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Abstract

The present paper deals with a new efficient shooting and bouncing ray (SBR) method

based on OptiX and normal vectors correction. The basic idea is to make full use of the com-

puting resources of the RTX series graphics cards. For ray tracing, the algorithm uses OptiX

to invoke the built-in RT Cores of hardware. Thus, a fast intersection test can be imple-

mented. To reduce the error of ray tracing caused by the facetted surface characterizing the

curved surface, the direction of the reflected ray is corrected by normal vectors correction.

Additionally, multiple GPU cores are invoked to accelerate the calculation of far-field integra-

tion of millions of ray tubes, which can improve the efficiency of the algorithm while reducing

the data transmission time of heterogeneous devices. Simulation results show that the ray

path after normal vectors correction is consistent with the theoretical results, and the algo-

rithm can predict the RCS of arbitrary facetted geometries, which is 60 times faster than the

SBR method based on kd-tree.

Introduction

Computational electromagnetic theory has received more attention from researchers and engi-

neers over the last decade. This fact is due to their wide applications such as antenna design

and analysis [1, 2], stealth technology [3], and radar cross section (RCS) prediction [4–6]. The

essence of computational electromagnetics is to take Maxwell’s equations, which are highly

generalized by macroscopic electromagnetic theory, as the mathematical model, combine with

the initial and boundary conditions of practical problems, and give the solution of electromag-

netic problems. For simple objects, such as spheres and cylinders, the analytical solutions of

electromagnetic problems can be deduced by Maxwell’s equations.

However, the objects in practical problems are often more complex, such as the helicopter.

It is impossible to obtain the solution of electromagnetic problems for electrically large com-

plex objects by analytical methods. Considering that the analytical methods can only solve sim-

ple problems with regular boundaries, a variety of numerical methods have been proposed to

approximate the solution of the original problem, such as the moment method (MOM) [7, 8],

the finite element method (FEM) [9], and finite-difference time-domain (FDTD) [10], among
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which the moment method is the most widely used. In 1968, R. F. Harrington introduced

MOM into computational electromagnetics for the first time, which achieved high computa-

tional accuracy for electromagnetic problems and good adaptability to the 3D object with arbi-

trary shape [7]. After decades of development, MOM is still used as the benchmark algorithm

for other numerical methods.

Several computational difficulties limit the application of classical numerical approaches.

The first difficulty is that the size of the object in most problems is much larger than the wave-

length, which is called the electrically large object, resulting in the excessive cost of hardware

resources in these methods, especially in the military field. Therefore, these methods are usu-

ally deployed on cluster servers. Another dilemma is that even with cluster servers, classical

numerical approaches can not produce results in a reasonable time.

With the increase of radar frequency, these shortcomings will become more and more obvi-

ous. Then, many asymptotic methods have been taken into account, such as geometrical optics

(GO) [11], physical optics (PO) [12, 13], and method of equivalent currents (MEC) [14–16],

which are based on the fact that the coupling effect between the facets of the object can be

approximately ignored under the irradiation of high-frequency electromagnetic wave. Differ-

ent methods correspond to different scattering mechanisms. Because of its ability to accurately

simulate the multiple reflection mechanism, the shooting and bouncing rays (SBR) method

has been one of the basic tools for over four decades when high-frequency RCS prediction of

complex electrically large objects is of concern [17, 18]. It is a hybrid method of geometrical

optics combined with physical optics. The GO method is used to simulate the multiple reflec-

tions of thousands of ray tubes between various parts of the object, and then the PO method is

used to solve the far-field integral of each ray tube.

Therefore, the SBR method mainly includes three parts, which are ray path tracing, PO

radiation integral, the superposition of the fields of each ray tube. Hence, the factors that affect

the performance of the SBR method are mainly in two aspects, one is the ray path tracing, the

other is the calculation of the far-field integral of millions of ray tubes. As soon as the ray path

tracing is completed, the far-field computation for each ray tube is independent of each other,

which means that it is easily accelerated by parallel techniques, such as multithreading or GPU

acceleration. Therefore, the core of the SBR algorithm is to accurately and efficiently trace the

enormous quantity of rays according to the geometrical features of complex objects.

