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Abstract

Motivation: Interactions between proteins and peptides or peptide-like intrinsically disordered regions are involved
in many important biological processes, such as gene expression and cell life-cycle regulation. Experimentally deter-
mining the structure of such interactions is time-consuming and difficult because of the inherent flexibility of the
peptide ligand. Although several prediction-methods exist, most are limited in performance or availability.

Results: InterPep2 is a freely available method for predicting the structure of peptide–protein interactions. Improved
performance is obtained by using templates from both peptide–protein and regular protein–protein interactions,
and by a random forest trained to predict the DockQ-score for a given template using sequence and structural fea-
tures. When tested on 252 bound peptide–protein complexes from structures deposited after the complexes used in
the construction of the training and templates sets of InterPep2, InterPep2-Refined correctly positioned 67 peptides
within 4.0 Å LRMSD among top10, similar to another state-of-the-art template-based method which positioned 54
peptides correctly. However, InterPep2 displays a superior ability to evaluate the quality of its own predictions. On a
previously established set of 27 non-redundant unbound-to-bound peptide–protein complexes, InterPep2 performs
on-par with leading methods. The extended InterPep2-Refined protocol managed to correctly model 15 of these
complexes within 4.0 Å LRMSD among top10, without using templates from homologs. In addition, combining the
template-based predictions from InterPep2 with ab initio predictions from PIPER-FlexPepDock resulted in 22% more
near-native predictions compared to the best single method (22 versus 18).
Availability and implementation: The program is available from: http://wallnerlab.org/InterPep2.
Contact: bjorn.wallner@liu.se
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interactions are vital in most biological processes,
from metabolism to cell life-cycle (Midic et al., 2009; Tu et al.,
2015). To understand these processes, it is important to know the
structural details of the interactions. Structures of interacting pro-
teins can be experimentally solved through a multitude of methods
such as X-ray crystallography, NMR and cryo-EM (Rhodes, 2010;
Topf et al., 2008; Wüthrich, 1986). However, because of the com-
plexity, cost and time it takes to perform experiments, computation-
al methods have been developed to support and supplement.
Methods such as HADDOCK, PIPER and ZDOCK (Dominguez
et al., 2003; Kozakov et al., 2006; Pierce et al., 2014) make predic-
tions directly from sequence or energy function information, while
others such as InterPred, PRISM and M-TASSER (Baspinar et al.,
2014; Chen and Skolnick, 2008; Wallner and Mirabello, 2017) use
already solved structures as templates for prediction. Among these
methods, template-based approaches have shown great success in
the past.

A significant fraction (15–40%) of protein–protein interactions
are peptide-mediated interactions (Petsalaki and Russell, 2008), in
which a short stretch of residues interact with a larger protein recep-
tor (Mohan et al., 2006). These short stretches of residues or peptide
regions are often disordered alone and only obtain structure upon
binding. In many cases, the peptide region is located within intrinsic-
ally disordered proteins (Neduva et al., 2005; Petsalaki and Russell,
2008) or compromise flexible linkers or loops connecting domains
(Vacic et al., 2007). The transient nature of these interactions makes
them much harder to study experimentally compared to ordered
protein–protein interactions. Thus, computational methods are cru-
cial for guiding and designing experiments. Site prediction methods
such as PepSite, ACCLUSTER, PeptiMap and InterPep are often
capable of predicting areas of peptide-binding on a receptor surface,
but does not model the actual peptide and interaction (Johansson-
Åkhe et al., 2019; Lavi et al., 2013; Trabuco et al., 2012; Yan and
Zou, 2015). Global peptide-docking prediction methods such as
CABSdock, PIPER-FlexPepDock, pepATTRACT, SPOT-peptide
and GalaxyPepDock have achieved high performances on individual
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benchmarks, but struggle to consistently produce reliable predic-
tions (Alam et al., 2017; Kurcinski et al., 2015; Lee et al., 2015;
Litfin et al., 2019; Schindler et al., 2015). Local refinement predic-
tion methods such as Rosetta FlexPepDock, PEP-FOLD3 and DINC
2.0 have achieved high precision in the past, but require good start-
ing positions (Antunes et al., 2017; Lamiable et al., 2016; Raveh
et al., 2010). Rosetta FlexPepDock for example requires a starting
position within 5.5 Å RMSD (root mean square deviation) of the
correct structure to reliably produce near-native predictions (Raveh
et al., 2010).

