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ABSTRACT: The diversity of RNA structural elements and their
documented role in human diseases make RNA an attractive therapeutic
target. However, progress in drug discovery and development has been
hindered by challenges in the determination of high-resolution RNA
structures and a limited understanding of the parameters that drive RNA
recognition by small molecules, including a lack of validated quantitative
structure−activity relationships (QSARs). Herein, we develop QSAR
models that quantitatively predict both thermodynamic- and kinetic-based
binding parameters of small molecules and the HIV-1 transactivation
response (TAR) RNA model system. Small molecules bearing diverse
scaffolds were screened against TAR using surface plasmon resonance.
Multiple linear regression (MLR) combined with feature selection afforded
robust models that allowed direct interpretation of the properties critical for
both binding strength and kinetic rate constants. These models were validated with new molecules, and their accurate performance
was confirmed via comparison to ensemble tree methods, supporting the general applicability of this platform.

■ INTRODUCTION
Initiated in 2003, the ENCODE project1 revealed an
unprecedented number of non-protein-coding RNAs
(ncRNAs), and their roles in the regulation of transcription,
translation, genetic modification, and RNA degradation have
been the subject of intense study in relation to human
diseases.2 ncRNAs have been found to be abnormally
expressed in multiple disease phenotypes, including neuro-
degenerative diseases and metastatic cancers.3−6 The implica-
tions of these RNAs in disease pathogenesis underscore their
potential roles as drug targets. To date, small molecules have
been used to target various ncRNAs from several different
organisms, including mammals, viruses, bacteria, and fungi.7−18

While RNA is an attractive therapeutic target, some RNA
properties pose intrinsic challenges, including (1) limited
chemical diversity of RNA relative to proteins, (2) the highly
negatively charged backbone of RNA, and (3) the dynamic
nature of RNA, which allows it to sample a wide population of
conformers. In particular, the diverse and complex conforma-
tional dynamics of RNA increase the complexity of RNA
structural determination, including that of RNA:ligand
structures, ultimately hindering the development of predictive
binding models as well as our understanding of the drivers of
small molecule:RNA recognition. The most successful
discovery method for bioactive RNA-targeted small molecules
has been focused screens, which require synthetic library
curation based on prior knowledge of the biased chemical
space of RNA-targeted small molecules.19 Additionally, the
characterization of RNA-targeted small molecules often

disregards binding kinetics, precluding a full understanding
and optimization of the binding behaviors of a compound.
Many protein-targeted drugs are characterized by slow
dissociation processes and prolonged target occupancy,
supporting the significance of binding kinetics for in vivo
activity.20 The design of compounds with kinetic selectivity
will open a new avenue for RNA targeting and facilitate the hit-
to-lead triage during hit optimization,21,22 yet few studies have
demonstrated how to intentionally optimize RNA binding
kinetics.23 Overall, there are clear unmet needs in identifying
potential RNA-targeted chemical probes and rationally design-
ing small molecules with desired binding behaviors, including
appropriate binding kinetics.
To fully access the numerous potentially druggable RNA

targets, a rational tool for ligand design and a comprehensive
understanding of RNA:small-molecule binding details are
required. Recently, machine learning-aided mechanistic studies
and ligand predictions have shown success in multiple complex
tasks, including the design of enantioselective catalysts in
organic synthesis and bioactive ligands for kinase inhib-
ition.24−27 Among multiple computational tools, quantitative
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structure−activity relationship (QSAR) studies can pinpoint
guiding principles for a specific target by correlating the
experimentally observed binding properties with the molecular
descriptors of the ligands.28−30 A robust and predictive QSAR
model has been proven to be an efficient tool to predict the
activities of small-molecule candidates and to drive hit
optimization. Despite its success in protein-based ligand
design, however, a few QSAR studies have been conducted
for identifying RNA-targeted small molecules.31−34 While
significant work has been done to explore key descriptors
involved in RNA recognition,35−37 these existing data cannot
be used as input for a QSAR approach targeting a specific RNA
structure, as these data are derived from disparate methods and
RNA targets.
Herein, we build a general workflow utilizing QSAR as a

predictive platform to connect molecular descriptors of a given
ligand with its binding profiles against a specific RNA. The
activities, including binding affinity (KD) and kinetic rate
constants (kon and koff), were measured for molecules bearing
multiple scaffolds via surface plasmon resonance (SPR). Model
building was accomplished by combining representative data
splitting, descriptor selection, and linear regression. Post-
modeling assessment validated the statistical assumption for
linear regression and defined the specific applicable domain for
the QSAR model in future use. To the best of our knowledge,
this constitutes the first example of a systematic empirical
QSAR study conducted on various scaffolds against a specific
RNA target. We anticipate that this framework can be readily
extended to different RNA targets to facilitate the design and
synthesis of novel RNA-targeted ligands. The workflow built in
this study will contribute to improving the understanding of
RNA:small-molecule binding mechanisms and provide an
efficient tool to rationally design new ligands for a given RNA
target.

■ RESULTS AND DISCUSSION
Selection of RNA Target and Small-Molecule Training

Set. We chose the HIV-1 transactivation response (TAR)
element (Figure 1a) as a suitable model system to develop our
workflow as this well-validated antiviral target has been
frequently screened against small molecules, providing us
with numerous candidates for the training process.12,38−40 In
total, we selected 48 compounds in this study, including 29

reported TAR−ligands and 19 compounds with known RNA-
targeted scaffolds. These ligands could be classified into five
categories, namely, aminoglycosides (AGs), dimethyl amilor-
ides41,42 (DMAs), diphenyl furans43,44 (DPFs), diminazenes45

(DMZs), and nucleic acid dyes (Figure 1a). These ligands
covered a range of binding behaviors with the aim of building a
model that can be applied to the prediction of ligands with
diverse chemical architectures.

Calculations of Molecular Descriptors. To begin, we
obtained molecular information for each compound via
quantitative calculation of their molecular descriptors. Each
descriptor provides information on a physicochemical property
of a compound, ranging from topological to electrostatic terms.
For example, atomic connectivity, which represents topological
connections within a molecule, was calculated using graph
theory matrices,46,47 which lays the foundation of many other
descriptors including related adjacency distance matrices as
well as surface properties. In addition, many QSAR expressions
in previous reports suggest that ligand binding preferences
originate from noncovalent interactions exerted in the
microspace of the ligand.48 Hence, conformation-dependent
three-dimensional (3D) descriptors were included to account
for the spatial environment of the ligands, such as partial
charges and potential energy. In total, we calculated 435
descriptors of each ligand.
We also considered whether multiple species of a given

molecule may exist under experimental conditions (panel A,
Scheme 1). Specifically, we evaluated protonation and
tautomerization states for each ligand by distribution ratio as
their population representation. For each state, potential
conformations within 3 kcal/mol of the lowest-energy
conformation, as determined by the molecular operating
environment (MOE) software, were selected. The descriptor
value of a specific ligand state was determined as the
Boltzmann-weighted average of these conformations. Finally,
the descriptor value of each ligand is the weighted average of
the results from multiple states based on the distribution ratio
mentioned before. While the presence of multiple species and/
or conformations is often overlooked due to computational
cost, the accuracy of molecular descriptors is a prerequisite for
reliable and robust QSAR models.

