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ABSTRACT

Schizophrenia is a complex, severe, chronic psychiatric disorder, and the 
associated deficit syndrome is widely regarded as an important clinical aspect of 
schizophrenia. This study analyzed the relationship of deficit syndrome severity 
with the mRNA levels of members of signaling pathways that associate with the 
pathophysiology of schizophrenia, including the dopamine D2 receptor (DRD2), 
protein kinase B (AKT1), and phosphoinositide-3 kinase (PI3KCB), in peripheral blood 
leukocytes (PBLs) of 20 healthy controls and 19 chronic schizophrenia patients with 
long-term clozapine treatment. The DRD2 expression levels in chronic schizophrenia 
group were statistically higher than those in controls (t=2.168, p=0.037). Moreover, 
in chronic schizophrenia group, correlations were observed between the expression 
levels of DRD2 and PI3KCB (r=0.771, p<0.001), DRD2 and AKT1 (r=0.592, p=0.008), 
and PI3KCB and AKT1 (r=0.562, p=0.012) and between the DRD2 mRNA levels and 
the Proxy for the Deficit Syndrome score (r=0.511, p=0.025). In control group, the 
correlation between PI3KCB expression levels and DRD2 expression levels was only 
observed (r=0.782, p<0.001). In conclusion, a correlation was observed between 
increased deficit syndrome severity and elevated expression levels of DRD2 in PBLs 
of chronic schizophrenia patients receiving long-term clozapine treatment.

INTRODUCTION

Schizophrenia is a complex, severe, chronic 
psychiatric disorder with a heterogeneous clinical 
phenotype [1]. The prevalence of schizophrenia is 
approximately 1.1% of the population over the age of 18, 
and 25 million people worldwide are currently affected 
by this disorder [2]. However, at present, schizophrenia 
is primarily diagnosed using criterion-based approaches, 
such as the criteria from the International Classification 
of Diseases, Tenth Edition (ICD-10), and the Diagnostic 
and Statistical Manual of Mental Disorders, Fifth Edition 
(DSM-V) [3]. Biomarkers for the diagnosis, prognosis or 

therapeutic efficacy of schizophrenia are currently being 
examined extensively.

Many efforts have been made to investigate the 
etiology of this disease, including studies focused on 
genetics, early environmental factors, psychology and 
neurobiology [4–7]. Gene–environmental interactions 
have been found to play a crucial role in the development 
of schizophrenia [8, 9]. Considering these various 
factors, the development of genomics and molecular 
biology improved the understanding of the molecular 
pathophysiology of schizophrenia, especially the related 
neuronal signaling pathways and the influences of 
antipsychotic drugs on them [10–13].
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The phosphoinositide-3 kinase - protein kinase 
B (PI3K-Akt) pathway is an important downstream 
intracellular pathway of DRD2, which is associated 
with the function and development of central nervous 
system and the pathophysiology of schizophrenia 
[10–15]. PI3K-Akt pathway is also the intracellular 
downstream pathway of glutamate, serotonin, dysbindin, 
disrupted in schizophrenia-1 (DISC-1), and neuregulin 
1 (NRG1), which are all the targets for mood stabilizers 
and antipsychotic drugs [10, 15, 16]. Almost all aspects 
of the cell developments, such as growth, proliferation, 
metabolism and apoptosis, were modulated by PI3K-Akt 
pathway. Reduced PI3K/Akt activity destroys schwann 
cells and oligodendrocytes, damages axonal guidance and 
cell–cell interactions, and reduces synaptic number, which 
may all lead to schizophrenia [16, 17]. Dysregulation of 
PI3K-AKT signaling cascade could critically disturb the 
neurodevelopmental process via genetic and environmental 
risk, and has been regarded as a root cause of several 
neurodevelopmental diseases, including schizophrenia [18]. 
The murine model of Akt3 genetic deficiency exhibited 
selective deficits of temporal order discrimination and 
spatial memory, tasks critically dependent on intact 
prefrontal-hippocampal circuitry, which related to 
schizophrenia [19]. Double deficiency of Akt1 and Nrg1 can 
result in the impairment of social cognitive functions, which 
might be pertinent to the pathogenesis of schizophrenia-
related social cognition which related to schizophrenia [20].