Previously we have developed InterPep (Johansson-Åkhe et al.,
2019) for predicting peptide-binding sites on protein surfaces. In
this study, we present the improved InterPep2, which predicts the
complete peptide–protein interaction complex.

2 Materials and methods

2.1 Datasets
Three datasets of experimentally solved structures of peptide–pro-
tein interactions were used to train, evaluate and benchmark the
method in this study.

2.1.1 Bound set

The bound set consists of 502 non-redundant bound peptide–protein
complexes and was previously used in InterPep (Johansson-Åkhe
et al., 2019). The peptides are 5–25 residues long, share at least
400Å2 of contact surface with their respective receptors, and the
complexes were deposited in the PDB before May 19, 2016. The
total set of 502 complexes was randomly divided into two sets of
251 complexes each; a test set for benchmarking and a training set
for training and tuning of the method using 5-fold cross-validation.
The set is available at http://wallnerlab.org/InterPep2.

2.1.2 PDB16–19 set

To allow for testing on new peptide–protein complexes deposited
after the creation of the Bound set, an additional set, created by the
same standards as the bound set, but from structures deposited be-
tween May 19, 2016 and October 15, 2019 was constructed. The
PDB16–19 set consists of 252 non-redundant peptide–protein com-
plexes and is available at http://wallnerlab.org/InterPep2.

2.1.3 Unbound set

To benchmark more realistic docking scenarios, a smaller set of 27
solved non-redundant structures of peptide–protein interaction com-
plexes for which there also exists determined unbound structures of
the receptors was used. As this set has previously been used for
benchmarking (Alam et al., 2017), it is possible to compare against
otherwise computationally heavier methods or methods which
are only available through web-servers with limited programmatical
access, such as PIPER-FlexPepDock (Alam et al., 2017), pepAT
TRACT (Schindler et al., 2015) and HADDOCK (Dominguez et al.,
2003).

As some of the targets in this set are similar to targets in the
training part of the bound set, when evaluating the performance of
InterPep2 on the unbound set it was retrained for each new target,
filtering training samples too similar to the target. Two complexes
are considered too similar if the receptors match with a BLAST
E-value of 0.05 or better.

2.2 Interaction template library
To describe possible interactions, an interaction template library
was constructed from PDB (May 19, 2016) using protein–protein
interactions in the defined biological units to prevent non-native
interfaces from crystal packing (Carugo and Argos, 2008). The
interaction template library comprised residues within 5.0 Å (all-
atoms) from another chain in a multimer complexes, each described
by the position of its Ca carbon. Note the set of residues do not need

to be consecutive in sequence, as the interaction templates contain
any interacting surface residues.

2.2.1 Trivial templates

During benchmarking against the bound and unbound sets, trivial
templates were removed to ensure that the benchmarking measures
the accuracy of the method, and not simply the difficulty of the test
sets. Trivial templates are defined as templates from complexes
which receptor matches the target receptor with BLAST (Altschul
et al., 1997) at E-value at or below 0.05.

2.3 Performance measures
Three different criteria are used to determine if a docked conform-
ation is successful:

• A docked peptide is correct by LRMSD if the peptide is posi-

tioned within 4.0 Å LRMSD, i.e. the RMSD of the peptide when

the complex is superimposed on the receptor is �4.0 Å.
• A docked peptide is correct by fnat, i.e. fraction of correct native

interchain contacts, if the complex has an fnat of at least 0.6.

Native contacts are defined using 5.0 Å distance atom–atom

cutoff.
• A docked peptide is at the correct binding site of the receptor if

the set of receptor residues interacting with the peptide overlaps

with the at least 50% of the set of receptor residues interacting

with the peptide in the native complex.

In addition, precision and recall at different score thresholds are
used to evaluate the ability to correctly rank correct and incorrect
predictions:

Precision ¼ TP

TPþ FP
;

where TP is the number of true positives and FP is the number
of false positives. Precision is also referred to as positive predictive
value.

Recall ¼ TP

P
;

where TP is the number of true positives and P is the total number
of positives in the set. Recall is also referred to as true positive rate.
Precision and recall are calculated for varying score threshold and
visualized for all thresholds in a receiver operating characteristic
curve.