Measurement of Binding Parameters. To evaluate the
binding parameters of the small molecules against HIV-1 TAR,

Figure 1. A. Sequence and structure of 5′ biotinylated HIV-1 TAR and representative chemical structures of the scaffolds used in this work. B.
Kinetics map of 48 tested ligands, represented on 10-based logarithmic coordinates. The diagonal lines represent KD values calculated from koff/kon.
Units of three parameters are shown. The rest of the study used values based on these units.
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we utilized SPR to measure the kinetic rate constants and
binding affinities. Kinetic analyses for the observed SPR curves
were performed globally for the entire concentration series
(panel B, Scheme 1). The kinetics map summarizes the
distribution of kon, koff, and KD along logarithmic coordinates
(Figure 1b). All three parameters have a wide range of values
spanning at least 2 log units, supporting the appropriateness for
reliable QSAR modeling from a response variable perspec-
tive.49

We next compared our kinetics data to a previous survey,
which showed that the RNA−ligand association was generally
slower than that for protein.50 The measured on- and off-rate
values in our SPR data are similar in the order of magnitude to
the RNA:ligand values previously reported (Table 1).50 The
overall association rate constant of an RNA−ligand pair for all
three RNA−ligand sets listed in Table 1 (median: ∼104 M−1

s−1) was not only far below the diffusion limit (centered at 109

M−1 s−1) but also suggested a generally slower binding than

Scheme 1. QSAR Workflowa

aA. Input molecules were searched for “protomers” and then searched on conformations of each protomer. Molecular descriptors were calculated
for each conformation and averaged based on the Boltzmann distribution. B. Small molecules binding HIV-1 TAR were characterized via SPR, and
parameters including KD, kon, and koff were fitted globally. C. With representative data splitting and lasso-assisted model searching, the final model
was selected based on the performance of the separate test set.
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protein−ligand pairs (median: 6.6 × 106 M−1 s−1).50 This slow
RNA recognition was expected due to the existence of
multiconformation distribution in unbound RNA states,
though some variation was observed between ligand classes.
Specifically, in our HIV-1 TAR−ligand set, most of the fast
association rates were observed for aminoglycosides, nucleic
acid dyes, and DPFs (kon: 10

4∼105 M−1 s−1), probably due to
their strong electrostatic (aminoglycosides) or topologically
matched π−π stacking interactions (dyes, DPFs). As moderate
and weak binders in this set, DMAs were characterized by
fewer potential protonation sites or less planar structures than
other molecules, leading to overall slower binding rates. Rates
of dissociation were comparable among the three RNA−ligand
sets, with median values around 10−2 s−1. Comparing binding
strengths between sets in Table 1, it was expected that RNA−
ligand pairs with in vitro-selected RNAs (e.g., aptamers) and
naturally occurring RNAs that have evolved to bind small
molecules (e.g., riboswitches and ribozyme) would have tighter
binding than those in our data set (Table 1). In our QSAR
study, we covered a range of binding affinities to achieve a
generalizable scope and aid the discovery of decisive
descriptors for the binding of diverse small molecules.
QSAR Modeling: Baseline Model Construction. Data

Refinement. We used the log-transformed versions of KD, kon,
and koff as our response variables, as the transformed versions
yielded residuals that better satisfy the normality assumption of
linear regression models. To mitigate the redundancy of
constant and intercorrelated descriptors, a descriptor prere-
duction was applied. First, constant descriptors that have more
than 80% compounds sharing the same value were deleted.51

Next, intercorrelation between every descriptor pair was
calculated by Pearson correlation coefficient (ρ). High
intercorrelation (ρ > 0.95 or ρ < −0.95) between descriptors
can cause unstable estimation of regression coefficients, sign-
change problems, and insignificance of regression coeffi-
cients.52 Therefore, multicollinearity (the occurrence of high
intercorrelations among two or more descriptors) terms need
to be deleted before multiple linear regression. Descriptors
intercorrelated with multiple descriptors were deleted one by
one based on the maximal number of multicollinearity terms.
After several rounds, the maximal number of multicollinearity
terms for any descriptor would be one, namely, only pairwise
intercorrelations left. In the remaining pairwise intercorrela-
tions, the term with a lower correlation to the response variable
was deleted. The above procedure afforded 193 refined
descriptors in the ln KD and ln kon data sets and 191 in the
ln koff data set.
Representative Data Splitting by the Kennard−Stone

Algorithm. A key consideration for QSAR with diverse

substrates is the continuity of the energy landscapes created
by the ligands, i.e., whether gradual changes in ligand
properties are smoothly plotted along the target activity
function.30,53 While QSAR has been classically applied to
molecules from the same scaffold (congeneric sets) to alleviate
these concerns, several studies have reported successful
continuous fields even with the use of diverse scaffolds.54−56

Appropriate splitting of the training and test sets is critical to
achieving a smooth landscape that avoids local minima where
the model would explain only a subset of the compound
pool.57 For the model trained from the training set to be used
to predict unseen data in the test set, the distribution of the
training set and test set molecules must be representative of the
entire sample. To this purpose, we first applied principal
component analysis (PCA) to reduce the dimension of the
descriptor space. Then, the Kennard−Stone algorithm58 was
utilized to maximize the representativeness of the selected
sample with the whole data set, and the slightly different
descriptor space between ln KD/ln kon and ln koff data sets did
not alter the sampling results. This specific sampling method
rather than random splitting was applied here due to the small
sample size (48), which can guarantee that representative small
molecules are chosen to achieve a uniform representation of
the descriptor space, giving more confidence in future
predictions of test set molecules that come from the same
distribution of the training set (Figure 2A). The distribution of
corresponding response variables (ln KD, ln kon, and ln koff)
derived from SPR for training and test sets was visualized in a
boxplot (Figure 2B). Sampling of ln KD data set over descriptor
space resulted in two subsets with the most representative
distribution of the response variable, as seen by the similar
range and median values. ln kon has a moderately consistent
distribution, while ln koff poorly matched the distribution. This
result indicated that the performance order of QSAR models
might be ln KD > ln kon > ln koff, given the QSAR assumption
that gradual changes in the descriptor space lead to gradual
changes in the response variable. Importantly, the unique test
set selected by the Kennard−Stone algorithm contains diverse
candidates from every scaffold (Figure 2C) and is thus a
representative subset from the chemical structural perspective
(Supporting information, Section A).