According to recent researches, DRD2-PI3K-AKT 
pathway could have at least three intracellular downstream 
segments, which play important roles in cell growth and 
proliferation [21, 22]. Firstly, AKT could induce the 
inactivation of forkhead family of transcriptional regulators 
(FOXOs) by promoting the phosphorylation of them. And 
FOXOs could contribute to neural stem cell renewal and 
proliferation [23–25] and also have prominent roles in the 
development of neuronal circuits [26]. Secondly, AKT 
could also induce mammalian target of rapamycin (mTOR) 
to be phosphorylated. mTORs could regulate intracellular 
protein synthesis, synaptic plasticity, neuronal morphology, 
and the pathophysiology of schizophrenia [27]. Thirdly, a 
multifunctional serine/threonine kinase, glycogen synthase 

kinase-3 (GSK-3) also could be inactivated by AKT. 
GSK-3 can regulate a series of neuron response, such as 
microtubule dynamics [28].

Moreover, Schizophrenia is a complex disorder 
characterized by a high degree of variability in its 
performance of negative, positive, and cognitive symptoms. 
The presentation of negative symptoms (i.e., blunted 
affect, lack of will, impaired social function) and cognitive 
impairment (i.e., impaired working memory and executive 
function) are the core and longest lasting symptoms of 
schizophrenia [29–32]. In particular, the deficit syndrome 
of schizophrenia is defined as the stable persistence of 
two or more negative symptoms (i.e., alogia, affective 
flattening, lack of focus, loss of interest in social activities, 
loss of interest or reduced emotional range) for at least 
one year [33, 34]. The deficit syndrome of schizophrenia 
associated with poorer response to therapy and severer 
disease course [35]. The arisement of the definition of 
deficit syndrome subtype was an attempt to increase the 
clinical homogeneity of schizophrenia. The Proxy for the 
Deficit Syndrome (PDS) was the most common method to 
evaluate the deficit syndrome of schizophrenia based on the 
following calculation of Positive and Negative Syndrome 
Scale (PANSS) [36] items: affective flattening (N1) + lack 
of spontaneity and fluency in conversation (N6) - (hostility 
(P7) + guilt (G3) + anxiety (G2) + depression (G6)) [3, 37]. 
The present study aimed to explore the gene expression 
patterns of DRD2, AKT1, and PI3KCB in peripheral blood 
lymphocytes (PBLs) of chronic schizophrenia patients with 
deficit syndrome.

RESULTS

Comparisons of the DRD2, AKT1, and PI3KCB 
expression levels between the two groups

The DRD2 expression levels in chronic schizophrenia 
patients were statistically higher than those in controls 
(t=2.168, p=0.037). The PI3KCB (t=1.469, p=0.142) and 
AKT1 (t=0.500, p=0.620) mRNA levels demonstrated 
no significant differences between chronic schizophrenia 
patients and healthy controls (Table 1, Figure 1).

Table 1: Comparison of the expression levels of DRD2, AKT1 and PI3KCB between two groups (means±S.D.)