2.4 The InterPep2 protocol
InterPep2 takes a protein structure and a peptide sequence as input
and produces several suggested docking poses describing the pep-
tide–protein interaction. For each of these, InterPep2 also predicts
the quality of the model as measured by DockQ-score (Basu and
Wallner, 2016a). The DockQ-score is a continuous measure ranging
from 0.0 to 1.0, describing the overall similarity in binding between
a predicted model and the native structure, based on fnat (fraction
of recovered native contacts), iRMSD (interface RMSD) and
LRMSD (ligand RMSD), as by CAPRI (Lensink and Wodak, 2013)
evaluation criteria.

The complete protocol consists of five steps, explained in detail
below (Fig. 1):

2.4.1 Template alignments

Every full chain with one or more interfaces included in the
Interaction Template Library is aligned to the receptor protein struc-
ture using TM-Align (Zhang and Skolnick, 2005). For each align-
ment, the interfaces of the aligned chain are superimposed on the
receptor by the same rotational matrix used for the full chain in the
TM-Align alignment, creating templates for interaction.
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2.4.2 Peptide conformations

The peptide conformational space is represented by 50 structural
models of the peptide generated using structural fragments
from known structures with similar sequence and secondary struc-
ture. In detail, PSI-BLAST (Altschul et al., 1997) is used to gener-
ate a sequence profile for the peptide, which is used in PSI-PRED
(Jones, 1999) to predict secondary structure. The sequence profile
and the secondary structure prediction are both used in the
Rosetta Fragment Picker application (Gront et al., 2011),
which selects 50 fragments from 2000 decoys by finding
sequence and secondary structure matches in a representative set
of monomeric protein structures. The 50 fragments are then
extracted from their full structures, and sequence is changed to
that of the query peptide using the Rosetta fixbb application
(Kuhlman and Baker, 2000). This protocol for generating peptide
fragments is similar to that of PIPER-FlexPepDock (Alam et al.,

2017), and has been shown to reliably sample near-native peptide
conformations.

2.4.3 Build interaction complex

Interaction complexes are constructed by combining the 2500 best
template alignments (by TM-score) from the template alignment step
with the 50 conformations of the peptide, resulting in 125 000 (2500
� 50) coarse interaction models. The models are created by, for each
combination of receptor-to-interaction-template alignment and pep-
tide conformation, aligning the peptide to the complementary side of
the template interface using InterComp (Mirabello and Wallner,
2018). InterComp is used in favor of TM-Align as it can align with re-
spect only to coordinates and amino acid identity, completely eschew-
ing sequence order (Mirabello and Wallner, 2018). This means that
even a composite interface surface formed from non-consecutive resi-
dues in any order can align to a short straight peptide.
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template, each 
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Fig. 1. Summary of the InterPep2 method

2460 I.Johansson-Åkhe et al.



2.4.4 Model scoring

Suggested models of the interaction complex are scored by a regres-
sion random forest trained to predict the DockQ-score of the com-
plex, using features relevant to peptide–protein interactions
(Table 1). During the development of InterPep2, additional features
and target functions were considered, but only features which
showed considerable contribution to performance were kept. The
parameters of the random forest as well as the selection of features
were optimized by 5-fold cross-validation on the training data,
details in Supplementary information.

The random forest of InterPep2 is implemented using the scikit-
learn Python package (Pedregosa et al., 2011).

2.4.5 Predictions

The final predictions are ranked by the predicted DockQ-score and
filtered to ensure no two predictions are within 4.0 Å LRMSD.

2.4.6 Refinement (optional last step)

InterPep2 generates unrefined coarse interaction models that could
benefit from refinement. To analyze the usefulness of refinement,
the option to refine the coarse models using the Rosetta
FlexPepDock refinement protocol (Raveh et al., 2010) was added
(InterPep2-Refined). Using this option, up to 12 500 of the best
ranking predictions with a predicted DockQ-score above 0.2 are
refined, and the top 1% (top 125) models with best Rosetta
reweighted scores are clustered at 2 Å LRMSD, the clusters are
ranked by the mean predicted DockQ-score of the models in the
cluster, and the cluster centers are given as final predictions.

3 Results and discussion

3.1 Database coverage
To get an estimate on the upper bound of prediction performance,
the available templates for the 251 complexes in the bound set were
analyzed. Using different subsets of the available templates, the

performance was assessed on four levels: high quality
(LRMSD�4.0 Å), at least medium quality (LRMSD�5.5 Å), high
quality by fnat (fnat�0.6) and at least correct site on the receptor,
see Table 2. In all cases, templates from closely related structures are
removed (BLAST E�0.05).

