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ABSTRACT
Objective The goal of this work was to evaluate
machine learning methods, binary classification and
sequence labeling, for medication–attribute linkage
detection in two clinical corpora.
Data and methods We double annotated 3000
clinical trial announcements (CTA) and 1655 clinical
notes (CN) for medication named entities and their
attributes. A binary support vector machine (SVM)
classification method with parsimonious feature sets,
and a conditional random fields (CRF)-based multi-
layered sequence labeling (MLSL) model were proposed
to identify the linkages between the entities and their
corresponding attributes. We evaluated the system’s
performance against the human-generated gold
standard.
Results The experiments showed that the two machine
learning approaches performed statistically significantly
better than the baseline rule-based approach. The binary
SVM classification achieved 0.94 F-measure with
individual tokens as features. The SVM model trained on
a parsimonious feature set achieved 0.81 F-measure for
CN and 0.87 for CTA. The CRF MLSL method achieved
0.80 F-measure on both corpora.
Discussion and conclusions We compared the novel
MLSL method with a binary classification and a rule-
based method. The MLSL method performed statistically
significantly better than the rule-based method.
However, the SVM-based binary classification method
was statistically significantly better than the MLSL
method for both the CTA and CN corpora. Using
parsimonious feature sets both the SVM-based binary
classification and CRF-based MLSL methods achieved
high performance in detecting medication name and
attribute linkages in CTA and CN.

OBJECTIVE
This work focused on the linkage detection
problem in two clinical corpora, clinical trial
announcements (CTA) and clinical notes (CN). The
three specific aims of our research were: (1) to
develop linkage detection for medications in two
clinical text types relevant for clinical trial eligibil-
ity screening (trial announcements and electronic
health record notes); (2) to evaluate a novel multi-
layered sequence labeling (MLSL) approach in
linkage detection; and (3) to test the feasibility of
high accuracy linkage detection with parsimonious
feature sets.

BACKGROUND AND SIGNIFICANCE
Because of the dismal clinical trial enrollment rates
and consequent detrimental effect on drug develop-
ment, facilitating clinical trial eligibility screening—
for example, through automation—is a high-
priority topic in biomedical informatics research.1–3

The ability to recognize medications and their cor-
responding attributes (such as dosage, form, and
frequency) in CTA and CN is a preliminary and
critical step to automate clinical trial eligibility
screening. Automatic medication linkage detection
is a challenging task. The Third4 and Fourth5 i2b2
workshops on natural language processing (NLP)
challenges for clinical records included linkage
detection or tasks that can be addressed with
similar methods (eg, relation discovery). The Third
i2b2 challenge task required the identification of
medications as well as their dosages, modes (routes)
of administration, frequencies, durations, and
reasons for administration in the discharge summar-
ies. Although the workshop did not specifically
evaluate medication and attribute linkage detection,
all teams treated it as the second step of the medi-
cation extraction task—detecting the entities first
and then linking these entities.6–13 The Fourth i2b2
challenge task classified the relations between a pair
of entities (one of the entities being ‘medical
problem’) appearing in the same sentence into
three categories: treatment–problem relations, test–
problem relations, or medical problem (problem–

problem) relations.5 The same binary classification
method can also be used to address our linkage
detection problem, that is, whether there is a
linkage between medication entities and attribute
entities or not. With an annotated data set, most
teams in the Fourth i2b2 task used supervised
learning methods, particularly binary classification
methods, such as support vector machine (SVM),
for the relation classification.14–23

In the i2b2 tasks contextual or lexical features
were the most common features in most of the
supervised classification systems, such as Patrick’s
work in the Third i2b2 task.23 Morpho-syntactic
features and semantic features were considered as
classification features in the Fourth i2b2 tasks.18 19

This paper treats the linkage detection task as a
binary classification problem using similar token
feature sets as described in Patrick’s work23 as well
as the part-of-speech (POS) tokens proposed in this
paper. Our experiments study the binary classifica-
tion performance between different feature sets,
and compare the binary classification approach
with other methods.
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Linkages can also be detected using a semi-supervised
method24 and sequence labeling for structured multi-label tasks.
McDonald et al built a model smoothing the predicted labels in
order to deal with nested, discontinuous, and overlapping label-
ing in the task of segmentation.25 Byrne addressed the nested
named entity recognition challenge by transferring the nested
entities into the binary classification problem.26 Alex et al pro-
posed a method for nested entity identification using the output
of a previous step as the input to the next.27 Finkel et al pro-
posed using a discriminative constituency parser which can iden-
tify nested entities of either the same type or different types.28

These earlier works concentrated on entity recognition, while
the task in our paper was linkage detection between an entity
and its attributes, given the input from a previous step of entity
recognition.

