar de InfluenciaGenetica enAlzheimer (EFIGA)
(5R37AG015473, RF1AG015473, R56AG051876), Genetic
and Environmental Risk Factors for Alzheimer Disease Among
African Americans Study (GenerAAtions) (2R01AG09029,
R01AG025259, and 2R01AG048927), Gwangju Alzheimer
and Related Dementias Study (GARD) (U01AG062602),
Hussman Institute for Human Genomics Brain Bank
(HIHGBB) (R01AG027944, Alzheimer Association “Identifi-
cation of Rare Variants in Alzheimer Disease”), Ibadan Study of
Aging (IBADAN) (5R01AG009956), Mexican Health and
Aging Study (MHAS) (R01AG018016), Multi-Institutional
Research in Alzheimer’s Genetic Epidemiology (MIRAGE)
(2R01AG09029, R01AG025259, and 2R01AG048927),
Northern Manhattan Study (NOMAS) (R01NS29993), Peru
Alzheimer’s Disease Initiative (PeADI) (RF1AG054074),
Puerto Rican 1066 (PR1066) (Wellcome Trust (GR066133/
GR080002), European Research Council [340755]), Puerto
Rican Alzheimer Disease Initiative (PRADI) (RF1AG054074),
Reasons for Geographic and Racial Differences in Stroke
(REGARDS) (U01NS041588), Research in African American
Alzheimer Disease Initiative (REAAADI) (U01AG052
410), Rush Alzheimer Disease Center (ROSMAP) (P30AG10
161, R01AG15819, R01AG17919), University of Miami Brain
Endowment Bank (MBB), and University of Miami/Case
Western/North Carolina A&T African American (UM/
CASE/NCAT) (U01AG052410, R01AG028786). The four
LSACs are as follows: the Human Genome Sequencing Center
at the Baylor College of Medicine (U54 HG003273), the
Broad Institute Genome Center (U54HG003067), The
American Genome Center at the Uniformed Services
University of the Health Sciences (U01AG057659), and the
Washington University Genome Institute (U54HG003079).
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