Looking at Table 2, we can see that by using only peptide–pro-
tein templates, it is possible to model 70 of the 251 test complexes
at high quality, while adding protein–protein templates increases
this number to 89/251. In 22 of these 89 cases (24%), it is optimal
to use a protein–protein rather than a peptide–protein interaction as
a basis for the template, although it is possible to produce correct
models for 59 targets using only protein–protein templates. Given
that a considerable fraction of the high-quality models originate
from protein–protein templates, there is a substantial gain by
extending the database to cover both protein–protein and peptide–
protein templates, and not limiting the search-space to peptide–pro-
tein interactions only.

Notably, there are more high-quality templates from peptide–
protein templates compared to protein–protein templates, both
when considering LRMSD and fnat, while the opposite is true for
medium quality or correct site templates. This implies that peptide–
protein templates are generally better templates for other peptide–
protein interactions, while it is still viable to predict peptide–protein
interactions with protein–protein templates. The fact that there are
far more protein–protein templates than peptide–protein templates
in the template set certainly increase the chances of finding potential
useful templates.

3.2 Benchmark: bound set
The performance of InterPep2 and InterPep2-Refined was compared to
two other available established methods: GalaxyPepDock (Lee et al.,
2015) and CABSdock (Kurcinski et al., 2015), on the bound set. Many
other methods for global peptide to protein receptor docking exist, but
most are not readily available to be run in large-scale tests, having ei-
ther no standalone version or are only available through web-servers
with limited programmatical access. Since InterPep2, InterPep2-
Refined and GalaxyPepDock are template-based, trivial templates
were not allowed, to emulate a real-world situation.

First the ability of each method to accurately model the proteins in
the bound set at three quality levels, correct at top1, correct among
top10 and correct site modeling at top1, were assessed (Fig. 2). When
using LRMSD as the metric for successful docking, InterPep2 has
more correct models at top1 compared to GalaxyPepDock, and
CABSdock, it has also more models with the peptide at the correct
site; and applying FlexPepDock refinement in InterPep2-Refined start-
ing from InterPep2 models consistently improves the results. Using
fnat as the metric of success rather than LRMSD resulted in minor
decreases in performance for InterPep2, but increases in performance
for GalaxyPepDock, which achieves superior performance when look-
ing at top10, albeit still with similar performance to InterPep2 when
looking at top1, indicating a better sampling of side-chain conforma-
tions among the ensemble of structures.

Table 1. Features importance

Feature Importance (%)

Length of peptide template 22.73 6 12.32

IS-score of interface 12.18 6 7.43

Amino acid composition difference peptide 7.43 6 3.75

Interface area 7.35 6 5.63

InterComp total score 5.58 6 6.31

Link density 4.75 6 4.40

Aligned region sequence identity (receptor) 3.86 6 2.03

Length of receptor 3.20 6 0.98

Length of receptor template 3.10 6 1.23

InterComp sequence score 3.02 6 1.57

TM-score normalized by receptor length 3.01 6 1.51

Receptor template interface size 2.94 6 1.48

InterComp negative logarithm of P-value 2.91 6 2.52

TM-Align RMSD 2.67 6 1.76

TM-score normalized by template length 2.16 6 1.09

Number aligned residues of receptor 2.16 6 0.65

Conservation of receptor surface 2.11 6 1.43

Fraction of interface which was aligned 2.05 6 1.80

Propensity Pr(aajburial) of interface 1.93 6 0.23

Predicted fraction random coil of peptide 1.72 6 0.37

Amino acid composition difference receptor 1.61 6 1.33

Clashes 1.52 6 0.83

Note: Features used by the random forest, and their relative importance as

measured by reduction in Gini Impurity. Note that the features regarding

TM-Align refers to the alignment between the receptor and its template, and

the features regarding InterComp refers to the alignment between the peptide

and its template.

Table 2. Database coverage

Template set � 4.0 Å � 5.5 Å fnat � 0.6 Correct site

All interchain templates 89 164 92 194

Peptide–protein templates 70 109 74 140

Protein–protein templates 59 136 58 168

Note: Coverage of templates for the 251 complexes in the bound set, i.e.

the upper bound on the performance; � 4.0 Å and � 5.5 Å describe for how

many complexes that can be modeled within 4.0 or 5.5 Å LRMSD, respective-

ly. fnat � 0.6 describes how many complexes can be modeled with an fnat of

at least 60%, filtering out possible complexes which would have 10 steric

clashes or more to avoid including unrealistic models. Correct Site refers to

how many complexes have at least one template that positions the peptide in

the correct site on the receptor.
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Both InterPep2 and GalaxyPepDock provide model scores,
InterPep2 in the form of the predicted DockQ-score and
GalaxyPepDock as a predicted accuracy. The ability of these scores
to separate correct from incorrect predictions were investigated in a
precision–recall curve (Fig. 3). Shown here, InterPep2 has also a
higher precision over all recall levels.