To improve the computational efficiency of ray tracing, a variety of spatial acceleration

structures have been developed to reduce the number of intersection tests in the process of

intersection between each ray and all facets of the object, such as octree structure [19] and kd-

tree structure [20, 21]. The traversal of these acceleration structures is usually recursively

implemented, which is not supported on the GPU. Based on this fact, researchers have pro-

posed a variety of kd-tree traversal algorithms adapted to GPU architecture [22–24]. Mean-

while, the new data structure based on GPU such as bounding volume hierarchies (BVHs) was

proposed to speed up the construction and traversal of the scene, which reduced the complex-

ity of ray tracing to log(N), where N is the number of tessellated triangle faces [25–27]. It also

shows that the performance of BVHs on GPU is better than that of kd-tree.

While there are existing ray tracing algorithms on GPU, they are generally used in the field

of computer vision. It is worth noting that they all regard GPU as a small cluster server, which

only takes advantage of thousands of parallel-processing cores in a single GPU. Benefiting

from the demand for high-performance graphics cards in the gaming field, NVIDIA released

an RTX series of graphics cards with a new Turing architecture in 2018. RTX graphics card

integrates multiple dedicated ray tracing processors, which can accelerate the propagation of

light and sound in 3D environments at a speed of up to 10 Giga Rays per second. Therefore, it
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is promising to study the asymptotic method suitable for the Turing architecture to make full

use of the built-in RT Cores.

In this paper, we present the acceleration of the SBR method based on OptiX [28] and nor-

mal vectors correction. Unlike other GPU-based acceleration algorithms, the method not only

utilizes GPU parallel computing, but also uses RT Cores to accelerate the algorithm from the

hardware level. Additionally, normal vectors correction is introduced in ray path tracing to

obtain ray path more accurately and to improve the precision of scattered field radiated by ray

tubes. Firstly, the basic principle of the SBR algorithm is introduced, and the key points affect-

ing the performance of the algorithm are pointed out. Then, a detailed description of the accel-

erated algorithm is presented, followed by the simulation results and finally, conclusions are

shown regarding the performance of our method.

Materials and methods

Brief overview of SBR

When the scatterer is illuminated by the electromagnetic wave, it will interact with the incident

wave to generate a scattered field. The SBR algorithm is a hybrid method combining PO and

GO, which can be divided into four stages. Electromagnetic propagation is first represented

with the reflection, refraction, and divergence of optical rays. Millions of ray tubes are

launched from the source to the scatterer, and the paths of each ray tube bouncing with the

scatterer surfaces are traced according to Snell’s law. Next, the electromagnetic properties of

magnitude, direction, and phase are then added on top of the ray traces to mimic the proper-

ties of waves. Then, the contribution of each ray tube to the scattered field is independently cal-

culated. Finally, the final scattered field of the scatterer under the irradiation of the incident

wave can be expressed as the superposition of individual contributions from all ray tubes.

Since the cross-sectional area at both ends of the ray tube may change to a certain extent

when the ray tube intersects the next facet, it is necessary to correct the diffused electromag-

netic wave energy. Fig 1 shows a schematic diagram of the propagation path of rays in a ray

tube with a homogeneous medium, where P1 is the inflow end and P2 is the outflow end. Sup-

pose that the field of each ray in any transverse cross-section of the ray tube is the same as that

of the central ray. Given the incident electric field E1, the electric field for the center ray E2 at

P2 is determined by the law of conservation of energy, as shown in Eq (1).

jE1j
2dS1 ¼ jE2j

2dS2
ð1Þ

where dS1 and dS2 represent the cross-sectional area of the ray tube at P1 and P2, respectively.

Fig 1. The propagation path of rays in a homogeneous medium.

https://doi.org/10.1371/journal.pone.0253743.g001
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According to Eq (1), the change of the electric-field intensity along the direction of the ray

tube can be obtained. Since the distance of the ray propagating is l m, the spatial phase delay is

exp(−jkl). Therefore, the electric field at the outflow end P2 can be expressed as

E2 ¼

ffiffiffiffiffiffiffi
dS1

dS2

s

E1 exp ð� jklÞ ð2Þ

When considering multiple reflections, the electric field at each intersection of the ray tube

can be solved recursively by Eq (2). At this point, the tracking of the electric field during the

propagation of the ray tube can be completed.