QSAR Model Development and Interpretation. To obtain
a predictive and interpretable model, we used multiple linear
regression (MLR) in this QSAR study, followed by an
assumption evaluation. Due to the limited observations but a
large number of descriptors, the classical MLR could not afford
a unique closed-form solution. To reduce the dimension of the
data and find the most relevant descriptors, we applied the
least absolute shrinkage and selection operator (lasso) for
descriptor selection prior to MLR.59 Lasso has been widely
used in QSAR studies to control the model complexity and
increase the performance by applying a penalty constraint to
the loss function that needs to be minimized during
modeling.60,61 Specifically, a hyperparameter λ controls the
model complexity as larger λ leads to more descriptor
shrinkage. The operator can remove irrelevant descriptors by
shrinking the regression coefficients to zero and keeping the
most relevant ones. After descriptor selection by lasso,
exhaustive searches for all combinations from selected
descriptors using MLR were performed. The maximal number
of descriptors in an MLR model was set as seven based on the
Topliss rule,62 namely, that at least five compounds in the
training set were required for adding an extra descriptor in the

Table 1. Median Values of Binding Parameters from Three
Sets of RNA−Ligand Interaction, Values for In Vitro-
Selected, and Naturally Occurring RNA−Ligands from ref
50a

kon (M
−1 s−1) koff (s

−1) Kd (M)

RNA (in vitro-selected)−
ligand (N = 13)50

8.1 × 104 6.3 × 10−2 4.3 × 10−7

RNA (naturally occurring)−
ligand (N = 24)50

5.5 × 104 1.9 × 10−2 3.0 × 10−7

HIV-1 TAR−ligand (N = 48,
used in this work)

3.8 × 104 7.9 × 10−2 5.0 × 10−6

aAdapted with permission from ref 50. Copyright 2017/RNA Cold
Spring Harbor Laboratory Press for the RNA Society/RNA.
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QSAR model. This exhaustive search afforded multiple model
candidates, which were further screened by their performance

on training and test sets, as well as the statistical significance
(p-value) of each descriptor involved. Additionally, the

Figure 2. A. Locations of test set molecules in the two-dimensional (2D) chemical space constructed from the first two principal components (29.9
and 20.8% of variances, respectively) of the whole data set. B. Distribution of response variables for the test and training set molecules. C. Chemical
structures of the test set molecules (red) selected with the Kennard−Stone algorithm. The closest neighbor molecule in the training set (blue) is
shown in pairs for comparison. The similarity was calculated as the Tanimoto coefficient (black) and is listed along the separation line.
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principle of “Occam’s razor” was followed to choose the model
with fewer descriptors if two have a similar level of
performance.63

In detail, for ln KD modeling, lasso selection was applied to
gradually shrink the size of the descriptor set, as hyper-
parameter λ increases (Figure 3A). The best λ was determined

Figure 3. A. Coefficients of ln KD descriptors were shrunk as λ increased using lasso regression; each curve with a different color represented a
descriptor coefficient shrinkage; the top x-axis showed the number of descriptors with nonzero coefficients at a specific λ value that was indicated
by the bottom x-axis. The best λ value (0.01) was determined by the 5-fold cross validation. B. Observed ln KD (both training and test sets) was
plotted with the value predicted by the MLR baseline model shown at the top. C. Small molecules from the test set were predicted by MLR of the
ln KD value (in red italics) versus the observed values (in blue).
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to be 0.01 as a result of 5-fold cross validation that aimed at
minimizing the prediction biases or the mean cross-validated
error. Using this λ value, the number of descriptors was shrunk
to 35. These 35 descriptors formed the new descriptor space
for exhaustive model search, from the simplest two-parameter
linear model to the most complex seven-parameter linear
model. These model candidates were first screened by their
performance on the training and test sets (R2 > 0.75, Q2 >
0.75) and then the statistical significance of each descriptor for
explaining the model (p-value < 0.05).
The final model based on our selection process (Figure 3B)

was found with the below expression, which predicted ln KD
values of our structurally diverse test molecules with high
accuracy (Figure 3C)

= − − _ _ + _

− _ + _
= =

K

R Q

ln 10 0.015PEOE VSA POS 0.054vsa other

0.37vsurf DW12 1.7vsurf ID3

( 0.77, 0.89)

D

training
2

test
2

The model included four physicochemical descriptors
(PEOE_VSA_POS, vsa_other, vsurf_DW12, and vsurf_ID3)
with their physical meaning shown in Table 2. The negative
coefficient of PEOE_VSA_POS explicitly suggested that the
non-negative electrostatic properties of the molecule helped to
improve ln KD, which is consistent with the fact that RNA is
overall negatively charged. Additionally, vsa_other describes
the sum of van der Waals surface area of atoms typed as
“other”. These “other” atoms are not H-bond acceptors, H-
bond donors, acidic, basic, polar, or hydrophobic residues, thus
mostly referring to the surface area of carbon atoms near
oxygen, nitrogen, and halide atoms.64 According to the model,
a decrease in vsa_other could favor tight binding for HIV-1
TAR. vsurf_DW12 is the contact distance between the physical
location of the first two hydrophilic energy interaction minima
when a hydrophilic probe (OH2) interacts with the target
molecule. The negative correlation of this descriptor indicated
that high-affinity ligands have energy minima that are relatively
distant from each other in 3D space, which is also consistent
with a previous report.65 Interaction energy (integy) moment
is a type of descriptor that resembles dipole moment, but
instead of describing the separation of the partial charge, integy
moments express the unbalance between the center of mass of
a molecule and the barycenter of its hydrophilic or hydro-
phobic (vsurf_ID) regions. Specifically for vsurf_ID3, it is the
vector pointing from the center of mass to the center of the

hydrophobic regions that is calculated at -0.6 kcal/mol energy
level.66 The positive correlation of this descriptor to ln KD
suggested that tight binding could be achieved by small
molecules that possess hydrophobic moieties that are either
close to the center of mass or they balance at opposite ends of
the molecule.
To investigate how molecular descriptors quantitatively

impact the association process of HIV-1 TAR−ligands, we
performed ln kon modeling. Similarly, lasso selection afforded
16 descriptors after the regression coefficient shrinkage with
optimized λ equaled to 0.22 (Figure S2A). A further model
search led to the identification of the model below (Figure
S2B)