In addition, to test the initial hypothesis that templates from
structured proteins can be used to predict the binding of regions
originating from natively disordered proteins, peptides in the bound
set were classified as disordered or ordered. A peptide was consid-
ered disordered if it matched an annotated disordered region from
DISPROT (Piovesan et al., 2017) with a BLAST E-value of 0.05 or
less, otherwise it was classified as ordered. The difference in loss in
DockQ-score when predicting complexes including disordered and
ordered peptides was analyzed (Supplementary Fig. S5). Based on
Kolmogorov–Smirnov and two-sided t-tests it could be concluded
that there was no difference between predictions made for disor-
dered compared to ordered peptides (P>0.5 for the null hypothesis
that there is a difference).

3.3 Benchmark: unbound set
The performance of InterPep2 was also benchmarked together with
methods available as web-servers against the unbound set. Since this
set consists of unbound conformation receptors with bound confor-
mations to compare against, it is more indicative of a real-world
scenario than the test against the bound set.

As can be seen from Figure 4, most methods perform similarly to
each other. However, PIPER-FlexPepDock produces the most cor-
rect structures among the top10, 18 out of 27 using LRMSD or 15/
27 using fnat as the metric of success, compared to InterPep2-
Refined with 15/27 or 13/27, and InterPep2 with 10/27 or 9/27. It
might come as a surprise that an ab initio method like PIPER-
FlexPepDock performs better than template-based methods like
InterPep2 and GalaxyPepDock. However, it should be noted that
for the template-based methods, trivial templates were not allowed
to be used. Indeed, by allowing all templates (except self-hits) the
performance of InterPep2 and GalaxyPepDock increases from 10 to
21 and from 13 to 20 correctly predicted targets, respectively, when
using LRMSD as the metric of success (Supplementary Table S4).

The relative difference in performance between InterPep2-
Refined and InterPep2 is much larger on the unbound set compared
to the bound set: 50% better on the unbound (Fig. 4), compared to
only 9% on the bound (Fig. 2) using top10 and LRMSD as metric.
This indicates that the refinement protocol in InterPep2-Refined,
though useful on the bound set, is even more important on the un-
bound set, where there is also conformational changes in the
receptor.

3.3.1 Combo method

Even though PIPER-FlexPepDock and InterPep2-Refined produce
the highest numbers of correct structures, we found that the target
overlap between correct predictions is surprisingly small, i.e. where
InterPep2-Refined is correct, PIPER-FlexPepDock is wrong and vice
versa (see Supplementary Fig. S7). When using LRMSD as the met-
ric of success, only 9 of the 15 correctly modeled targets by
InterPep2-Refined are also correctly modeled by PIPER-
FlexPepDock, leaving a potential improvement of 6 correctly mod-
eled targets if the methods are combined in an optimal way.
A simple combo method was derived, by selecting InterPep2-
Refined models if the InterPep2 predicted DockQ-score is above a
threshold X (X¼0.412 6 0.009, optimized using leave-one-out
cross-validation see Supplementary information), otherwise a
PIPER-FlexPepDock prediction is selected. The combo method
gained 4 more correct targets compared to PIPER-FlexPepDock and
is superior to both methods alone with 22 correct targets in total
(Fig. 4, LRMSD). Other combinations of methods were explored,
but since there were considerable overlap in correct predictions they
did not reach the performance of the InterPep2-PIPER-FlexPepDock
combo method (see Supplementary Fig. S9).