The electric field in Eq (2) represents the incident electric field of the triangular facet where

the ray tube and the object intersect. From Stratton-Chu equations [29], the scattered field of

the ray tube in the far region is

EsðrÞ ¼
jk0e� jk0r

4pr

Z

S
½̂s � ðŝ � ðn̂ � ð̂i � Eiðr0ÞÞÞÞ þ ŝ � ðEiðr0Þ � n̂Þ�ejk0 ŝ�r0ds ð3Þ

where î is the propagation direction of the incident ray during the last reflection, ŝ is the unit

vector of the observation point, r is the distance between the observation point in the far region

and the triangular facet, and Ei(r0) is the incident electric field at the facet determined by Eq

(2). Under the far-field assumption, r!1.

The total scattered field of the scatterer can be obtained by superposing the scattered fields

of millions of ray tubes, i.e.

Es
TðrÞ ¼

jk0e� jk0r

4pr

XM

m¼1

Cm

Z

DSm

ejk0r0m�ðŝ � îÞdS

Cm ¼ ½̂s � ŝ � ðn̂ � ð̂i � Eiðr0mÞÞ þ ŝ � ðEiðr0mÞ � n̂Þ�ejk0 î�r0m

ð4Þ

where M represents the total number of ray tubes.

It is difficult to directly solve the surface integral in Eq (4). Therefore, to simplify the calcu-

lation of the scattered field, the Gordon algorithm can be used to convert the surface integral

to the line integral on the three sides of the triangle [12].

Real-time ray tracing based on OptiX

The principle of the SBR method shows that there are two time-consuming processes. The first

time-consuming part is that millions of ray tubes are launched from the source to the scatterer,

and the paths of each ray tube bouncing with the scatterer surfaces need to be traced. Suppose

the 3D model of the scatterer is described by N flat triangles. In order to obtain accurate

results, a considerable number of rays (M) are required to be shot to the scatterer. Evidently,

the operational complexity of direct ray tracing is O(MN). For realistic objects, N is often more

than one million, which leads to the unacceptable time of ray tracing. As both N and M can be

large numbers, it is necessary to speed up the ray-triangle intersection algorithm.

OptiX is a general purpose ray tracing engine designed for NVIDIA GPUs to achieve opti-

mal ray tracing performance. The core of OptiX is a domain-specific just-in-time compiler

that generates custom ray tracing kernels by combining user-supplied programs for ray gener-

ation, material shading, object intersection, and scene traversal [28]. Its general programming

interface enables it to be applied not only to graphic but also to non-graphic domains. Unlike

other ray tracing engines, OptiX is intended for ray tracing applications that use NVIDIA

CUDA technology, such as film and television visual effects. Since ray tracing is a prerequisite
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for the SBR method, this fact determines that OptiX can be applied to the high-frequency

asymptotic methods.

There are eight types of user-defined ray interactions, called programs, which are intercon-

nected by scene traversal. The relationship between these programs is shown in Fig 2. In addi-

tion to scene traversal, seven other programs and exception programs constitute the above

eight programs. It is worth noting that the gray boxes in Fig 2 represent user-specified pro-

grams, which are not implemented in OptiX. The user is responsible for their specific imple-

mentation, such as ray generation, direct callable, and miss. Similar to a regular CUDA

function call, direct callables are called immediately. Unlike direct callables, continuation call-

ables are executed by the scheduler. Both of them allow for additional programmability within

the standard set of NVIDIA OptiX programs. The ray generation program generally contains

three parts, which are creating rays, starting scene traversal, and storing the results of ray trac-

ing. When considering multiple reflections, the current incident direction, intersection point,

and other relevant information will be used as the basis for creating the reflected ray. The

intersection program implements ray-geometry intersection tests. When a traced ray finds the

closest intersection point, the closest-hit will be called, such as for material shading. Miss pro-

gram is executed when the ray does not intersect any geometry in the scene. Unlike closest-hit,

any-hit will be called when a traced ray finds a new, potentially closest, intersection point. It

does not provide the closest point of the intersection but only indicates that the ray intersects

with geometry in the scene, and is usually used for shadow computation. If exceptions are

enabled, the built-in or user-provided exception program may be called from any program or

scene traversal when an exception occurs.