The Third i2b2 task (medication information extraction) used
a corpus of 1249 patient discharge summaries including 696
training records (17 annotated documents) and 533 testing
records. The Fourth i2b2 task (concepts and relation classifica-
tion) had a corpus of 1748 patient discharge summaries, consist-
ing of 394 annotated reports in the training set, 477 annotated
reports in the testing set, and an additional 877 non-annotated
reports. Xu et al built their medication information extraction
system, called MedEx, using a corpus with 50 notes from the
discharge summaries with annotated data for training and
testing.6 The current paper will use two large annotated corpora
for the evaluation—1655 CN and 3000 CTA.

DATA AND METHODS
The linkage detection task associates attributes to their corre-
sponding medication entities, assuming medications and attri-
butes have already been identified in a prior step. For example,
the algorithm will analyze the sentence: ‘Advair 250/50 diskus 1
puff and Singulair 5 mg chewable 1 tablet once a day.’ In
this sentence, Advair and Singulair are the medication names,
while 250/50, diskus, 1, puff, 5 mg, chewable, 1, tablet,
and once a day are the attributes. In this example, 250/50,
diskus, 1, and puff are the attributes of Advair, while 5 mg,
chewable, 1, tablet, and once a day are the attributes of
Singulair as shown in figure 1. Note that Advair is always a BID
(twice a day) medication, so we did not assign once a day as an
attribute of Advair.

We define medication entities used in the linkage detection
task as either medication names or medication types.
Medication names are specific names of drugs, biological sub-
stances, treatments, etc. Medication types refer to classes of
drugs (eg, ‘antibiotics,’ ‘anti-inflammatory drugs,’ or ‘benzodia-
zapines’), types of drug therapy (‘chemotherapy’), and general
references to medications (‘study drug,’ ‘other drugs,’ ‘medica-
tion’). Attributes define how much, how often, and in what
form medications or medication types are taken. In this paper,
we distinguished the attributes of Date, Dosage, Duration,
Form, Frequency, Modifier, Route, Strength, and Status change,
based on the schema of the SHARPn project.29

Data sets and gold standard
Two corpora, CTA and CN, were used for evaluating linkage
detection between medications and their attributes. The CN

corpus has 1655 physician notes from a stratified random sam-
pling of 5 million notes composed by clinicians from Cincinnati
Children’s Hospital Medical Center during 2010. The CTA
corpus consists of 3000 CTA randomly selected from 105 000
announcements on the ClinicalTrials.gov website. The study was
conducted under an approved Institutional Review Board proto-
col for the CN. To create a gold standard, both the CN and
CTA corpora were manually annotated by two annotators
(native English speakers with Bachelor degrees). All notes were
double annotated based on the SHARPn guideline and
schema.29 The CTA corpus will be released publicly when the
grant-funded period ends (December 2013).

Table 1 describes the most important descriptive statistics of
the two corpora. Details of the corpora and the processes of
gold standard development are thoroughly described in a paper
accepted for publication.30 There are 42 854 annotated entities
in CN, and 31 652 annotated entities in CTA. In CN 40% of
the entities are medications and 60% are attributes, while in
CTA 70% of the entities are medications and 30% are attri-
butes. In CTA, 91% of medication–attribute linkages have two
or fewer entities between medications and their attributes and
less than 1% of the linkages have more than five entities
between medications and their attributes. However, in CN,
around 20% of linkages have more than five entities between
medications and their corresponding attributes.

We used approximate randomization to test the differences
between the results of various system outputs. This method is
not dependent on the underlying distribution of the data.31 To
show statistical significance, we accepted p values as significant
if they were lower than 0.05.

