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Integrin αvβ3 is generously expressed by cancer cells and rapidly dividing endothelial
cells. The principal ligands of the integrin are extracellular matrix proteins, but we have
described a cell surface small molecule receptor on αvβ3 that specifically binds thyroid
hormone and thyroid hormone analogs. From this receptor, thyroid hormone (L-thyroxine,
T4; 3,5,3′-triiodo-L-thyronine, T3) and tetraiodothyroacetic acid (tetrac) regulate expression
of specific genes by a mechanism that is initiated non-genomically. At the integrin, T4 and
T3 at physiological concentrations are pro-angiogenic by multiple mechanisms that include
gene expression, and T4 supports tumor cell proliferation. Tetrac blocks the transcriptional
activities directed by T4 and T3 at αvβ3, but, independently of T4 and T3, tetrac modulates
transcription of cancer cell genes that are important to cell survival pathways, control of
the cell cycle, angiogenesis, apoptosis, cell export of chemotherapeutic agents, and repair
of double-strand DNA breaks. We have covalently bound tetrac to a 200 nm biodegrad-
able nanoparticle that prohibits cell entry of tetrac and limits its action to the hormone
receptor on the extracellular domain of plasma membrane αvβ3. This reformulation has
greater potency than unmodified tetrac at the integrin and affects a broader range of cancer-
relevant genes. In addition to these actions on intra-cellular kinase-mediated regulation of
gene expression, hormone analogs at αvβ3 have additional effects on intra-cellular protein-
trafficking (cytosol compartment to nucleus), nucleoprotein phosphorylation, and genera-
tion of nuclear coactivator complexes that are relevant to traditional genomic actions ofT3.
Thus, previously unrecognized cell surface-initiated actions of thyroid hormone and tetrac
formulations at αvβ3 offer opportunities to regulate angiogenesis and multiple aspects of
cancer cell behavior.

Keywords: integrin, thyroid hormone, tetraiodothyroacetic acid, nanoparticle, gene transcription

INTRODUCTION
Integrins are heterodimeric structural proteins of the plasma
membrane and are principally involved in cell–cell relationships
in tissues and cell–extracellular matrix (ECM) protein interac-
tions (1). The extracellular domain of an integrin binds specific
ECM proteins and outside-in transmission of the occurrence of
liganding results in the generation of specific signals by the intra-
cellular domain of the integrin. These signals, usually involving
various kinases, may result in cellular changes in actin (2, 3) and
cell motility (4), modulate endocytosis (5), and affect transcription
of specific genes (6–8).

Amply expressed by and activated in cancer cells, integrin αvβ3
interacts with ECM proteins, but has recently been shown to
have a panel of specific receptors for non-protein, small molecule

ligands (9). Among these are sites for the binding of thyroid hor-
mone (10, 11), dihydrotestosterone (12), and resveratrol (13). The
thyroid hormone receptor (TR) on αvβ3 has been well-studied
(11, 14). What is now apparent is that this receptor has more
complex and coherent effects on cancer-relevant gene expression
than had been apparent in analyses of the impact of large mole-
cule (protein) interactions with the integrin. The multiple genes
whose expression is modulated from the extracellular domain
of αvβ3 by thyroid hormone or its derivative, tetraiodothy-
roacetic acid (tetrac), relate to angiogenesis, cancer cell prolif-
eration, metastasis, and cancer cell defense pathways (15). The
latter include genes relevant to anti-apoptosis, anti-angiogenesis,
chemoresistance (MDR1), and repair of double-strand DNA
breaks induced by radiation. Within the cell, unmodified tetrac
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mimics certain actions of thyroid hormone. At the extracellular
domain of αvβ3, in contrast, tetrac blocks binding of l-thyroxine
(T4) and 3,5,3′-triiodo-l-thyronine (T3) – that is, it is a thyroid
hormone antagonist. Covalent bonding of tetrac to a nanoparticle
prevents cell entry of tetrac and, compared to unmodified tetrac,
broadens the spectrum of defensive cancer cell genes whose expres-
sion can be desirably regulated from the integrin. This expanded
panel includes pro-apoptotic genes and epidermal growth factor
receptor (EGFR) gene (see subsequent sections). In addition, the
potency of nanoparticulate tetrac as a thyroid hormone antag-
onist at αvβ3 is greater than that of unmodified tetrac. Thus,
without entering the cancer or endothelial cell, thyroid hormone
analogs non-genomically initiate important actions on tumor cell
and blood vessel cell gene expression. In this review, we sur-
vey αvβ3-mediated effects of thyroid hormone and analogs on
gene expression in human cancer cells, analyzed by RT-PCR. We
also point out that, from its receptor on the integrin, thyroid
hormone has adjunctive effects on nuclear receptors for thyroid
hormone and for estrogen, regulating the state of phosphorylation
or acetylation of such receptors and controlling the formation of
complexes within the nucleus of coactivators and receptors.