= − − _ _ − _

+ _ + _
= =

k

R Q

ln 12 27GCUT PEOE 0 0.093vsa other

0.42vsurf DD23 0.59vsurf DW12

( 0.77, 0.77)

on

training
2

test
2

This model included four physicochemical descriptors, namely,
GCUT_PEOE_0, vsa_other, vsurf_DD23, and vsurf_DW12
(Table 2). Two of them (vsa_other and vsurf_DW12) also
appeared in the ln KD model, consistent with the correlation
between ln KD and ln kon (ρ ln KD, ln kon = −0.82).
GCUT_PEOE_0 encodes information of partial charge and
atomic connectivity, supporting an important role for partial
charge distribution on on-rate constants, though it is hard to
directly deduce chemically intuitive information as it is the
mathematical representation of atomic partial charge calculated
from the partial equalization of orbital electronegativity
(PEOE) method combining atomic connectivity. The negative
coefficient of this descriptor suggested that a decreased value
of GCUT_PEOE_0 could accelerate the association process.
The contribution of vsa_other and vsurf_DW12 followed the
same trend identified in ln KD model, namely, lower van der
Waals surface area for atoms typed as “other” and more distant
distribution of hydrophilic interaction energy minima would
benefit fast association, thus favoring tighter binding. Finally,
vsurf_DD23 is another surface property descriptor, describing
the physical distance between the location of the second-lowest
and third-lowest hydrophobic energy interactions that were
measured by a specific hydrophobic probe (DRY).67 The
positive coefficient of this descriptor signified that by
increasing the distance between these energy minima sites,
the compounds were predicted to have faster association
processes.

Table 2. Descriptors Involved in Three Models and Their Physical Meanings

descriptor name physical meaning

PEOE_VSA_POS Total positive van der Waals surface area.
vsa_other van der Waals surface area (Å2) of atoms typed as “other”. Other: not H-bond acceptors, H-bond donors, acidic, basic, polar, or hydrophobic

residues.
vsurf_DW12 Contact distances of vsurf_EWmin1 and vsurf_EWmin2; vsurf_EWmin describes the lowest hydrophilic energy representing the distances

between the best three local minima of interaction energy when a water probe (OH2) interacts with the target molecule.
vsurf_ID3 Hydrophobic integy moment calculated at −0.6 kcal/mol energy level.
GCUT_PEOE_0 The GCUT descriptors are calculated from the eigenvalues of a modified graph distance adjacency matrix. Each (i,j) entry of the adjacency

matrix takes the value 1/sqr(dij), where dij is the (modified) graph distance between atoms i and j. The diagonal takes the value of the PEOE
partial charges. The resulting eigenvalues are sorted, and the smallest (GCUT_PEOE_0), 1/3-ile, 2/3-ile, and the largest eigenvalues are
reported.

vsurf_DD23 Contact distances of vsurf_EDmin2 and vsurf_EDmin3; vsurf_EDmin describes the lowest hydrophobic energy representing the distances
between the best three local minima of interaction energy when a hydrophobic probe (DRY) interacts with the target molecule.

a_base Number of basic atoms.
a_nN Number of nitrogen atoms.
vsurf_DD13 Contact distances of vsurf_EDmin1 and vsurf_EDmin3.
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We next assessed whether the above workflow could afford a
predictive ln koff model. In this case, lasso selection refined the
descriptor set to only four descriptors, using the cross-validated
best λ value (λ = 0.50). This shrinkage appeared to be too
stringent as lasso regression equally penalized all of the
descriptor coefficients and suffered from biased estimates in
this situation, namely, descriptors with large coefficients were
overpenalized and descriptors with small coefficients were not
detected.68 Specifically, the combination of these four features
poorly explained the data (Rtraining

2 = 0.43, Qtest
2 = 0.38). We

adjusted the λ value (λ = e−2 ∼ e−4) as a less stringent
shrinkage to include more descriptors (Figure S2C) and found
that when the descriptor vsurf_DD13 was included, the model
performance could be greatly enhanced. The final model
(Figure S2D) we found for explaining ln koff is shown as
follows

= − _ − _ + _

= =

k n

R Q

ln 2.0 0.69a base 0.42a N 0.27vsurf

DD13 ( 0.64, 0.61)
off

training
2

test
2

This model matched that from an exhaustive search result
using all 191 descriptors, suggesting that lasso was able to pick
significant variables but sometimes needs fine tuning of the
hyperparameter λ. In this model, the negative correlation
between the number of basic atoms (a_base) and the
dissociation rate constants suggested that increased electro-
static interactions can slow ligand dissociation. Introduction of
nitrogen-containing groups may also increase the retention
time as a negative correlation was found between the number
of nitrogen atoms (a_nN) and the dissociation rate constants.
The correlation between these two descriptors was low
(ρabase,a_nN = 0.23), indicating that they contribute to the rate
constant differently, probably through electrostatic interactions
(a_base) and π−π stacking from nitrogen-containing hetero-
cyclic rings (a_nN). Additionally, vsurf_DD13 positively
correlated with the off-rate constant, suggesting that decreasing
the physical distance between the lowest and third-lowest
hydrophobic energy interaction sites will slow dissociation.
Overall, however, regressions using ln koff data could not afford
a baseline model with comparable performance as the above
two models. This might be caused by a number of factors,
including the poor representativeness of the selected subset in
terms of the response variable distribution (Figure 2B) and the
larger measurement variance as seen from different SPR
replicates. Larger data sets are likely needed to precisely model
the off-rate constants.
Nonetheless, these data did show that QSAR can yield a

promising model for understanding the dissociation process of
HIV-1 TAR: small-molecule recognition, assisting the design
of ligands with prolonged retention time over the target. The
success of training a predictive and interpretable QSAR model
for explaining different binding parameters of HIV-1 TAR−
ligands suggested that the QSAR study could be a lens to
investigate the complicated macromolecular binding event and
a guide for molecular design with a specific response property.
Comparison with Nonparametric Ensemble Tree Meth-

ods. To further evaluate the performance of MLR baseline
models, we compared them to models constructed by
ensemble tree methods, such as bagging and boosting. Tree
methods use a flow-chart-like structure to make predictions
(leaf) based on the outcomes (branch) of the tests (nodes).69

By combining multiple decision tree models and making

predictions from the averaged results, ensemble tree methods
have been identified to improve the model performance and/
or overcome the variance-bias trade-off in prediction.70