Binary classification-based linkage detection
Linkage detection can be addressed as a binary classification
problem, that is, given a candidate pair of medication name and
attribute, the classifier classifies it into the linked or not-linked
category. For instance, the example in figure 1 has the linkage
pairs of (Advair, 250/50), (Advair, diskus), (Advair, 1), (Advair,
puff), (Singulair, per day), (Singulair, 5 mg), and so on.

The first step in dealing with linkage detection using a binary
classification method was to generate candidate linkage pairs.
These candidate pair sets should include as many gold standard
linkage pairs as possible in order to maximize recall. One way to
generate the candidate pairs is to combine all medications and
attributes in a certain scope. If there are m medications and
n attributes in this scope, then the number of all possible medica-
tion–attribute pair combinations is m×n. Although the use of
documents as boundaries can cover all medication–attribute
pairs, it will also significantly increase the number of
candidate pairs. In our pilot study, CN generated 1 038 057 can-
didate pairs and CTA generated 170 125 candidate pairs, while
line breaks for sentence segments generated more than 280 000
candidate linkage pairs, which cover 87.4% of 27 135 gold
standard linkage pairs in CN, and generated more than 29 000
candidate pairs, which cover 89% of 11 127 gold standard pairs
in CTA. In order to further reduce the number of candidate pairs
in CN, we used two continuous spaces as sentence boundaries.
This method generated 192 863 candidate pairs, which cover
87.2% of true pairs. Sections such as ‘history’ or ‘diagnosis’ in

Figure 1 Examples of linkages
between medications and their
attributes. Access the article online to
view this figure in colour.
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CN can further be used to detect linkage boundaries.32 When
the section header was combined with two continuous spaces as
sentence detectors, the system generated 148 525 candidate
pairs, which cover 87.1% of the gold standard pairs.
Consequently, the precision will increase slightly because the
noise will decrease, but the recall will have a performance ceiling.

Good feature sets are another key issue for binary classifica-
tion. Three types of features, as listed in figure 2, were used.
cTAKES generated the token features and POS features.
Semantic types for medications and attributes were pre-
annotated by our medication entity detectors. The position rela-
tions were calculated with our scripts.

In this experiment we compared the two following types of
feature sets:

▸ TOKEN: ‘Semantic’ and ‘Token’ features from figure 2
F1–F2 and F3–F7

▸ POS: ‘Semantic’ and ‘Part-of-Speech’ features from figure
2 F1–F2 and F8–F14.

Using tokens as features, 21 847 and 18 544 unique tokens
are present in the CN and CTA corpus, respectively. We used
the five features listed in figure 2 F3–F7, so there were 109 257
features in CN and 92 720 features in CTA. The size of the
feature set increased quickly, along with the unique tokens, in
the corpus. There were 49 unique POS tags in the corpora,
which combined with the features listed in figure 2 F8–F18
resulted in 539 (49×11=539) features. The size of the POS
feature set is much smaller than the size of the TOKEN feature
set. In addition, the POS feature set is independent from the
corpus, that is, the feature set will be stable and will not change
with the corpus.

The binary classification-based method can use any binary
classification algorithm to detect the linkages. We evaluated

Table 1 Descriptive statistics of the two corpora

CN CTA
Description of corpora
Total no. of documents 1655 3000

Description of entities No. of entities % No. of entities %

Total no. of entities 42854 100 31652 100
Total no. of medication entities 16792 39 21575 69
Medication 12517 29 9968 32
Medication type 4275 10 11789 37

Total no. of attributes 26062 61 9077 31
Date 122 0.3 16 0.05
Dosage 1885 4 645 2
Duration 620 1 644 2
Form 4411 10 482 2
Frequency 4551 11 381 1
Modifier 1769 4 5827 18
Route 3237 8 893 3
Status change 2982 7 598 2
Strength 6485 15 409 1

Description of medication–attribute binary linkages
No. of linkages % No. of linkages %