EARLY EVIDENCE THAT THYROID HORMONE COULD
MODULATE GENE EXPRESSION FROM THE CELL EXTERIOR:
PROTOONCOGENE EXPRESSION; ANGIOGENESIS
Prior to the discovery of the plasma membrane receptor for thy-
roid hormone and hormone analogs on integrin αvβ3, agarose-
T4 had been shown to regulate protooncogene expression (16,
17). Agarose-T4 is a prototypic nanoparticulate formulation of
l-thyroxine in which T4 is covalently bound to a linear polysac-
charide polymer; the product is excluded from the cell interior.
The thyroid hormone effect on gene expression in these stud-
ies was mitogen-activated protein kinase (MAPK)-dependent and
was reproduced in cells that lacked the nuclear TR.

Studied in the chick chorioallantoic membrane (CAM) model
and also prior to recognition of the hormone receptor on αvβ3, T4

at physiological free concentrations and T3 at concentrations that
were supraphysiologic were shown to increase vascularity three-
fold in 72 h (18). The degree of activity was comparable to that of
fibroblast growth factor 2 (FGF2; bFGF). Agarose-T4 also repro-
duced the pro-angiogenic effect of thyroid hormone. The effects of
unmodified thyroid hormone and of agarose-T4 on angiogenesis
were found to be inhibited by tetrac, the hormone analog sub-
sequently shown to block the iodothyronine receptor site on the
cell surface. Pharmacologic inhibitors of MAPK (ERK1/2) and
of protein kinase C also eliminated thyroid hormone-induced
angiogenesis. RT-PCR studies revealed that the hormone-induced
transcription of FGF2 within 6 h, and measurement of FGF2 pro-
tein in the medium showed increased release of the angiogenic
factor. Thus, the promotion of vascular sprouting (19) and new
vessel formation by thyroid hormone was attributable to initiation
at the plasma membrane of a non-genomic effect culminating in
expression of a specific vascular growth factor gene, manufac-
ture of the gene product and release of the latter protein into the
medium.

The cell surface receptor for thyroid hormone and tetrac was
shortly thereafter defined on the extracellular domain of integrin

αvβ3 and functionally described in the context of angiogenesis
(10). Other thyroid hormone agonist analogs, such as GC-1 (20)
and diiodothyropropionic acid (DITPA) (21) were also shown to
be pro-angiogenic, and tetrac blocked the activity of these analogs
at the integrin. However, the anti-angiogenic properties of tetrac
expressed at the integrin extend beyond the blockade of binding
of T4 and T3 to αvβ3. As discussed in the next section, tetrac
or its reformulation as a nanoparticulate may affect expression
of blood vessel-relevant genes beyond FGF2 independently of T4

and T3. Tetrac and Nanotetrac may also disrupt crosstalk between
αvβ3 and adjacent receptors for other vascular growth factors,
such as vascular endothelial growth factor (VEGF) and FGF2 (22),
and platelet-derived growth factor (PDGF) (Shaker A. Mousa,
unpublished observations). However, these effects on crosstalk are
unrelated to gene transcription.