In OptiX, the geometric data of the scene are first built as acceleration structures on the

GPU, which contains the 3D model of the scatterer as well as static or dynamic transforma-

tions. Then the ray generation program constructs the ray tube by specifying the source point,

direction, and parameters. After that, the ray tube is ready for launch. For determining the

state of ray propagation in the scene, OptiX searches a graph of nodes composed of accelera-

tion structures and transformations. If the ray hits the surface, the closest-hit program will be

triggered, which can provide hit point coordinate, hit surface element, and other relevant

information. If the ray has no intersection with the scene, the miss program will be triggered,

which is generally used to mark the background color or indicate that the ray has no intersec-

tion point.

Fig 2. Relationship of OptiX programs. The green boxes represent fixed algorithms provided by the OptiX; the gray boxes represent user-specified

programs.

https://doi.org/10.1371/journal.pone.0253743.g002
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To speed up the search for the intersection of rays with the geometric data in the scene,

OptiX uses the BVH model to build the acceleration structures. Although it is difficult to

achieve efficient construction of accelerated structures and efficient traversal of a scene graph,

they are built-in functions and done automatically by the OptiX. Thus, the implementation of

programs such as ray generation, closest-hit, and miss is of concern.

Unlike the graphic domain, rays are not produced by point source of light. In the far-field

condition, the incident electromagnetic wave can be approximated as a plane wave. Therefore,

these rays are parallel to each other, which means that they have different starting points but

the same direction, as shown in Eq (5).

P ¼ P0 � ck̂ ð5Þ

where P0 is the reference point of the virtual aperture, c is a positive constant, and k̂ is the unit

vector of the incident direction.

It is worth noting that the ray generator not only emits rays but also invokes the scene tra-

versal algorithm to determine the state of rays. After the execution of the closest-hit program is

completed, the hit point coordinate and the corresponding surface element will be returned to

the ray generation. Therefore, the reflected ray ŝ can be obtained simply through the normal

vector of the triangle facet n̂ and the incident direction î, which can be expressed as

ŝ ¼
s
s

ð6Þ

where

s ¼ î þ 2 cosyn̂

cosy ¼ � î � n̂

(

and the source point is the hit point.

Therefore, the new ray ŝ will be generated and launched in the ray generation program.

This process is performed recursively to obtain the path of the ray bouncing with the scatterer

surfaces. In the miss program, the ray will be terminated, which means that the life cycle of the

ray ends.

To increase the speed of calculation, there are three main approaches in OptiX, parallelism,

BVH, and RT Cores. Parallelism is based on the fact that a GPU has a massively parallel array

of integer and floating-point processors, as well as the utilization of multiple GPU cores.

OptiX assigns millions of rays to multiple threads and performs ray tracing at the same time to

achieve very high levels of parallelism. Unlike the kd-tree spatial splits, the BVH divides the

space through all information of the objects so as to achieve efficient scene segmentation. After

spatial splits, objects are surrounded by slightly overlapping bounding boxes. At this point, the

intersection operation of rays and objects will be converted into that of rays and bounding

boxes. If the ray does not touch the bounding box, it will not intersect the objects inside the

bounding box. This will speed up the intersection test between rays and facets of objects. The

third approach is the most important, which is the core of OptiX to achieve the state of the art

ray tracing. By invoking the built-in RT Cores of hardware, OptiX can greatly reduce the time

consumption of ray tracing, thereby realizing real-time ray tracing.

Normal vectors correction

In path tracing, the direction of the reflected ray is determined by the normal vector of the hit

facet and the direction of the incidence ray, as shown in Eq (6). However, real objects often

PLOS ONE Acceleration of shooting and bouncing ray method based on OptiX and normal vectors correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0253743 June 25, 2021 6 / 17

https://doi.org/10.1371/journal.pone.0253743


contain a large number of curved surfaces, which for convenience are often modeled using tri-

angular facets. Although there were SBR methods based on NURBS surfaces [30], the perfor-

mance loss is greater than that of triangular facets. Therefore, triangular facets are often used

in practice.