Total no. of linkages 27135 100 11127 100
Date 131 0.5 15 0.1
Dosage 1929 7 726 7
Duration 682 2.5 841 8
Form 4461 16 497 4
Frequency 4722 17 420 4
Modifier 1835 7 6520 59
Route 3306 12 962 9
Status change 3552 13 729 7
Strength 6517 24 417 4

Number of entities between the binary linkages of medications and attributes
No. of entities between two entities No. of linkages % Cumulative % No. of linkages % Cumulative %

0 3927 14 14 1263 11 11
1 8681 32 46 6633 60 71
2 4740 17 63 2227 20 91
3 3212 12 75 589 5 96
4 2714 10 85 198 2 98
5 1900 7 93 78 0.7 98.7
6 1025 4 97 49 0.4 99.1
≥7 933 3 100 90 0.9 100

CN, clinical notes; CTA, clinical trial announcements.
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SVM (LIBSVM33) and MaxEnt (MALLET34) algorithms for
binary classification in order to identify a better classification
algorithm for linkage detection.

Multi-layered sequence labeling-based linkage detection
It is not intuitive to imagine linkage detection as a sequence
labeling problem, not only because the same attributes can be
linked to multiple medications and the same medications have
multiple attributes, but also because the links overlap each
other. The standard sequence labeling method requires links to
be converted into BIO-encoding, where a tag is assigned to each
token to indicate whether this token is at the beginning (B),
inside (I), or outside (O) of a link. However, BIO-encoding is
not directly applicable when tokens belong to more than one
link and the links are overlapping. Therefore, we propose a
MLSL model to represent the medication–attribute linkages,
that is, in each layer, the linkages are modeled as an independ-
ent BIO problem. The layers are defined by the number of
entities between each medication–attribute pair. The outputs of
this model, trained on each individual layer, are combined by
taking the union.

Figure 3 shows a representation of the linkage detection
problem via the MLSL model. The layer number indicates how
many entities occur between the members of the pair. For
example, layer 0 means there are no additional entities between
the members of the pair, that is, the medication and its attribute
are right next to each other.

Feature representation for each token in the feature space for
the sequence labeling model consists of token features, context
features, and semantic features, as described in figure 4.

We used conditional random fields (CRF) for the sequence
labeling task and applied the MALLET implementation.34

According to table 1, less than 1% of the medication–attribute
pairs for CTA, and less than 5% of the pairs for CN, were in
the layers higher than 7. Therefore, in the experiment, we
defined layer 0 to layer 6 based on the number of entities
between members of a medication–attribute pair. Layer 7 col-
lapsed all cases of linked pairs in the same ‘catch-all-layer’ when
the number of entities between members of the corresponding
pairs was more than 6. The model was trained with layer 0 to
layer 7. The combined output was the union of each layer’s
output. We also reported the cumulative precision, recall, and
F-measure for each layer, that is, the results from the previous
layer were combined into the next layer for the evaluation.
Therefore, the results from layer n would include all the results
from layer n−1, layer n−2, …., layer 0.

RESULTS
In order to evaluate the linkage detection methods, we con-
ducted the experiments on the task of identifying the linkages
between the medication entities and nine attributes. We evalu-
ated two machine learning approaches for linkage detection, a
binary classification-based method and a MLSL method. Three
standard NLP metrics to measure performance: precision (posi-
tive predictive value), recall (sensitivity), and F-measure (F),
were used for the evaluation. They were defined as shown in
figure 5.

In order to perform manual error analyses, we designated
10% of the documents as the development set, and 90% of the
documents as the experimental set. For the machine learning,
binary classification, and MLSL method, the standard 10-fold
cross-validation was used. The results in tables 2 and 3 are the
averages of the 10-fold cross-validation sets.

Figure 2 Features for binary
classification-based linkage detection.