Chronic 
schizophrenia 

patients

Controls

t p

(n=19) (n=20)

DRD2 0.83±0.09 0.76±0.11 2.168 0.037*

AKT1 0.27±0.13 0.29±0.12 0.500 0.620

PI3KCB 0.83±0.08 0.87±0.09 1.469 0.142

The mRNA expression levels of DRD2, AKT1, and PI3KCB in PBLs were normalized respectively by the ratio of their CT 
values and that of GAPDH as internal housekeeping gene. The independent-samples T test was used. * p<0.05.
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Correlations between DRD2, AKT1, and 
PI3KCB expression levels in two groups

In chronic schizophrenia group, there were 
statistical correlations between the expression levels of 
PI3KCB and DRD2 (r=0.771, p<0.001), DRD2 and AKT1 
(r=0.592, p=0.008), and PI3KCB and AKT1 (r=0.562, 
p=0.012). And only the correlation of PI3KCB and DRD2 
expression levels was significantly detected in the control 
group (r=0.782, p<0.001) (Table 2, Figure 2).

Relationships of DRD2, AKT1, and PI3KCB 
expression levels with PANSS scores of chronic 
schizophrenia group

In chronic schizophrenia group, there was no 
significant relationship between target genes expression 
levels and the total PANSS score, the positive symptom 

score, the negative symptom score or the general 
pathological symptom score. However, the relationship of 
DRD2 mRNA levels (r=0.511, p=0.025) and the PDS score 
was significantly observed (Table 3, Figure 3).

DISCUSSION

Schizophrenia is a complex disorder characterized 
by a high degree of variability in its performance of 
negative, positive, and cognitive symptoms. Although 
with the same diagnosis, schizophrenia patients may 
display great different symptoms [38]. This variation has 
complicated genomic and molecular biological studies of 
schizophrenia. Negative symptoms and cognitive deficits 
are the most persistent manifestations of schizophrenia 
and the core symptoms of this disease [29–32]. However, 
chronic schizophrenia patients exhibit homogeneous 
disease characteristics, focusing on chronic schizophrenia 

Figure 1: Comparison of the expression levels of DRD2, AKT1, and PI3KCB between two groups. The mRNA expression 
levels of DRD2, AKT1, and PI3KCB in PBLs were normalized respectively by the ratio of their CT values and that of GAPDH as internal 
housekeeping gene. The DRD2 expression levels in chronic schizophrenia group were statistically higher than those in controls (t=2.168, 
p=0.037).
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Table 2: Correlations between the mRNA levels of DRD2, AKT1, and PI3KCB (R-values)

Chronic schizophrenia patients Controls

DRD2 AKT1 PI3KCB DRD2 AKT1 PI3KCB

DRD2 1.000 0.592** 0.771** 1.000 0.366 0.782**

AKT1 0.592** 1.000 0.562* 0.366 1.000 0.274

PI3KCB 0.771** 0.562* 1.000 0.782** 0.274 1.000

* p<0.05, ** p<0.01.

Figure 2: Correlations between the gene expression levels of DRD2, AKT1, and PI3KCB in two groups. In chronic 
schizophrenia patients, significant correlations were detected between the expression levels of DRD2, AKT1, and PI3KCB. In controls, the 
significant correlation was only found between the expression levels of PI3KCB and DRD2.
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would generate influential and helpful insights for 
future research concerning the pathophysiology of this 
disease. And the development of genomics and molecular 
biology improved the understanding of the molecular 
pathophysiology of schizophrenia, especially the DRD2-
PI3K-Akt signaling pathways and the influences of 
antipsychotic drugs on them [10–13]. The present study 
analyzed the gene expression patterns of DRD2, AKT1, 

and PI3KCB in peripheral blood lymphocytes (PBLs) of 
chronic schizophrenia patients with deficit syndrome.

We found that the mRNA levels of DRD2 were 
significantly higher in chronic schizophrenia patients than 
those in controls, which is consistent with the findings of 
three studies. For instance, the increased DRD2mRNA 
expression levels have also been found by Zvara et al. in 
PBMCs of drug-naïve or drug-free schizophrenia patients 

Table 3: Relationships between the expression levels of DRD2, AKT1, and PI3KCB and the PANSS scores of chronic 
schizophrenia patients (R-values)

DRD2 PI3KCB AKT1

Total PANSS score 0.243 -0.022 0.037

Positive symptom score 0.240 0.249 0.191

Negative symptom score -0.387 -0.158 -0.143

General pathological symptom score -0.153 -0.128 -0.109

Proxy for the Deficit Syndrome score 0.511* 0.456 0.150

Spearman's correlation coefficients are shown. * p<0.05.