TETRAC, NANOTETRAC, AND GENE AND microRNA
EXPRESSION THAT IS RELEVANT TO ANGIOGENESIS
As indicated above, unmodified tetrac is taken up by cells and
expresses low-grade T4-like activity and may be converted to tri-
iodothyroacetic acid (triac), which is also thyromimetic (23, 24).
To limit the action of tetrac exclusively to integrin αvβ3, we cova-
lently bonded tetrac to a nanoparticle of sufficient size (~200 nm)
to preclude cell uptake of the complex (25), thus mimicking
agarose-T4. The polymer we used was biodegradable poly(lactic-
co-glycolic acid), in contrast to the physiologically inert agarose.
The nanoparticulate formulation involved a stable ether bond of
the outer ring hydroxyl group of tetrac to a 6-carbon linker and
amide-bonding of the latter to PLGA (25). The amide bond was
imbedded in the nanoparticle and thus not readily accessible to
circulating or tissue peptidases. The resulting Nanotetrac indeed
was restricted to the extracellular space and preserved the pre-
viously known actions of tetrac, but it was also found to have
desirable additional biologic activities not previously obtained
with tetrac.

Microarray studies of two human cancer cell lines showed that
tetrac and Nanotetrac downregulated expression of VEGFA (26),
the gene product of which is a principal inducer of the porous
blood vessels associated with cancers (27). These effects are ini-
tiated at plasma membrane αvβ3. Tetrac and Nanotetrac also
increased transcription of thrombospondin 1 (THBS1, TSP1).
TSP1 protein is an endogenous suppressor of angiogenesis and
is invariably suppressed in cancer cells. Nanotetrac also decreased
expression of EGFR, the gene product of which mediates actions
of EGF on angiogenesis. Tetrac lacked this action. Nanotetrac, but
not tetrac, downregulates expression of NFκB via the integrin and
NFκB de-activation is an anti-angiogenic target (28, 29). Finally,
thyroid hormone may regulate transcription of the monomeric αv
gene (30), but it is not known whether this action is initiated at
the αvβ3 protein or requires the nuclear TR.

In recent studies of microRNA (miR), we have shown that Nan-
otetrac increases cellular abundance of miR-15A in breast cancer
cells by 10-fold (31) and decreases miR-21 by 50%. miR-21 is
pro-angiogenic in certain tumor cells (32) and miR-15A decreases
angiogenesis by a VEGF-dependent mechanism (33).

Transcriptional mechanisms involved in the anti-angiogenic
activity of Nanotetrac at αvβ3 are summarized in Table 1.
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Table 1 |Transcriptional mechanisms by which Nanotetrac/tetrac is

anti-angiogenic.

Angiogenesis-relevant target Action References

bFGF transcription ↓ (18)

VEGFA transcription ↓ (11, 26)

EGFR transcription ↓ (34)

TSP1 (THBS1) transcription ↑ (26, 34)

miR-21 transcription ↓ (31)

miR-15A transcription ↑ (31)

Cellular bFGF abundance ↓ (18)

Cellular Ang-2 abundance ↓ (22)

Cellular MMP-9 abundance ↓ (35)

Pro-angiogenic activity of thyroid hormone ↓ (36)

Measurements of gene transcription were made in breast cancer (34) and

medullary thyroid carcinoma cells (26). Protein abundance decreases are pre-

sumed to reflect decreased expression of specific genes. The pro-angiogenic

activity of thyroid hormone involves non-transcriptional mechanisms as well as

actions on specific gene expression shown in this table. Mechanisms that appear

to be non-transcriptional are crosstalk between integrin αvβ3 and adjacent vascu-

lar growth factor receptors on the cell surface, cell release mechanisms for newly

synthesized growth factors and regulation of endothelial cell motility (11, 18, 36).