Fig. 2. The number of the 251 complexes in the bound test set that was correctly

modeled using different performance measures. From bottom to top (dark to lighter

shades), number of correct models at top1, number of correct models for best of

top10 and number of top1 models with the peptide at the correct site. The two col-

umns for top1 and top10 denote LRMSD (left) and fnat (right) as a criteria for

docking success, respectively

Fig. 3. Precision–recall curve showing the capability of InterPep2 and

GalaxyPepDock to correctly rank their own predictions, calculated using the top1

prediction for each target in the bound test set

Fig. 4. Comparison of the ability of different methods to produce correctly docked

peptide structures on the unbound set among top10 [data for HADDOCK,

pepATTRACT and PIPER-FlexPepDock from (Alam et al., 2017)]
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3.4 Generalizability
3.4.1 Generalizability of random forest regressor

Above, we discussed that InterPep2 performed relatively worse on
the unbound compared to the bound set, and that the refinement
protocol in InterPep2-Refined could rescue many of these cases.
Still, a remaining question is if the worse performance on the un-
bound set is related to the fact that the random forest regressor in
InterPep2 is trained only on bound conformations? Which, if the
forest is not able to generalize, could result in suboptimal perform-
ance when presented with unbound starting points. To investigate
this, we need to compare the ability of the random forest to rank
predictions starting from a bound and unbound conformation of the
same target, i.e. we cannot simply compare performance between
the bound and unbound set. To this end, InterPep2 was run on the
targets from the unbound set, but starting from the bound conform-
ation of the receptor. Indeed, since bound docking is a simpler prob-
lem, the models generated in this way were significantly (P<0.019)
better compared to the unbound case (Supplementary Fig. S3).
However, more importantly, the ability to correctly rank the predic-
tion, as measured by the target-wise Spearman correlation between
true and predicted DockQ-score and the difference in LRMSD be-
tween top1 and best model, are not significantly (P>0.7) different
between bound and unbound starting points (Supplementary Fig.
S2). Thus, the random forest in InterPep2 is able to generalize to un-
bound starting points even though it was trained on only bound
conformations.

3.4.2 Generalizability on new data

To further validate the performance and viability of InterPep2, the
performance of the method compared to GalaxyPepDock and
CABSdock was also investigated on the PDB16–19 set, which con-
sists solely of structures which were determined after the newest
structures in the InterPep2 training and template sets.

As can be seen in Figure 5, the performance of the methods rela-
tive each other are roughly the same as in Figure 2, implying the
level of generalizability is roughly the same for all methods tested,
and the overall performance for InterPep2 and GalaxyPepDock is
slightly better, implying the methods tested can generalize to new
data.

3.5 Features of a good template
In the previous section, we showed that the random forest can per-
form well on data not used for training, and can therefore be
assumed generalizable. As such, the features of high importance in
Table 1 should represent generally important features for the

similarity of one peptide–protein interaction interface to another
interchain interface. Four features stand out as the most important:

The feature with highest importance is the length of the chain
representing the peptide in the template. This is unsurprising, as we
have previously concluded that for acquiring correct predictions it is
often better to use peptide–protein interactions as templates, rather
than protein–protein interactions (see Table 2 and Supplementary
Fig. S6). Among all predictions made by InterPep2 on the bound set,
179 of the 251 (71.3%) top ranking predictions are derived from
peptide–protein template interactions. The second-most important
feature is the IS-score of the suggested interface, representing the
conservation of the interaction surface. Sequence conservation is
used as part of many machine-learning-based approaches to model-
ing and can sometimes alone be enough for the identification of
binding-sites (Mayrose et al., 2004). Finally, the similarity in amino
acid composition between the peptide and its template, and the total
surface area covered by the peptide, both have large importance. In
summary, features that describe the similarity of the peptide to its
template, and features that identify the sequence conservation and
size of the binding area of the receptor seem to be the most
important.

More detailed features such as the residue packing or shape com-
plementarity that previously have been proven important when
ranking refined protein–protein models (Basu and Wallner, 2016b),
do not impact the result at all when ranking unrefined coarse models
as is the case here (see Supplementary information). The number of
clashes do have an effect on prediction accuracy, but the importance
is small (Table 1).

3.6 Prediction example
An example of a successful InterPep2 prediction is shown in
Figure 6. This example is of the ADD domain binding to a H3 pep-
tide tail. Note how in Figure 6A, predictions 7–10 suggest an alter-
nate binding site. The templates which suggest this site are all from
the polycomb protein EED, which has also shown to bind to the H3
peptide in previous studies (Li et al., 2014). In addition, analyzing
the general areas of interaction of all predictions with ConSurf
(Ashkenazy et al., 2016; Landau et al., 2005) showed both binding
sites to be considerably more conserved than the rest of the protein
surface. Both predicted binding sites had relative evolutionary rate
scores with a mean of �0.56, implying conservation, compared to
�0.89 for the center of the receptor (heavily conserved), and con-
trasting the mean of 0.87 on the rest of the surface (little to no con-
servation), indicating a possible alternate interaction-site. In another
structure of the domain, 3QL9, the protein is shown with its C-ter-
minal helix in this groove, and in 2PVN this site is where the ADD
domain interfaces with the other domains of the full DNMT3L
structure.