However, the ensemble process increases the difficulty of
explicit model interpretation when compared to the single
parametric model such as that given by MLR due to its
aggregated model complexity.
We started our comparison by building a single decision

tree, which was the foundation of other ensemble-based
models. Unlike MLR that needs a normality assumption to
explain the randomness of the error (see the Model
Assessment and Applicable Domain section), decision tree is
a nonparametric method that can avoid the risk of mis-
specifying these preassumptions and probability distributions.
The complexity of the decision tree was controlled by the
cross-validated error, which afforded us the best number of
terminal nodes in the pruned tree. Decision trees trained on
ln KD and ln kon training sets gave satisfactory predictions on
the corresponding test set (Table 3). This result suggested that

different scaffolds have distinct binding affinities and
association rate constants that can be revealed by the splitting
nodes using existing descriptors. Meanwhile, the poor fitting
on the dissociation rate constant indicated that more decisive
descriptors were needed to explain the observations. Parallel
training of multiple decision trees over a subset of training data
that was generated by bootstrapping (sampling with
replacement) gave us bagging models. The optimized number
of trees was determined based on the averaged error of samples
that were not included in training or out-of-bag samples.
Random forest is a special scenario of bagging that in addition
to using bootstrapping samples, only a subset of descriptor
space will be used for the training of each individual tree.
Figure 4A shows that when training on ln KD data, the out-of-
bag error was gradually converged as the number of trees
increased. Figure 4B shows the random forest model trained
for ln KD using 400 trees. Boosting, however, is a sequential
training process that the current model trains on the residuals
from the last model by adding weight to the poorly predicted
data point. Similarly, Figure 4C shows that the loss function
(squared error) decreased as the number of above sequential
iterations increased, where the optimal iterations (990) could
be found by looking at the cross-validated error. An out-of-bag
error was also plotted. The discrepancy between these two
errors suggested the heterogeneity of the data set. Figure 4D
represents the final boosting model trained for ln KD using 990
iterations.
Overall, models trained by the above methods with different

response variables behaved with the same trend as in MLR,
namely, their performance order is ln KD models > ln kon
models > ln koff models (Table 3). ln KD models showed
significant enhancement after the ensemble learning, namely,

Table 3. Comparison of Model Performance Built by
Different Methods

ln KD ln kon ln koff

train test train test train test

decision tree 0.90 0.78 0.87 0.86 0.73 −0.1
decision tree bagging 0.91 0.89 0.83 0.71 0.94 0.21
random forest 0.90 0.87 0.90 0.70 0.89 0.39
boosting 0.92 0.87 0.92 0.73 0.90 0.25
MLR 0.77 0.89 0.77 0.77 0.64 0.61
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aggregation of multiple weak learners led to a stronger learner,
and the prediction accuracy on the test set was comparable to
the MLR model. For ln kon, it was interesting that the single
decision tree with six nodes achieved both high training
efficiency and prediction accuracy. Further application of the
ensemble learning seemed to overfit the data as performance
discrepancy between the training set and test set data was
observed. For this data set, ensemble learning failed to push
the predictivity of the model to a higher level when compared
to the MLR baseline model. For all ln koff models, the
prediction on the test set was not satisfactory, probably due to
the lack of decisive descriptors or the poor representativeness
of the test set to the training set, as seen from the ln koff
distribution (Figure 2B).
Model Assessment and Applicable Domain. To validate

the main regression assumption, namely, that standardized

residuals of MLR follow a normal distribution, we plotted
quantile−quantile (Q−Q) graphs. The Q−Q plot is
commonly used to compare the distribution of two data sets.
Herein, we plot the standard quantiles of the normal
distribution on the x-axis and the standardized residuals from
MLR on the y-axis for comparison. Q−Q plots of all three
MLR models (Figures 5A and S3A) showed that residuals
from linear regression lined around the 45-degree reference
line, indicating the validity of the normality assumption. For
the linearity assumption check, we plotted residuals against
each descriptor (Figure S4). In such plots, we found that
residuals were randomly distributed around zero and no
obvious trend could be observed, suggesting that no additional
relationship with the corresponding descriptor remained in
residuals. For the independence and equal variance check, we
plotted residuals against the fitted values (Figure S5). Similarly,

Figure 4. A. Out-of-bag error of random forest model vs number of trees. B. Random forest model of ln KD built with 400 decision trees. C.
Squared error loss vs number of iterations in boosting; two methods (out-of-bag method and cross-validation method) were used to determine the
best iteration number. D. Boosting model of ln KD.
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the residuals were located randomly along zero with equal
variance, suggesting the validity of the linear regression.
To further evaluate the MLR model for future predictions,

we defined a proper range of small molecules that can be
applied to the models or the applicable domain. Y-outliers
represent data points that have significant deviations on
response values that do not follow the general trend of the rest
of the data, while influential compounds are those that have a
large impact on the regression and usually have extreme
descriptor values or leverage values (a scoring metric between
0 and 1; large values represent far away the values of the

predictor variables for the observation from those of other
observations). We generated a Williams plot to identify outliers
from the response variable perspective, as well as influential
points from the descriptor perspective (Figures 5B and S3B).
In this plot, the leverage value of each compound was plotted
against its standardized residuals and y-outliers could be
detected if the standardized residuals were higher than the ±3
limit. Potential influential points that have extreme descriptor
values could be found by checking leverage values, whereas the
threshold was set as 3(p + 1)/n (p is the number of descriptors
in the MLR model and n is the number of data points). In

Figure 5. A. Normal quantile−quantile plots of ln KD model. B. Williams plot showed the applicable domain of ln KD model with training and test
sets. C. Model stability test on ln KD data using the formula: ln KD ∼ 1 + PEOE_VSA_POS + vsa_other + vsurf_DW12 + vsruf_ID3. The training
and prediction stability are shown on the left and right, respectively. Each bar represented the result from a random sampling, totally 100 times.
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these three Williams plots, we did not observe any outliers
from the view of the response variable. There is one
compound, DMZ-p8, that has high leverage values from the
training set of ln koff model. However, the fitting on this
compound did not further support this as an influential point.
Meanwhile, by looking through the Williams plot, we could
find potential inaccurately measured data points. For instance,
the Williams plot of ln koff model found that two compounds
(DMA-1 and DMA-3k) have large fitting residuals but shared
similar descriptor space as their leverage values were both low.
In fact, both compounds were measured with much larger
dissociation rate constants than other DMAs, indicating
potential measurement error. Removal of DMA-3k in the
training and DMA-1 in the test set would increase the
R2(training) from 0.64 to 0.71 and prediction accuracy from
0.61 to 0.70 of the ln koff MLR model.
To evaluate the robustness of the model constructed by the

above descriptors, a training/prediction stability test was
performed for each MLR model. In this stability test, a set of
36 molecules were randomly selected as the training set, and
then an MLR model was trained using the same descriptors
found before on the training set. The prediction accuracy was
calculated using the remaining 12 compounds in the test set.
By repeating this process, we can test the robustness of
identified descriptors for building a well-performed MLR
model. In Figures 5C and S6, the 100 random samplings gave
distinctive training/test sets, but models trained with the same
set of descriptors afforded high and stable training efficiency
and were consistent with the original MLR model. In terms of
the prediction accuracy on test sets, we still see overall high Q2

scores for all three data sets but with higher variance, which
might be caused by the extremely unrepresentative data
splitting.