Figure 3: Relationship of the DRD2 mRNA levels with the severity of deficit syndrome in chronic schizophrenia 
patients. In chronic schizophrenia patients, a significant relationship was detected only between the mRNA expression levels of DRD2 
(r=0.511, p=0.025) and the Proxy for the Deficit Syndrome (PDS) score.
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with a varied duration of illness and severe symptoms 
[39], by Brito-Melo et al. in T cell subsets (CD4 and CD8) 
of medicated chronic schizophrenia patients with duration 
of illness >10 years [40], and by Kordi-Tamandani et al. 
in whole blood samples of schizophrenia patients, not 
mentioned the medical treatment [41]. However, there have 
been some inconsistent reports in the literature. Ahmadian 
et al., Cui et al., Yao et al. and our laboratory have found 
no significant difference in DRD2 mRNA expression 
levels in peripheral blood of schizophrenia patients [42–
45]. We have analyzed PANSS scores in the different 
patient groups of schizophrenia in a previous paper [45]. 
And the PANSS scores of chronic schizophrenia patients 
this time (76.16±9.22) were statistically higher (t=2.0685, 
P=0.0445) than chronic schizophrenia patients in the 
previous research (70.32±9.57).

We also found that the PI3KCB and AKT1 mRNA 
levels demonstrated no significant differences between 
chronic schizophrenia patients and controls. About 
PI3KCB mRNA levels in peripheral blood samples of 
schizophrenia patients, there was only our previous one 
paper reported that the PI3KCB mRNA expression levels 
in the acute schizophrenia patients were significantly lower 
than those in the healthy controls [46], and this time in the 
chronic schizophrenia patients with long-term clozapine 
treatment, PI3KCB mRNA expression levels demonstrated 
no significant change. In the same previous paper, we 
have found the AKT1 mRNA levels in peripheral blood 
samples of acute schizophrenia patients were significantly 
higher than those in the healthy controls [46], just like the 
researches in peripheral blood mononuclear cells (PBMCs) 
of Kumarasinghe et al. [47] and Xu et al. [48]. And this 
time, we reported that AKT1 mRNA levels demonstrated 
no significant differences between chronic schizophrenia 
patients with long-term clozapine treatment and controls. 
Kumarasinghe et al. also found that AKT1 gene expression 
levels returned to control levels after 6 weeks treatment 
with risperidone or risperidone in combination with 
haloperidol [47]. But Xu et al. reported AKT1 expression 
levels have no change after treatment with oral second 
generation or atypical antipsychotics (SGA) [48]. There 
are, of course, some opposite findings. Noto et al. found 
no significant difference in AKT1 mRNA expression level 
in whole blood samples between 174 antipsychotic naïve 
first episode psychosis and 77 healthy controls [49]. van 
Beveren et al. reported that significantly decreased PBMC 
expression of AKT1 in all the antipsychotic-free or -naive 
patients, florid psychotic and remitted patients [50].

These inconsistent results of mRNA expression 
levels of DRD2, PI3KCB and AKT1 may have been 
obtained because in contrast to the above studies, firstly, 
our samples were collected from chronic schizophrenia 
patients receiving long-term treatment with single 
clozapine. The deficit syndromes of chronic schizophrenia 
patients and the pharmacological effects of clozapine 
might have influenced the examined mRNA levels. 

Secondly, the expression level of DRD2, PI3KCB, 
and AKT1 in peripheral blood may not an index of 
schizophrenia, but only an index of psychiatric symptoms.