THYROID HORMONE SUPPORTS CANCER CELL
PROLIFERATION AND IS ANTI-APOPTOTIC;
TETRAC–NANOTETRAC TRANSCRIPTIONALLY INHIBITS
CANCER CELL PROLIFERATION, IS PRO-APOPTOTIC AND
DISRUPTS CELL DEFENSE PATHWAY GENE EXPRESSION
A number of laboratories have described the stimulatory effect
of thyroid hormone on tumor cells (37–43) and clinical stud-
ies have defined thyroid hormone dependence of cancers, in that
spontaneous or medically induced hypothyroidism has improved
outcomes (44–49). Trophic actions of thyroid hormone on tumor
cells were presumed to require a TR isoform and to be genomic
in mechanism – that is, to require physical interaction of a TR
protein and T3 – until recognition of the existence in 2005 (10)
of the cell surface receptor for thyroid hormone and tetrac on
αvβ3, described above (11, 50). Existence of this receptor offered a
discrete, non-genomic mechanism for initiation of tumor cell pro-
liferation. TRβ may be involved in certain cancer cell proliferative
responses to thyroid hormone (51, 52), but work by Cheng and
co-workers indicates that TRβ is a tumor suppressor that, when
mutated in the thyroid gland, may be oncogenic (53).

The demonstration that T4 – including the agarose-T4 for-
mulation – was a proliferative factor for certain human tumor
(breast, thyroid cancer) (42, 54) and animal cells (C6, F98, GL261
glioma cell lines) (43) was accompanied by evidence that unmod-
ified tetrac inhibited the T4 effect. We had shown that unmod-
ified tetrac blocked non-genomic actions of thyroid hormone
on plasma membrane functions (11, 14, 55). The proliferative
effect was MAPK-dependent. Interestingly, in human breast cancer
(MCF-7) cells, tetrac-inhibitable enhancement of proliferation by
thyroid hormone involved Ser-118 phosphorylation of nuclear

estrogen receptor-α (ERα); this pathway is identical to that by
which estrogen stimulates MCF-7 cell proliferation (54).

In a model of resveratrol-induced apoptosis that involved
MAPK phosphorylation of p53 at Ser-15, we showed that T4 was
anti-apoptotic. The hormone prevented the p53 phosphorylation
step in several tumor cell lines (42, 56). Tetrac blocked this anti-
apoptotic activity of T4. Additional evidence of the anti-apoptotic
activity of T4 included inhibition of nucleosome liberation by
resveratrol, as well as cellular accumulation of the pro-apoptotic
BcLxs protein (56, 57). The hormone did not, however, affect cell
accumulation of survival protein BcLxl. The action of thyroid hor-
mone on nucleosome liberation and BcLxs in tumor cells was
prevented by tetrac (58).

Subsequent microarray studies conducted with Nanotetrac in
human breast cancer (MDA-MB-231) cells revealed a coherent
pro-apoptosis pattern of gene expression. That is, transcription of
the X-linked inhibitor of apoptosis (XIAP) gene was downregu-
lated and transcription of a set of pro-apoptotic genes – CASP2,
CAP8AP2, DFFA, and BCL2L14 – was stimulated (11, 34).

We would also note that Nanotetrac downregulates expression
of 8 of 9 cyclin genes and 1 cyclin-dependent kinase gene (34) and
more than 20 oncogenes.

TETRAC–NANOTETRAC ACTIONS ON EXPRESSION OF
GENES RELEVANT TO TUMOR INVASIVENESS
Catenins are proteins involved in cell–cell adhesion. β-catenin also
has transcriptional functions in the nucleus. Mutation and over-
expression of the β-catenin gene occurs in a variety of cancers,
including colorectal carcinoma, breast, and ovarian cancer (59,
60). Nanotetrac increases transcription of the CBY1 gene (34),
the gene product of which is an inhibitor of nuclear functions of
β-catenins. This is a desirable action of Nanotetrac at αvβ3 in can-
cer cells. The action would be deleterious in non-cancer cells, but
the latter when not undergoing cell division express little αvβ3.
Like β-catenins, integrin αvβ3 participates in cellular adhesion
complexes.