The use of triangular facets implies that the reflection of rays at locally flat surfaces. If the

reflected ray interacts with the object during subsequent propagation, neglect of the surface

curvature might significantly affect the simulation results. Therefore, to accurately predict the

RCS of any triangular facetted objects, the curvature of the surface of the objects must be taken

into account. This means that for an arbitrary curved surface represented by triangular facets,

the principal radii of curvature R1 and R2, the corresponding directions ê1 and ê2, the hit point

P, and the normal n̂ at this point need to be calculated during ray tracing. If the curvature is

not considered, which is a special case of normal vectors correction, the normal n̂ will be the

normal vector of the triangular facet, i.e. R1 = R2 =1.

Suppose the hit point P lies on a triangle fi with points P1, P2, and P3. It is easy enough to

guarantee that the three vertices are located on the real curved surface. To calculate the curva-

ture information of point P, the neighboring triangles of fi, which share vertex with fi, need to

be analyzed, as shown in Fig 3. The number of the neighboring triangles is not fixed, which is

related to the local geometry. But, it contains at least six non-repeated vertices. In the local

region of P, the curved surface of the object can be approximated as a quadratic polynomial

surface, which can be expressed as

wðu; vÞ ¼ a2;0u2 þ a0;2v2 þ a1;1uvþ a1;0uþ a0;1vþ a0;0 ð7Þ

where ai,j is the undetermined coefficient. The coordinate system (u, v, w) forms the local

Fig 3. The neighboring triangles of hit point P.

https://doi.org/10.1371/journal.pone.0253743.g003
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coordinate system of the triangle fi, where the uOv-plane is the plane of the triangle. To avoid

ambiguity, the origin of the local coordinate system is located at the center of mass of the trian-

gle fi.
For the six undetermined coefficients in Eq (7), at least six vertices are needed for the least

square fitting, which is easy to satisfy. Thus, the system of equations with undetermined coeffi-

cients can be expressed as

wj ¼ a2;0u2
j þ a0;2v2

j þ a1;1ujvj þ a1;0uj þ a0;1vj þ a0;0; j ¼ 1; 2; 3; . . . ;m ð8Þ

where m represents the number of vertices.

By vectorizing Eq (8), it can be simplified to

Aa ¼ w

A ¼

u2
1

v2
1

u1v1 u1 v1 1

u2
2

v2
2

u2v2 u2 v2 1

..

. ..
. ..

. ..
. ..

. ..
.

u2
m v2

m umvm um vm 1

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

; a ¼

a2;0

a0;2

a1;1

a1;0

a0;1

a0;0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;w ¼

w1

w2

..

.

wm

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð9Þ

According to the method of least squares, the solution of the system of Eq (9) can be

expressed as

a ¼ ðATAÞ� 1ATw ð10Þ

Consequently, the local curved surface at the hit point P can be approximately expressed by

Eqs (7) and (10). The relevant curvature information can be accurately obtained by differential

operation. Thus, the normal vector at point P can be corrected according to the curvature to

improve the accuracy of ray tracing.

Acceleration of far-field integral

Since ray tracing based on OptiX has achieved an optimal level, the second time-consuming

part of SBR method is the calculation of the far-field integral of millions of ray tubes. Because

the scattering contribution of each ray tube is independent of each other, the calculation of

far-field integral can be accelerated by multithreading. If the multi-threading technology of the

CPU is used to accelerate the calculation of the far-field integral, the result of the ray tracing

needs to be transmitted from the GPU back to the CPU, which involves the transmission of

data between heterogeneous devices. Because this kind of data transmission uses the PCI-E

bus, the transmission rate is slow, which will greatly affect the performance of the SBR

algorithm.

Fortunately, OptiX is intended for ray tracing applications that use NVIDIA CUDA tech-

nology, which can be seamlessly integrated with CUDA to maximize the use of GPU resources

while avoiding additional data transmission. Considering that millions of ray tubes are emitted

uniformly from the virtual aperture, therefore, in the CUDA program, the number of blocks

and threads per block is two-dimensional, and each thread corresponds to a ray tube on the
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aperture. Therefore, the performance bottleneck is solved through the concurrent execution of

thousands of threads. Fig 4 shows the flowchart of the acceleration of shooting and bouncing

ray method based on OptiX and normal vectors correction.