■ CONCLUSIONS
Discovery of novel RNA-targeted chemical probes is pivotal for
connecting the basic understanding of RNA regulation in
biology and its potential therapeutic application. Numerous
ncRNAs have been discovered as potential drug targets
following the RNA revolution. However, difficulties in
obtaining accurate 3D structures and conformational land-
scapes for RNA hinder the rational design of RNA-targeted
ligands from a structure-based approach. Additionally, the lack
of appreciation of binding kinetics in hit discovery compro-
mised an alternative path toward ligand optimization via
kinetic selectivity. Consequently, a novel method that can
bypass the structural information and comprehensively
evaluate binding parameters, from affinities to kinetics, is
greatly needed. To this aim, a systematic QSAR workflow for
RNA−ligand discovery was built using HIV-1 TAR as a model
system to demonstrate the application of this method on a
broad scope of ligands. To the best of our knowledge, this is
the first time that 2D-QSAR has been used to predict binding
parameters of RNA-targeted ligands with diverse scaffolds.
By applying a representative data splitting, we trained

models from 36 small molecules derived from five structural
classes (DMZ, DMA, DPF, AG, nucleic acid dyes) as the basis
of our understanding of RNA−ligand chemical space. The
trained models afforded satisfactory explanations for both
binding affinities and kinetics data empirically gathered via
SPR. The subsequent prediction of 12 previously untested
compounds revealed similar or even higher precision as
compared to the well-established ensemble learning-based

methods, supporting the power of MLR models to inform
compound design. Notably, the accurate prediction of the
binding affinity and kinetics of 12 structurally diverse small
molecules not present in the training set underscored the
breadth of application of the method to a general small-
molecule library. The detailed analysis of the descriptor space
highlighted by the best models revealed important roles of the
ligand surface properties and potential charge in RNA
recognition of small molecules. Moreover, the MLR model
provided quantitative information on how the modification of
these descriptors can better aid molecular design and lead
optimization. Further evaluation of the applicable domain
informed the proper range of future small molecules that can
be appropriately predicted using these models. Limitations of
the current model are the small number of training molecules
that limit the chemical space explored, from which the
applicable domain was derived. As in all QSAR models, this
model is specific to the test conditions employed, including
environmental factors like buffer and dimethyl sulfoxide
(DMSO) content. Additionally, the statistical nature of the
QSAR method cannot yield a detailed description of the
microscopic interactions involved, such as induced-fit or
conformational selection. The impact of each of these
limitations is being addressed in the ongoing work.
We anticipate that the method applied here will be an

efficient tool in hit identification and lead optimization for a
wide range of specific RNA targets. The knowledge gained
from known ligands during training can now be efficiently
transformed into quantitative models for generalization, i.e.,
prediction of binding affinity and kinetics. Additionally, this
proof-of-concept study could be feasibly extended to other
biomacromolecule targets with little structural characterization,
including other ncRNAs and proteins. We anticipate the
workflow set forth here to significantly facilitate rational
decision-making in medicinal chemistry, overcoming one of
the current bottlenecks in RNA-targeted small-molecule
development.

■ EXPERIMENTAL SECTION
Materials and Methods. Reagents were purchased from

commercial suppliers and were used without further purification.
DMA-1−DMA-164 are from ref 41, DMA-180−DMA-194 are from
ref 42, DMA compounds are from ref 71, DPF x1−DPF x10 are from
ref 43 (x = m or p), and DPF p13 and p15 are from ref 44. DMZs
were synthesized as below. The rest of compounds tested in the SPR
are commercially available. The above 36 compounds from the
training set and 12 compounds in the test set were examined through
PAINS filter via SwissADME.72 The results showed two alerts for
mitoxantrone (anthranil_one_A, quinone_A), one alert for DMA-3v
(anil_di_alk_A), one alert for thiazole orange (het_pyridiniums_A),
one alert for DMZ-m3 (azo_A), one alert for DMZ-p8 (azo_A), and
one alert for DMZ-p13 (azo_A). All solvents were ACS grade or
better and were used without further purification. Anhydrous toluene
was obtained by storing ACS-grade toluene over 4 Å molecular sieves,
while anhydrous tetrahydrofuran (THF) was dispensed from VWR
SureSeal bottles and kept under argon. All microwave reactions were
run on a Biotage Initiator+ reactor from Biotage Inc. and under an
argon inert atmosphere. All chromatographic purifications were
conducted via flash chromatography using ultrapure silica gel (230−
400 mesh, 60 Å) purchased from Silicycle as the stationary phase.
Thin-layer chromatography was performed with glass-backed silica gel
plates purchased from VWR and visualized with 254 nm UV light. All
deuterated solvents for NMR experiments were purchased from
Cambridge Isotope Laboratories. All 1H NMR and 13C NMR spectra
were recorded using a 500 MHz Bruker spectrometer. The
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corresponding 13C resonance frequencies were 100 and 125 MHz,
respectively. Chemical shifts are expressed as parts per million from
tetramethylsilane. 1H chemical shifts were referenced with that of the
solvent (7.26 for CDCl3, 3.31 for CD3OD, and 4.87 for D2O), and
coupling constants (J values) are reported in units of Hertz (Hz).
Splitting patterns have been designated as follows: s (singlet), d
(doublet), t (triplet), m (multiplet), and br (broad). Low- and high-
resolution electrospray ionization (ESI) and mass spectra were
recorded on an Agilent MSD-trap spectrometer at Duke University.
High-performance liquid chromatography (HPLC) spectra were
recorded using a Shimadzu SIL-20AHT Prominence instrument. All
HPLC experiments were run at room temperature using gradients or
isocratic mixtures of 0.1% trifluoroacetic acid (TFA) in water and
acetonitrile as solvents A and B, respectively. Yields refer to ≥95%
spectroscopically and chromatographically pure compounds. SPR
experiments were performed with a four-channel Biacore T200 system
(GE Healthcare Life Sciences) at 25 °C. Molecular descriptors were
calculated on molecular operating environment (MOE, Chemical
Computing Group, 2018.01). Descriptor refinement was performed
on MATLAB (R2020a). Representative data splitting by the
Kennard−Stone algorithm, PCA, lasso regression, tree-based
ensemble modeling, model assessment, and prediction stability test
was performed on RStudio v1.4.1717; see detailed packages and codes
in SI.
Synthesis and Characterization. The compound structures and

reaction schemes can be found in the Supporting Information. 1H
NMR spectra and 13C NMR spectra and MS of compounds are shown
in the Supporting Information. The purity of all target compounds
was >95% by HPLC analysis in the Supporting Information.
Bis-cyanide Scaffold (2a−c). 4-(1a), 3-(1b), or 2-Aminobenzoni-

trile (1c) (16.9 mmol) was dissolved in 0.5 M HCl (80 mL) in a 200
mL round-bottom flask and cooled to 0 °C on an ice bath. Upon
complete dissolution of the aniline, 2 mL of a 4.5 M solution of
sodium nitrite was added dropwise. A precipitate formed immediately,
and each coupling was allowed to react to room temperature until a
dense solution formed. The reaction was then filtered through a fritz
funnel, and the solid was washed with ice-cold deuterated water. The
precipitate was left to dry overnight under vacuum and used in the
scaffold decoration (the procedure was adapted from the previous
methodology).73