Nanotetrac also affects α-catenins, downregulating expression
of the CTNNA1 and CTNNA2 genes. Mutation of CTNNA2 is
associated with tumor invasiveness and thus inhibition of tran-
scription of the gene is desirable, as is downregulation of the
non-mutated gene in cancers. The non-mutated gene product
of CTNNA1 can function as a tumor invasion suppressor (61),
but mutation is associated with gastrointestinal tract and other
cancers (62).

As mentioned above, MMP-9 expression is induced by thyroid
hormone (35). The observations were recently made in myeloma
cells and were inhibited by tetrac, thus implicating αvβ3 in this
action of T4. This action of the hormone may contribute to local
extension of myeloma in bone and, if documented to be present
in solid tumor cells, may presage metastasis. MMP-2 transcription
may also be subject to control by thyroid hormone (63, 64). Several
mechanisms may be involved in the hormonal action on MMP-2,
and it is not yet known whether this effect of the hormone is initi-
ated at integrin αvβ3. The importance of this is that an intact met-
alloproteinase axis interferes with cell–cell interaction, resulting in
tissue destabilization and support of cancer cell invasiveness and
metastasis (65).
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OVERVIEW OF ANTI-CANCER PROPERTIES OF NANOTETRAC,
ACTING AS A SINGLE MODALITY
The anti-cancer actions of Nanotetrac are broadly based in terms
of mechanisms, despite initiation at a single target receptor on
integrin αvβ3, and in this regard resemble the pluralistic anti-
angiogenic actions of the drug. As noted above, the coherence
of the effects of the agent on expression of differentially regu-
lated cancer cell genes is remarkable. It is possible that there are
effects of Nanotetrac at αvβ3 that may involve integrity of the
actin cytoskeleton in cancer cells, and that the drug may influence
interactions of the integrin with ECM proteins that may disorient
tumor cell movement or interfere with defensive responses (see
Conjunctive Radiation and Tetrac/Nanotetrac Treatment of Can-
cer Cells: Radiosensitization below). However, these possibilities
have not yet been examined.

Nanotetrac promotes apoptosis, antagonizes anti-apoptotic
(survival) defenses, disrupts control of the cell cycle, and inter-
feres with function of the frequently mutated catenins (11, 26, 34).
As noted above in the review of angiogenesis, thyroid hormone
and tetrac or its Nanotetrac formulation affect matrix metallopro-
teinase gene expression. We would also note that thyroid hormone
(T4) has protein-trafficking action on integrin αvβ3, directing
internalization of the membrane protein – without the hormone
ligand – and nuclear uptake of the αv monomer, but not of β3.
In the nuclear compartment, αv is a coactivator (66) involved in
transcription of a number of important cancer-relevant genes (see
below, Adjunctive Modifications of Nuclear Hormone Receptors
that Originate at the Hormone Receptor on αvβ3; Nuclear Uptake
of αv Monomer).

Some of these actions of Nanotetrac/tetrac are summarized in
Table 2.

CHEMOSENSITIZATION BY TETRAC OF CANCER CELLS
RESISTANT TO OTHER CANCER CHEMOTHERAPEUTIC
AGENTS
P-glycoprotein (P-gp; MDR1; ABCB1) is a plasma membrane
efflux pump whose ligands include a number of cancer

chemotherapeutic agents (72). The pump is a principal com-
ponent of cancer cell chemoresistance. Thyroid hormone causes
transcription of MDR1 (73–75) and increases function of the P-gp
protein (75). Thus, ambient thyroid hormone may be viewed as
a support mechanism for chemoresistance (76). It is not known
what the molecular basis is for regulation by iodothyronines of P-
gp function or MDR1 gene expression, i.e., microarray studies have
not been conducted to establish whether the induction of MDR1
gene expression is dependent upon the hormone receptor on inte-
grin αvβ3. However, tetrac increases the intra-cellular retention
time of doxorubicin by doxorubicin-resistant breast cancer cells
(67), an effect attributed to action of tetrac–Nanotetrac on pump
function of P-gp or on gene expression (76).