With regard to the correlations between the 
mRNA levels of DRD2, AKT1, and PI3KCB, significant 
correlations were detected between the mRNA levels 
of AKT1 and DRD2, AKT1 and PI3KCB, DRD2 and 
PI3KCB in chronic schizophrenia patients. In healthy 
controls, the only statistical correlation was observed 
between the mRNA levels of PI3KCB and DRD2. PI3K-
Akt pathway was the non-classical downstream signaling 
pathway of DRD2. And the combination of DA and 
DRD2 receptor leads serially to the activation of PI3K 
and the dephosphorylation and inactivation of AKT [14, 
15]. In chronic schizophrenia patients receiving long-
term clozapine treatment, the pharmacological effects 
of clozapine might influence the functional status of 
the DRD2-PI3K-Akt signaling cascade. Studies have 
shown the superiority of clozapine to typical agents for 
treating the negative symptoms and positive symptoms 
of schizophrenia [51]. The time lag between the start 
of treatment and the therapeutic effect of antipsychotic 
agents suggests that changes in gene expression contribute 
to their efficacy [52–55].

In chronic schizophrenia group, there was a 
significant relationship detected exclusively between DRD2 
gene expression levels and the PDS score, not between the 
expression levels of any examined gene and the total PANSS 
score, the positive symptom score, the negative symptom 
score or the general pathological symptom score. The 
proposition of deficit syndrome was aiming for reducing the 
clinical heterogeneity of schizophrenia [33, 56]. The deficit 
syndrome is featured with persistent and primary negative 
symptoms which stay through clinical decompensation and 
stability stage. Some researches have reported the deficit 
syndrome could help to differentiate the risk factors, clinical 
features and prognosis, pharmacological response profiles, 
neurocognitive and biological of schizophrenia patients. 
And the dysfunction of neural circuitry in dorsolateral 
prefrontal cortex (DLPFC) might be the pathological basis 
of deficit syndrome [35, 56]. The dopamine hypothesis of 
schizophrenia also suggests that dysfunction of the neural 
circuitry, such as subcortical hyperdopaminergia and 
prefrontal hypodopaminergia [57]. Our results showed that 
DRD2 gene expression levels in PBLs were correlated with 
the deficit syndrome of chronic schizophrenia patients. But 
the researches on the relation between DRD2-PI3K-AKT 
pathway and the deficit syndrome of schizophrenia were 
relatively scarce. Previous studies have found that deficit 
schizophrenia patients have decreased plasma levels of 
high oxalate (dopamine metabolites, PHVA) levels, and 
increased plasma levels of 3-methyl-4-hydroxy phenyl 
ethylene glycol (Norepinephrine metabolites, MHPG), and 
the symptoms of deficiency were related to the increase of 
NE level and the decrease of DA level [58]. Some papers 
reported that more homozygous Val/Val in catechol-O-
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Table 4: Demographic and clinical characteristics of the subjects

Chronic schizophrenia patients Controls
Statistic

(n=19) (n=20)

Mean age (S.D.) 44.42 (5.50) 39.80 (8.71) t=1.968, p=0.057

Gender (male) (%) 11 (57.89) 9 (45.00) χ2=0.648, p=0.421

Duration of disease (months) (S.D.) >24 NA NA

Mean total PANSS score (S.D.) 76.16(9.22) NA NA

Age of onset (S.D.) 25.47(9.96) NA NA

Duration of therapy (months) (S.D.) 20.41(7.82) NA NA

Number of incidence (S.D.) 8.16(2.14) NA NA

The variance of the age in the two groups was equivalent (F=2.508, p=0.057).