Fig. 5. The number of the 252 complexes in the PDB16–19 set that was correctly

modeled by the different methods using different performance measures. From bot-

tom to top (dark to lighter shades), number of correct models at top1, number of

correct models choosing the best of top10 for each target and number of top1 mod-

els with the peptide at the correct site. In the cases of correct at top1 and top10, the

left columns denote using LRMSD as a criteria for docking success, whereas the

right columns denote using fnat

A B

Fig. 6. An example of a successful InterPep2 prediction on the complex of DNMT3a

ADD domain binding to H3 peptide [PDB: 4QBQ (Noh et al., 2015)]. (A) The top10

predictions made by InterPep2, peptides in green, as well as the native structure, peptide

in pink. The receptor is blue and its surface a semitransparent gray. (B) A closer look at

the top1 prediction from InterPep2, in green, together with the native peptide, in pink.

The predicted peptide is positioned 2.1 Å RMSD from the native peptide conformation,

counting backbone positions. The images were constructed through PyMOL

(Schrödinger, 2015). (Color version of this figure is available at Bioinformatics online.)
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This example shows that even though some of the top predic-

tions might not be at the correct peptide binding site, they might in-
dicate other areas of biological importance. To test this hypothesis,

we analyzed all top10 predictions for all bound set test targets (2510
predictions in total), for which a total of 1614 predictions position
the peptide at the correct binding sites. By comparing to binding

sites of closely related structures within the PDB (BLAST E�1e�20),
401 of the remaining 896 predictions position the peptide at another

binding site, which is either for another peptide or another protein–
protein interaction, sometimes dimerization. A histogram over the
distributions of the predicted score for the different types of pre-

dicted sites, Figure 7, shows that, although nonsense-predictions
and predictions of other sites (sites which are not the peptide–pro-

tein site we test for) are difficult to tell apart, they follow different
distributions. In general, at a low predicted score of circa 0.15–0.25,
it is roughly equally likely that a prediction is of the correct site as

that it would be of another binding site or a nonsense-prediction al-
together, while at higher predicted scores the majority of predictions
are clearly most often positioned at the correct binding site.

3.7 Runtime analysis
InterPep2 runtime scales linearly with the size of the receptor.

Running on 32 CPU cores of Intel Xeon Gold 6130 on CentOS 7,
InterPep2 takes circa 4 h when the receptor is 100 residues long, 6 h
when the receptor is 300 residues long, or 8 h if the receptor is 500

residues long.

4 Conclusions

InterPep2 applies structural templates for docking peptide frag-
ments, using a random forest regressor to score plausible interaction

models. Because InterPep2 is using a residue-order-independent
structural alignment for positioning the peptide, it is not limited to

use peptide–protein interaction templates, but can use any protein–
protein interaction surface as template to model peptide–protein
interaction complexes.

InterPep2-Refined achieves state-of-the-art performance on a
large set of 251 bound peptide–protein complexes with up to 25 res-

idues long peptides, placing the peptide within 4.0 Å LRMSD of its
native conformation in 50 structures considering top10 predictions,
and with the highest precision across all recall levels, for example at

50% recall the precision is 61.5% compared to 47.8% precision for
the second best method. This performance is maintained when test-

ing on a new set (PDB16–19) of 252 complexes from structures
deposited after the complexes used in the construction of the

InterPep2 training and template sets, for which 67 peptides were
placed in the correct conformation.

On a frequently used dataset of 27 unbound-to-bound com-
plexes InterPep2-Refined performed second-best, successfully plac-
ing the peptide within 4.0 Å LRMSD in 15 of 27 peptide
conformations, and modeling it with an fnat of at least 0.6 in 13 of
the 27, without the use of templates with similar sequence to the tar-
get. More interesting however, is that a method combining the
template-based InterPep2-Refined with the ab initio method PIPER-
FlexPepDock vastly outperformed both methods it was derived
from, successfully generating models with the peptide within 4.0 Å
LRMSD of its native position for 22 of the 27 complexes, with an
fnat of at least 0.6 in 19 of the 27.
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