It can be seen from Fig 4 that the proposed method consists of two parts. One part is the

CPU codes that control the process of the whole program, and the other part is the GPU part

that does the parallel work. Since the GPU cannot read files on the hard disk, the CPU is

responsible for reading the geometry model file of the object into the memory. Then, the CPU

starts to allocate video memory and copy the data from the memory to the video memory. For

RCS prediction, the RCS within a certain angle range is generally calculated. First of all, for the

Fig 4. Flowchart of the proposed method.

https://doi.org/10.1371/journal.pone.0253743.g004
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starting angle, the real-time ray tracing algorithm based on Optix and normal vectors correc-

tion introduced above is used to track the path of millions of ray tubes. On this basis, the kernel

function “SBR_kernel” is called to calculate the scattering contributions of these ray tubes in

parallel. Although the superposition of the scattering contributions of all ray tubes can be per-

formed on the CPU, to avoid the transmission of a large amount of data between heteroge-

neous devices, the proposed method calls another kernel function “Add_SBR_kernel” to

complete this summation process. Finally, the RCS result under the current angle is sent back

to the CPU. This process will continue until the calculation of RCS at all angles is completed.

Therefore, far-field radiation integrals of millions of ray tubes can be accelerated using

CUDA. Data transmission between heterogeneous devices only exists in the beginning and

end stages, and the efficiency of the algorithm will be greatly improved. The SBR method

based on OptiX and normal vectors correction is completely accelerated on the RTX GPU.

And the RT Cores greatly speed up the efficiency of the SBR method, so that the personal lap-

top can predict the RCS of complex electrically large objects.

Results

To verify the correctness and efficiency of the SBR method based on OptiX and normal vectors

correction, a CPU-based version, called the SBR method based on kd-tree, is also implemented

for comparison. Three-dimensional models of different objects have been established, and sev-

eral numerical experiments have been carried out. These experiments are run atop Windows

10 on a personal laptop. The GPU hardware used in this paper is GeForce RTX 2070 (Note-

books), with 8 GB of memory. The CPU hardware used in this paper is Intel i7–9750H. Both

methods are implemented in C++, and the development environment is Visual Studio Com-

munity 2017.

For correctness verification, a simple multi-object model is created. The scenario consists

of a metallic cylinder with a half-sphere on one end, both floating on a metallic cuboid, as

shown in Fig 5. The length, width, and height of the cuboid are 1.4 m, 1 m, and 2 cm, respec-

tively. For the sphere-cylindrical combination, the length of the cylinder is 0.8 m, and the

radius of it and the sphere is 0.2 m. The gap between the combination and the cuboid is 2 cm.

Suppose the operating frequency of the radar is 10 GHz. To guarantee convergence of results

with respect to the surface representation, the objects are dissected by a mesh size of 1 cm,

resulting in 88, 776 triangular facets. The three-dimensional geometric model after tessellation

is shown in S1 Text.

Theoretically, RTX series graphics cards promise to deliver about 10 Giga Rays of ray trac-

ing performance, a new performance metric that tracks the card’s ray tracing operations per

second, thus realizing real-time ray tracing. The ray tracing performance of different graphics

cards is shown in Table 1. It indicates that RTX 2070 graphics card can achieve 6 Giga Rays/s.

For verification of the performance of ray tracing in electromagnetic simulation calcula-

tions, a ray tracing algorithm based on OptiX is studied and compared with the traditional

method based on kd-tree. For this scenario, the ray tracing performance of different algo-

rithms is compared, so different numbers of rays are launched from the source to the scatterer,

which may lead to inaccurate results of the SBR method. Fig 6(A) shows the relationship

between the time consumed by the ray tracing algorithm and the number of rays under the dif-

ferent number of reflections for the two methods. The number i in kd-tree_i and OptiX_i rep-

resents the number of reflections. It can be seen that the simulation time is approximately

proportional to the number of rays. The more times the ray bounces with the target surface,

the longer it takes to complete the ray tracing. Moreover, the ray tracing algorithm based on