Figure 4: Standard curves of DRD2, GAPDH, Akt1 and PI3KCB. The standard curves of DRD2, GAPDH, Akt1 and PI3KCB 
with 10-fold gradient dilution displayed good linear relationship. Ct value: Cycle threshold value; LgC0: Logarithm of the initial 
concentration; □: DRD2, y=-3.7679x + 40.352, R2=0.9983; ○: GAPDH, y=-3.5773x + 36.767, R2=0.9989; ∆: AKT1, y=-3.3937x + 38.760, 
R2=0.9984; ×: PI3KCB, y=-3.0661x + 37.709, R2=0.9986.
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methyltransferase (COMT) Val158Met genotypes were 
found (31 vs. 17%) in the non-deficit schizophrenia patients 
compared to the deficit schizophrenia subgroup [59], and 
SNP8NRG241930 in NRG1 were associated with non-
deficit schizophrenia [60]. COMT and NRG1 are both the 
upstream signals of DRD2-PI3K-AKT pathway. So, the 
DRD2-PI3K-AKT pathway was supposed to involve in 
neuropathogenesis of deficit syndrome of schizophrenia.

This research also had some limitations. Firstly, the 
small sample size was the major limitation of this study, 
which may have led to insufficient statistical power to detect 
some slight difference. Secondly, the chronic schizophrenia 
patients were monotherapied with clozapine for more than 6 
months before recuited in the study, but we did not limit the 
antipsychotic drugs which might be used before that. So, the 
possible long-term effects of antipsychotic drugs ever used 
were not considered. Thirdly, there are evident limitations 
of using peripheral blood to explore a central nervous 
system disease, but researches of postmortem brain samples 
circumvent the corresponding confounding factors, such as 
effects of long-term hospitalization and lifetime exposure to 
antipsychotic drugs [61, 62]. The researches of peripheral 
mRNA expression could provide a chance to understand the 
gene expression profile of central nervous system because, 
the gene expression levels of many kinds of biologically 
substances display the similar gene expression patterns in 
peripheral blood and prefrontal cortical tissue [50, 61, 62].

In conclusion, a correlation was observed between 
increased deficit syndrome severity and elevated DRD2 
expression levels in PBLs of chronic schizophrenia 
patients receiving long-term clozapine treatment. 
However, considering the limited in vivo evidence 
concerning the proteins phosphorylation levels which 
related to the functional status of PI3K-Akt pathway and 
the understanding that PI3K-Akt pathway is activated 
by several different regulatory mechanisms to exert its 
biological effects [63], the alterations in the DRD2-PI3K-
Akt pathway have not been fully elucidated as biological 
markers of schizophrenia.

MATERIALS AND METHODS

Participants

From July 2011 to September 2012, 19 chronic 
schizophrenia patients were recruited from clinical psychiatry 
department, Wuxi Mental Health Center, Nanjing Medical 
University; and 20 healthy controls were recruited from 
physical examination center of Wuxi Tongren International 
Rehabilitation Hospital. Each chronic schizophrenia 
patient received the routine examination and psychiatric 
examination, and all completed the criteria of schizophrenia 
according to the DSM-IV-TR [64]. The courses of disease of 
chronic schizophrenia patients were all longer than 2 years 
[65], and had been treated with clozapine monotherapy for 
at least 6 months (drug dose fulfilled the treatment dose). 

And their symptom features accorded with the criteria for 
deteriorated schizophrenia subtype or residual schizophrenia 
subtype of Chinese Classification and Diagnostic Criteria of 
Mental Disorders, Third Version (CCMD-3) [65] and residual 
schizophrenia subtype of the DSM-IV-TR [64].

All subjects were Han Chinese, who had no 
previous history of drug abuse, nervous system disease 
and immune disease. The health controls group had no 
history in neuropsychology. The female subjects were 
not in lactating, menstruating or pregnant stage when 
recruited. There was no significant difference in gender 
and age between two groups. Their demographic and 
clinical characteristics are shown in Table 4.

The psychotic symptoms of the patients were 
quantified with PANSS by one rater just in the same day 
when the blood samples were drawn. Then the deficit 
syndrome of schizophrenia was evaluated by the PDS 
calculated with PANSS items which was mentioned 
previously in the introduction.