(E)-4,4′-(Triaz-1-ene-1,3-diyl)dibenzonitrile (2a). Bright yellow
solid; yield = 88%; 1H NMR (500 MHz, D2O) δ 13.28 (s, 1H),
7.97−7.54 (m, 9H). 13C NMR (126 MHz, D2O) δ 134.90, 133.58,
119.47. Calcd for C14H9N5 ([M + H]+): 248.0; found: 247.1 (±2.1
ppm).
(E)-3,3′-(Triaz-1-ene-1,3-diyl)dibenzonitrile (2b). Pale beige solid;

yield = 53%; 1H NMR (500 MHz, DMSO-d6) δ 12.98 (s, 1H), 7.96
(s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.61 (q, J = 8.7, 7.5 Hz, 4H), 6.88−
6.82 (m, 1H). 13C NMR (126 MHz, DMSO) δ 132.03, 130.50,
119.09, 112.76. Calcd for C14H9N5 ([M + H]+): 248.0; found: 249.1
(±1.8 ppm).
(E)-2,2′-(Triaz-1-ene-1,3-diyl)dibenzonitrile (2c). Bright yellow

solid; yield = 74%; 1H NMR (500 MHz, DMSO-d6) δ 13.41 (s,
1H), 7.96 (d, J = 8.2 Hz, 1H), 7.82 (dd, J = 37.5, 8.0 Hz, 2H), 7.69
(dt, J = 21.9, 8.5 Hz, 2H), 7.48−7.40 (m, 2H), 7.27−7.19 (m, 1H).
13C NMR (126 MHz, DMSO) δ 152.05−151.93, 142.93, 135.56−
132.83, 128.36, 124.26, 119.00−108.57, 98.40, 93.96, 55.32, 40.50−
39.50, 29.99. Calcd for C14H9N5 ([M + H]+): 248.0; found: 248.1
(±1.6 ppm).
Amidine Formation. 2a−c (0.41 mmol) and DABAL-Me3 (1.2

mmol) were added to a 5 mL over-dried pressure vial under argon.
The solids were dissolved in anhydrous THF or toluene (2.5 mL),
and a primary amine (1 mmol) was added dropwise in a 5 mL over-
dried pressure vial under argon and heated to 105 °C for 4.5 h. After
running, the reaction was diluted in dichloromethane and quenched
with acetonitrile dropwise while stirring. The solution was then
evaporated under vacuo. The solid was redissolved in methanol, and a
5:1 ratio of celite: starting material was added. Compounds were
purified using silica column chromatography in a gradient 95:4:1
DCM:MeOH:NH4OH to 85:14:1 DCM:MeOH:NH4OH to yield the

final compounds. The procedure was adapted from the previously
published synthesis.74

(E)-3,3′-(Triaz-1-ene-1,3-diyl)bis(N-(2-(pyridin-3-yl)ethyl)-
benzimidamide) (DMZ-M3). 1H NMR (500 MHz, methanol-d4) δ
8.39 (s, 2H), 8.29 (d, J = 4.7 Hz, 2H), 7.73 (d, J = 7.8 Hz, 2H), 7.61
(s, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.39 (t, J = 7.9 Hz, 2H), 7.28 (dd, J
= 7.9, 4.2 Hz, 4H), 3.54 (t, J = 7.3 Hz, 4H), 2.97 (t, J = 7.2 Hz, 4H).
13C NMR (126 MHz, MeOD) δ 163.53, 149.17, 146.83, 137.45,
135.55, 134.73, 129.57, 123.89, 123.11, 120.60, 116.07, 47.62, 47.45,
47.28, 47.11, 43.96, 31.37. HRMS-ESI (m/z) calcd for C28H29N9 ([M
+ H]+): 492.6; found: 246.3 (±1.1 ppm) for 1/2 [M + H]+.

(E)-4,4′-(Triaz-1-ene-1,3-diyl)bis(N-(1-benzylpiperidin-4-yl)-
benzimidamide) (DMZ-P8). 1H NMR (500 MHz, methanol-d4) δ
7.63−7.55 (m, 4H), 7.51−7.37 (m, 4H), 7.42−6.82 (m, 10H), 3.55
(tt, J = 14.0, 5.6 Hz, 2H), 3.47 (s, 4H), 2.97−2.71 (m, 4H), 2.12 (td, J
= 12.0, 2.5 Hz, 4H), 1.99−1.75 (m, 4H), 1.61 (qd, J = 12.1, 3.5 Hz,
4H). 13C NMR (126 MHz, MeOD) δ 129.23, 127.98, 127.11, 62.39,
51.48, 48.12, 47.60, 47.43, 47.26, 47.09, 30.01. HRMS-ESI (m/z)
calcd for C38H45N9 ([M + H]+): 628.4; found: 628.4 (±1.0 ppm).

(E)-4,4′-(Triaz-1-ene-1,3-diyl)bis(N-(2-(1-benzylpiperidin-4-yl)-
ethyl)benzimidamide) (DMZ-P13). 1H NMR (500 MHz, methanol-
d4) δ 7.82 (d, J = 8.3 Hz, 4H), 7.68 (d, J = 8.3 Hz, 4H), 7.55−7.45
(m, 10H), 4.28 (s, 4H), 3.56−3.44 (m, 8H), 3.00 (t, J = 12.6 Hz,
4H), 2.04 (d, J = 14.1 Hz, 4H), 1.78 (q, J = 6.5 Hz, 6H), 1.59 (q, J =
11.6, 10.9 Hz, 4H). 13C NMR (126 MHz, MeOD) δ 163.89, 161.77,
161.49, 130.85, 129.61, 129.13, 128.87, 118.03, 115.70, 51.89, 47.45,
47.28, 47.11, 40.34, 32.75, 31.15, 28.66. HRMS-ESI (m/z) calcd for
C42H53N9 ([M + H]+): 684.45; found: 684.45 (±3.3 ppm).