CONJUNCTIVE RADIATION AND TETRAC/NANOTETRAC
TREATMENT OF CANCER CELLS: RADIOSENSITIZATION
Hercbergs and co-workers have defined the potentiation of radi-
ation exposure by tetrac in animal glioma (C6) cells (68) and
human glioblastoma (U87MG) cells (69), and Nanotetrac in
human prostate cancer (PC3, LNCaP) cells (70). In vitro stud-
ies revealed that at a 4 Gy x-radiation dose 1 h after exposure to
tetrac, there is a 60% reduction in cell survival, compared to con-
trol (68). The mechanism of action of tetrac and Nanotetrac is
interference with cancer cell repair of double-strand DNA breaks
(neutral comet assay/mean tail moment) (69). What components
of the DNA break repair process – and, specifically, transcription
of what specific genes – are affected by tetrac/Nanotetrac is not yet
known.

ADJUNCTIVE MODIFICATIONS OF NUCLEAR HORMONE
RECEPTORS THAT ORIGINATE AT THE HORMONE RECEPTOR
ON αVβ3; NUCLEAR UPTAKE OF αV MONOMER
The above discussion relates to regulation of transcription of spe-
cific cancer cell genes by thyroid hormone analogs that act at the
cell surface via integrin αvβ3. Relevant additionally to the end
result of modulation of transcription of specific genes from inte-
grin αvβ3 is the adjunctive input from the integrin to the state of

Table 2 | Mechanisms of selected cancer chemotherapeutic actions of Nanotetrac.

Action Example References

Chemosensitization Decreased efflux of doxorubicin, P-gp effect; increased effectiveness of other

chemotherapeutic agents

(67)

Radiosensitization Disordered repair of radiation-induced double-strand DNA breaks; prevention of

radiation-induced activation of integrin ávâ3

(68–70)

Disabling of cell survival pathway gene

expression

Decreased expression of anti-apoptotic XIAP, MCL1; enhanced expression of

pro-apoptotic CASP2, BCL2L14, TP53, PIG3, BAD; disruption of catenin pathways via

increased expression of CBY1, decreased expression of CTNNA1, CTNNA2;

decreased expression of pro-oncogenic miR-21, increased expression of

pro-apoptotic miR-21; decreased expression of matrix metalloproteinase genes,

e.g., MMP-9; decreased expression of stress-defense genes, e.g., HIF-1α,

decreased expression of multiple Ras oncogenes

(11, 26, 34, 35, 71)

Cell cycle Downregulation of multiple cyclin, cyclin-dependent protein kinase genes (11, 34)

Disordering of growth factor pathways Suppression of EGFR gene expression, disabled function of EGFR (11, 34)

SeeTable 1 for other activities vs. other vascular growth factors, receptors

Frontiers in Endocrinology | Cancer Endocrinology January 2015 | Volume 5 | Article 240 | 4

http://www.frontiersin.org/Cancer_Endocrinology
http://www.frontiersin.org/Cancer_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Davis et al. Nanoparticulate tetrac and gene expression

nuclear TRs. We have recently reviewed this subject (77). In brief,
trafficking of cytoplasmic TRβ1 to the cell nucleus is directed by
T4 at the integrin via MAPK, and the importing by the nucleus
of TRα1 is promoted by T3 via activation of phosphatidylinosi-
tol 3-kinase (78). Two discrete binding domains exist at the TR
site on αvβ3: the S1 site binds T3 exclusively and S2 binds both
T4 and T3. Tetrac–Nanotetrac interferes with hormone binding
at both domains. In the case of TRβ1 trafficking, translocation of
the receptor into the nucleus occurs as a complex with activated
MAPK; specific phosphorylation of the receptor (activation) is a
consequence (79, 80). An example of specific gene transcription
that occurs as a result of this trafficking/phosphorylation is expres-
sion of hypoxia-inducible factor-1α (HIF1α) in response to T3 at
the S1 site (78). The complex process of stimulating cancer cell or
endothelial cell proliferation occurs via the S2 domain.