kd-tree is significantly slower than the ray tracing algorithm based on OptiX. Due to the large
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time-consuming difference between the two methods, Fig 6(A) cannot show the details of the

performance of the ray tracing algorithm based on OptiX, so Fig 6(B) only shows the perfor-

mance of the OptiX-based method under the different number of reflections. It can be seen

that even with 9 reflections, the time spent on tracing 1.7 million rays is less than 15 millisec-

onds. For one reflection, it takes only 2.97 milliseconds. It can be calculated that the ray tracing

algorithm based on OptiX can complete 0.57 Giga rays tracing in 1 second, which is 338 times

faster than the ray tracing method based on kd-tree. Although there is a gap with the peak per-

formance, this is because: 1) the GPU hardware used in this paper is a mobile graphics card for

Fig 5. Test case of multi-object model.

https://doi.org/10.1371/journal.pone.0253743.g005

Table 1. The ray tracing performance of different graphics cards.

Graphics card model Ray tracing performance

RTX 8000① 11 Giga Rays/s

RTX 2080Ti② 10 Giga Rays/s

RTX 2080 Super③ 8 Giga Rays/s

RTX 2080④ 8 Giga Rays/s

RTX 2070 Super⑤ 7 Giga Rays/s

RTX 2070⑥ 6 Giga Rays/s

① https://www.nvidia.com/en-us/design-visualization/quadro/rtx-8000/
② https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
③ https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-super/
④ https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080/
⑤ https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2070-super/
⑥ https://www.nvidia.com/geforce/graphics-cards/rtx-2070/

https://doi.org/10.1371/journal.pone.0253743.t001
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Fig 6. The ray tracing performance of different algorithms. (Panel A), the relationship between the simulation time and the

number of rays under different number of reflections for the ray tracing method based on kd-tree and the ray tracing method

based on OptiX. (Panel B) the performance of the OptiX-based method under different number of reflections.

https://doi.org/10.1371/journal.pone.0253743.g006
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notebooks; 2) the GPU hardware also needs to be responsible for tasks such as display; 3) the

results are related to the object.

The reflected direction of the rays, using the facetted surface without normal vectors correc-

tion, will be deviated, which will adversely impact the object’s RCS. Therefore, the RCS results

can be used to determine whether the normal vectors need to be corrected. Unlike the ray trac-

ing test, scattering simulations are performed for HH-polarization (horizontal transmit and

horizontal receive) at the frequency f = 10 GHz with an elevation angle θ = 35˚. The azimuth

angle ranges from 0˚ to 180˚ with an interval of 0.5˚. The geometric model of the object is

shown in Fig 5. The number of rays in this scenario is set to 1 million per aspect angle, and the

maximum number of reflections of rays is set to 9. Fig 7 shows the RCS results for the test sce-

nario, using the facetted surface without normal vectors correction (Fig 7A) and the facetted

surface with normal vectors correction (Fig 7B), respectively, and the comparison with the

exact solution based on the multilevel fast multipole method (MLFMM). It should be noted

that the RCS results include the edge diffraction contribution calculated by the MEC method.

Comparing the results with the exact solution obtained by the MLFMM algorithm, it can be

seen that the facetted surface representation without normal vectors correction causes signifi-

cant errors in RCS prediction, especially in the angular range from 0˚ to 80˚ and 105˚ to 125˚.

The former approximately underestimated 4 dB, while the latter approximately overestimated

15 dB. The results of the normal vectors correction are depicted in Fig 7(B). Good agreement

in comparison with the exact solution is observed, especially in the angular range from 0˚ to

80˚. Therefore, by using the normal vectors correction, the facetted surface can not only repre-

sent the object geometries efficiently but also can be used to accurately predict the RCS data.

On the other hand, the precise influence of normal vectors correction on the ray path can

be analyzed by tracing a single ray. For the convenience of calculating the exact coordinates of

the intersection point between the ray and the object surface, the azimuth angle of the incident

ray is taken as 90 degrees. At this time, the propagation path of the ray is located in the YOZ-

plane. The coordinates of each hit point under multiple reflections are calculated and com-

pared with the analytical solution, as shown in Table 2. The error of the ray tracing without

normal vectors correction is very large, causing obvious errors in the RCS prediction, which is

consistent with the simulation results. However, after normal vectors correction, the ray trac-

ing results are in good agreement with the analytical solution. Therefore, it is necessary to

introduce normal vectors correction in the SBR method.