Surface Plasmon Resonance. RNA Immobilization. Followed a
recently published protocol from ref 75, the entire system was washed
with 50% (v/v) RNase Zap (Invitrogen by ThermoFisher Scientific)
three times and then manually ran it (flow rate of 25 μL/min) in
RNase-free water for more than 14 h to make sure no more RNase
Zap was left in the system. A series S CM5 sensor chip (GE
Healthcare Bio-science Corp, Marlborough, MA) was used for RNA
immobilization in HBS buffer (10 mM HEPES, 150 mM NaCl, 3 mM
EDTA, 0.05% (v/v) P20, pH 7.4). In the manual run mode, two cells
(either cell 4&3 or cell 2&1) from a sensor chip were selected and the
immobilization began when the system reached a stable baseline (the
difference in RU over a period of time (ΔRU) <1 for at least 60 s)
with a flow rate of 5 μL/min. First, 80 μL of 11.5 mg/mL N-
hydroxysuccinimide (NHS) and 75.0 mg/mL of N-ethyl-N′-
(dimethylaminopropyl) carbodiimide (EDC) from Amine Coupling
Kit (GE Healthcare) were mixed just prior to the injection to take
advantage of the best activation time window. The injection of EDC/
NHS (flow rate of 5 μL/min) took 720 s to reach 100−200 ΔRU.
Streptavidin (Sigma-Aldrich) was diluted to 300 μg/mL in
immobilization buffer (10 mM sodium acetate pH 4.5) beforehand
and then was injected (flow rate of 5 μL/min) right after EDC/NHS
activation. The injection of streptavidin took ∼2000 s to reach 4000−
6000 RU increase of the sensorgram. Afterward, 1.0 M ethanolamine
hydrochloride (pH 8.5) was injected (flow rate of 5 μL/min) for 600
s to deactivate the surface of the sensor chip. The system was primed
several times to obtain a stable baseline.

Before RNA immobilization, the surface was activated by injecting
75 μL of 1 M NaCl (prepared in RNase-free water) at a 25 μL/min
flow rate 5 times. The stabilization of the baseline was waited for at
least 1 h. The flow rate was changed to 1 μL/min for RNA
immobilization, and the flow path was switched to the working cell
(cell 4 or cell 2) only. Biotinylated HIV-1 TAR (5′-TEG-biotin-
GGCAGAUCUGAGCCUGGGAGCUCUCUGCC-3′, Integrated
DNA Technologies) was annealed beforehand by diluting to 50 μM
in DEPC-treated water and then heating to 95 °C and cooling on ice
for 30 min. RNA was diluted to 250 nM in HBS buffer and injected
under a manual run for 100−600 s to achieve a 200−500 increase of
RU. After RNA immobilization, the HBS buffer was replaced by a
running buffer (50 mM tris−HCl, 50 mM KCl, 5% DMSO, 0.01%
Triton-X-100, pH 7.4) and primed 3 times before measurements.

Binding Measurements. Ligand solutions were prepared with an
SPR running buffer by serial dilutions from concentrated stock
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solutions. Typically, a series of different ligand concentrations (at least
five nonzero concentrations; the range depends on binding affinity,
e.g., DPFs from 50 to 1000 nM, DMAs from 1 to 200 μM) were
injected over the sensor chip at a flow rate of 50 μL/min for 60 s,
followed by buffer flow for ligand dissociation for 120 s. After each
cycle, the sensor chip surface was regenerated with a 1 M NaCl
solution for 60 s. A zero-concentration injection was placed at the
very beginning for each ligand for blank subtraction. The injection
with the middle concentration was repeated finally to check the
stability of the instrument’s behavior. Kinetic analyses were performed
by fitting curves from the entire concentration series using a 1:1
Langmuir binding equation via BIAevaluation software.
Similarity Calculation. Tanimoto coefficient was used here to

compare the shared portion of substructures between two molecules.
The Morgan fingerprints (calculated using RDkit package) were
obtained by calling the “GetMorganFingerprintAsBitVect” function,
using the radius of 2 and 2048-bit vector. Then, the similarity index
between two compounds was calculated as the Tanimoto coefficient
by calling the “DataStructs.TanimotoSimilarity” function. The values
calculated are between 0 and 1, and a higher value suggests a higher
similarity between the two.
Descriptor Calculation. Before calculation, all of the ligands were

tuned to the correct protonation and tautomerization states using
molecular operating environment (MOE, Chemical Computing
Group, 2018.01). Each of the protonation and tautomerization states
was sent to conformational search individually to account for the
flexibility of the ligand. Low-energy conformations of each molecule
were calculated using the conformation search algorithm in MOE.
The conformation search function was performed using the stochastic
method with the MMFF94 force field and the generalized Born
solvation model. The input for each parameter is listed in Table S1,
and the following options were checked: hydrogens. The 3 kcal/mol
energy window was selected to survey the biologically relevant
conformation space and to obtain a representative population of
conformers at equilibrium (>99%), as described in eq S1. After the
conformation search was complete, the 435 descriptors, ranging from
the electrostatic properties to topological terms, were calculated for
each conformation and averaged using the Boltzmann-weighted
equation (eq S2). The final descriptor set of each molecule was
obtained by further averaging based on the distribution of the
protonation and tautomerization states. In total, we calculated 435
descriptors of each ligand.
QSAR Modeling. Descriptor Refinement. The descriptors were

first refined based on the constant terms. A descriptor was deleted if it
has more than 80% entries sharing the same values. Then, the left
descriptors were calculated on their correlation coefficients using the
corrcoef function in MATLAB. The descriptor has a maximum
number of correlated descriptors (abs(rho) > 0.95) that were deleted.
If the target descriptor was found to be more than one, the first
appeared one was deleted. Then, the left descriptors were calculated
on their correlation coefficients again and the descriptor has a
maximum number of correlated descriptors (abs(rho) > 0.95) that
were deleted. After several rounds, the left descriptors have at most
one multicorrelations. In a pair of multicorrelations, the one with the
lower correlation coefficient with y variable was deleted.
Representative Data Splitting by the Kennard−Stone Algorithm

and PCA. Data splitting was performed using the “prospectr” package
in RStudio (v1.4.1717). The 48 data points were divided into 36 ones
as the training set and 12 ones as the test set. The distance metric
used in the Kennard−Stone algorithm was the mahalanobis distance,
where 99% data variance was explained by the principal components.
PCA was performed using the “prcomp” function to visualize the
distribution of the training set and test set molecules in the PCA
space.
Descriptor Selection by Lasso and Model Selection. Lasso

regression was performed using the “glmnet” package in RStudio
(v1.4.1717). Random seed was set before the cross-validation process.
A range of lambda values were tested to find the best lambda with the
lowest mean-squared error from cross validation. The selected

descriptors formed the new feature space for the following exhaustive
model search.

Tree-Based Ensemble Models. Decision tree, bagging, random
forest, and gradient boost machine were performed in RStudio
(v1.4.1717) using “tree”, “randomForest”, “randomForest”, and “gbm”
packages, respectively. Random seed was set before all of the cross-
validation process for selecting optimized hyperparameters.
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■ ABBREVIATIONS USED

AG, aminoglycoside; DMA, dimethyl amiloride; DMZ,
diminazene; DPF, diphenyl furan; DRY, hydrophobic probe;
Integy, interaction energy; lasso, least absolute shrinkage and
selection operator; MLR, multiple linear regression; MOE,
molecular operating environment; ncRNA, noncoding RNA;
OH2, hydrophilic probe; PCA, principal component analysis;
PEOE, partial equalization of orbital electronegativities; Q−Q,
quantile−quantile; QSAR, quantitative structure−activity
relationship; SPR, surface plasmon resonance; TAR, trans-
activation response element
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