Integrin αvβ3 may be internalized by cells as a result of the
protein’s liganding of T4 (13). The αv monomer is imported by
the nucleus as a result of this process and has been shown to be a
coactivator protein that binds to the promoter region of a number
of genes, including ERα, HIF-1α, cyclooxygenase-2 (COX-2), and
TRβ1. ERα protein is important to breast, ovarian, and certain
lung cancers. We have implicated nuclear COX-2 protein in the
pharmacologic induction of apoptosis (58). HIF-1α protein is a
cell survival factor that triggers angiogenesis and cellular conver-
sion to anaerobic metabolism (81). The αv monomer does not
import thyroid hormone and the β3 monomer is not taken up by
the nucleus. This remarkable process was an unexpected conse-
quence of studies of small molecule actions at the integrin and
offers a novel mechanism for regulation of gene expression from
the cell surface and integrin.

CONCLUSION
Integrin αvβ3 controls a variety of intra-cellular and transcellular
functions. It is a transmembrane structural protein that is dif-
ferentially expressed/activated in tumor cells and dividing blood
vessel cells. The definition of the specific thyroid hormone-tetrac
receptor site on αvβ3 (10, 11, 14) enabled recognition of the exis-
tence of control from a single locus of expression of differentially
regulated, angiogenesis-relevant genes as well as modulation of
function of adjacent vascular growth factor receptors. Nanotetrac
is a prototypic anti-angiogenic and anti-cancer agent focused on
a single, specific small molecule receptor site on the extracellular
domain of αvβ3. From this site,Nanotetrac blocks actions of VEGF,
FGF2, and PDGF at their plasma membrane receptors, inhibits
expression of VEGFA and EGFR, stimulates transcription of TSP1,
decreases endothelial cell abundance of Ang-2 without affecting
Ang-1, selectively regulates miRNAs that control angiogenesis and
decreases endothelial cell motility (Table 1).

From the standpoint of anti-cancer activity, Nanotetrac desir-
ably disrupts gene expression critical to cell cycling in αvβ3-
bearing tumor cells and dividing endothelial cells and interferes
with a substantial group of cell survival pathways so that apoptosis
is advanced, and defensive anti-apoptosis pathways are disor-
dered (Table 2). Nanotetrac reverses chemoresistance and confers
radiosensitivity. This novel and extensive spectrum of actions
makes Nanotetrac an attractive anti-angiogenic and anti-cancer
agent for further development. The agent has been shown to be

an effective anti-proliferative, pro-apoptotic agent in a variety of
human cancer cell lines (25, 31, 40–43, 71), to be effective against
human cancer xenografts (26, 57, 70, 82–84) and to include impor-
tant downregulation of tumor-associated angiogenesis (22, 26, 36,
57, 82, 84).

In the absence of an agent such as Nanotetrac with anti-thyroid
hormone activity at integrin αvβ3, a reduction in circulating thy-
roid hormone, notably T4, that is either spontaneous or medically
induced appears to be effective in slowing clinical growth of certain
solid tumors. These include breast (45), glioblastoma multiforme
(44), head-and-neck cancers (47), and renal cell carcinoma (46).
We can postulate that such reductions in systemic levels of T4

largely affect tumors via the examples of gene expression reviewed
above. Several of the current authors have recently confirmed
clinically that systematic reduction in circulating T4 (euthyroid
hypothyroxinemia) may arrest growth of certain cancers (85).
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