For comparing the efficiency of our method and the traditional SBR algorithm based on

kd-tree, the scattering simulations of different objects are performed for HH-polarization at

the frequency f = 10 GHz. In these experiments, except for the different objects, other calcula-

tion conditions are the same, resulting in different numbers of facets. Table 3 shows the calcu-

lating time of monostatic RCS simulations of different objects at f = 10 GHz. These objects

include elementary scatterers, different types of multi-rotor Unmanned Aerial Vehicles

(UAVs), and fixed-wing UAVs. The larger the size of the object, the greater the number of fac-

ets after its tessellation. It is worth noting that the unit of calculation time in the traditional kd-

tree-based method and our method is hours and minutes respectively. When the number of

facets exceeds 2 million, the former takes nearly two days to complete the RCS prediction,

while our method can be completed in less than an hour. It can be seen that our method

improves the performance by about 60 times compared with the traditional method. Although

the number of facets is small, the acceleration is relatively low, which can be explained that the

calculation time cannot conceal the data transmission between the CPU and the GPU. This sit-

uation will improve a lot when the number of facets is large.
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Fig 7. The RCS results of our method and MLFMM algorithm. (Panel A), our method without normal vectors correction.

(Panel B) our method with normal vectors correction.

https://doi.org/10.1371/journal.pone.0253743.g007
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Conclusion

A new efficient SBR algorithm based on OptiX and normal vectors correction is presented in

this paper. For path tracing, the algorithm uses the built-in RT Cores of the RTX series graph-

ics cards to accelerate processing, so the intersection of the ray and the object can be efficiently

implemented. Moreover, for the calculation of the far-field integration of millions of ray tubes

in the SBR method, the algorithm combined with CUDA acceleration technology makes full

use of the computing resources of the graphics card and is seamlessly integrated with the ray

tracing, which greatly reduces the data transmission time between the CPU and GPU hetero-

geneous devices and improves computational efficiency. Considering the model error intro-

duced when the facetted surface represents the curved surface, the algorithm corrects the

normal vector during path tracing, which significantly improves the accuracy of path tracing,

and can accurately obtain the RCS data. Simulation results show that our method can effi-

ciently and accurately predict the RCS of arbitrary facetted geometries, which is about 60 times

faster than the traditional method and can be done with a personal laptop.
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Table 2. The coordinates of each hit point under multiple reflections.

Reflection Analytical solution Without normal vectors correction Normal vectors correction

1 (−257.78, 165.24, 107.33) (−257.78, 164.86, 106.79) (−257.78, 164.86, 106.79)

2 (−257.78, 93.99, 0) (−257.82, 99.04, 0) (−257.78, 92.95, 0)

3 (−257.78, 71.85, 33.35) (−257.84, 77.14, 35.53) (−257.78, 70.75, 32.97)

4 (−257.78, 76.85, 0) (−258.27, 86.01, 0) (−257.78, 75.08, 0)

5 (−257.78, 82.53, 37.82) (−258.82, 97.31, 45.32) (−257.78, 79.90, 36.69)

6 (−257.78, 141.38, 0) (−261.67, 228.58, 0) (−257.78, 131.51, 0)

https://doi.org/10.1371/journal.pone.0253743.t002

Table 3. The calculating time of monostatic RCS simulations of different objects at f = 10 GHz.

Number of vertices Number of facets Calculating time Speedup

Traditional kd-tree-based method (h) Our method (min)

13,240 26,476 0.62 1.46 25.48

26,489 52,970 1.62 1.67 58.20

31,687 63,370 2.03 1.98 61.52

38,613 77,222 2.57 2.58 59.77

39,727 79,442 2.81 2.58 65.35

77,347 154,686 5.93 5.80 61.34

164,596 328,829 10.36 9.77 63.62

287,169 573,514 17.26 17.01 60.88

1,012,157 2,021,310 49.04 47.36 62.13

https://doi.org/10.1371/journal.pone.0253743.t003
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