Ethical considerations

The research is based on the principles described 
in the Helsinki declaration. The research was approved 
by the ethics committee of the Wuxi mental health center. 
Before the research, all the participants were informed the 
procedures and corresponding rights. And every subject or 
major legal guardian, in case the decision-making ability of 
participant was limited, had signed the informed consents.

Methods

Sample collection and RNA isolation

Each subject was drawn 2 ml of fasting ulnar vein 
blood in vacutainer tube with heparin. Total ribonucleic acid 
(RNA) of each sample was extracted with QIAamp RNA 
Blood Mini Kit (Qiagen Co., Germany) contained DNase 
processing steps. The absorbance of RNA samples were 
examined to conduct the quality check using Bioanalyzer 
2100 System, Agilent. The RNA integrity numbers (RIN) of 
RNA samples were 8.21±0.36, and the 28S/18S ratios were 
1.88±0.45, which all displayed the good integrity.

RNA extraction and reverse transcription were 
conducted in 3 hours after drawing blood samples in order 
to reduce the RNA degradation. To minimize batch effects, 
the fasting blood sample was consistently drawn at 6:00 
am, and RNA extraction and reverse transcription were 
performed by the same laboratory technician utilizing 
identical experimental procedures.

Real-time polymerase chain reaction (PCR) and 
relative quantitative analysis

Total RNA was used as template to synthesize the 
first-strand cDNA with QuantiTect Reverse Transcription 
Kit (Qiagen Co., Germany). Each reaction mixture had 400 
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ng of RNA template, and was placed in a water bath at 42 
°C for a period of 20 minutes, and then in a water bath at 
95 °C for a period of 3 minutes to terminate the reaction. 
Finally, the reaction production was stored at -80 °C.

To conduct real-time PCR reaction, QuantiFast 
Probe PCR Kit (Qiagen Co., Germany) and QuantiFast 
Probe Assays (Qiagen Co., Germany) were used in ABI 
Prism 7500 PCR instrument (ABI Co., USA). The probe 
assays were prefabricated with probes and primers for 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
as internal control, including probes and primers of 
Hs_AKT1P_QF_1 assay (QF00525315) for AKT1, Hs_
PI3KCB_QF_1 assay (QF00069097) for PI3KCB, and Hs_
DRD2_QF_1 assay (QF00103047) for DRD2. The volume 
of each reaction system was up to 25 μl with the reaction 
conditions as pre-denaturing at 95°C for 5 min, then 40 
cycles of denaturing at 95°C for 30 s and annealing at 60°C 
for 30 s. Each sample was conducted 3 parallel reactions in 
order to calculate the average CT value.

The double standard curve method [66] was chosen 
to obtain the relative quantities of each target gene (Figure 
4). Using the data from each amplification reaction plate, 
standard curves for internal control gene and target genes 
were figured out with the same threshold. So, the original 
mRNA levels of target genes and GAPDH were figured 
out by their respective standard curves and CT values. 
Then, the relative mRNA levels of target genes were 
normalized by the ratio of CT values of target gene and 
that of GAPDH respectively, and this normalized process 
avoids the discrepancies in amplification results which 
resulting from the differences of the mRNA amount 
initially added in the reaction system. This double 
standard curve method makes the accurate copy number or 
concentration criterion not necessary and the preparation 
of standard curves relatively simpler.

Statistical analyses

Statistical software (SPSS version 19) was used for 
statistical analysis. The homogeneity test of variances of 
the target genes expression levels in both groups were 
conducted firstly. Then, to compare the differences of 
expression levels of target genes between the two groups, 
Independent-samples T test was chosen. And Pearson’s 
correlation analysis for analyzing the correlations 
between the target genes expression levels, and Spearman 
correlation analysis for analyzing the relationships 
between each target gene expression level and PANSS 
scores were chosen. All data were displayed in terms of 
means ± standard deviation (S.D.) with a 2-sided p value 
≤0.05 as statistical significance.
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