Figure 3 Examples of representative
medication–attribute linkages using
the multi-layered sequence labeling
model. Access the article online to
view this figure in colour.
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Baseline: rule-based linkage detection
The rule-based approach relies on the assumption that medica-
tion attributes usually belong to the medications closest to them,
and those medications and their attributes most likely co-occur
within a sentence boundary.35 In the Third i2b2 task,4 one of the
organizers’ heuristics stated that attributes more than two lines
away from the medication names should not be considered for
linking, and most groups followed this instruction.8–13 However,
detecting sentence boundaries could be challenging in clinical
corpora. CN can be written in concise ways, such as using
multiple spaces instead of punctuation to separate the different
sentences. Similar challenges exist in CTA texts: new lines and
line breaks often indicate the sentence boundaries. In our pilot
study, we found that using line breaks as sentence boundaries can
correctly detect 89% and 87% of linkage boundaries for the
CTA and CN corpora, respectively. Therefore, line breaks were
used to detect the medication–attribute co-occurrence boundar-
ies for both the CTA and CN corpora, and the heuristic further
limits this by linking attributes to the preceding medication in the
sentence. If there was no medication in front of the attribute,
then the attribute was linked to the medication that followed it
within a maximum of two sentences, so that the attributes are
associated to the next medication name. This method achieved
0.76 precision, 0.68 recall, and 0.72 F-measure for the CTA
corpus, but only 0.46 precision, 0.37 recall, and 0.41 F-measure
for the CN corpus.

Binary classification-based linkage detection
A smaller feature set for the classification problem can avoid the
potential problem of over-fitting. Therefore, we expect to find
that the classification that uses a parsimonious feature set can
still achieve reasonably high performance. Both the SVM (linear
kernel with default gamma value of 1 and cost value of 1000)
and MaxEnt methods were applied for the binary classification
linkage detection using the POS and TOKEN feature sets.
Table 2 shows the results of the binary classification method.
When the feature space is large (ie, in case of the TOKEN
feature set) or the linkage structure is simple, the MaxEnt algo-
rithm’s performance is close to SVM’s. In TOKEN feature
experiments, the precision, recall, and F-measure of MaxEnt
and SVM are 0.93/0.93/0.93 and 0.92/0.93/0.92, respectively,
in CTA, and 0.93/0.94/0.94 and 0.93/0.94/0.93, respectively, in
CN. In POS feature experiments, the precision, recall, and

F-measure of MaxEnt and SVM are 0.82/0.81/0.81 and 0.81/
0.80/0.81, respectively, in the CTA corpus. However, when the
feature space is more parsimonious and the corpus structure is
more complicated (ie, POS features in CN), SVM is better than
MaxEnt. The precision, recall, and F-measure of SVM and
MaxEnt are 0.85/0.90/0.87 and 0.81/0.84/0.83, respectively.
The binary classification method, with both TOKEN and POS
features for using either the SVM or MaxEnt algorithms, per-
forms significantly better than the baseline rule -based method
(p<0.01).

Multi-layered sequence labeling-based linkage detection
Different combinations of features and different CRF para-
meters were tested in the experiments, as shown in table 4. For
the CRF algorithm itself, we also tested how many labels were
considered before and after the current token, that is, the order
of CRF. In the unigram system, we only considered the token
before and the token after when predicting the label of the
current token, that is, order=1. We increased the CRF window
sizes and measured their impact on performance. With
the unigram feature sets, experiments were conducted on order
1, 2, 3, 4, and 5.

The cumulative results of four experiments on the MLSL
model are shown in table 3. The best F-measure for the
unigram system is achieved at layer 2 for CTA and layer 5 for
CN. Precision, recall and F-measure are 0.85/0.72/0.78, respec-
tively, for CTA and 0.76/0.80/0.781, respectively, for CN. We
notice that, although recall kept rising with the number of
layers, precision also dropped. Both corpora achieved the best
F-measure results at the layer that cumulatively covered 90% of
the linkages; that is, layer 2 for CTA and layer 5 for CN, in
both the unigram and 3Gram systems. The 5Gram feature set
provided 0.87/0.74/0.80 precision, recall, and F-measure for the
baseline system, respectively, for the CTA corpus in layer 3, and
0.81/0.79/0.80 precision, recall, and F-measure, respectively, for
the CN corpus in layer 4. The best result was on order
4. Precision, recall and F-measure were 0.913/0.739/0.817,
respectively, for the CTA corpus and were achieved at layer
3. For the CN corpus, the best result was achieved at layer 4

Table 2 Results of binary classification-based linkage detection: TOKEN versus
POS and SVM versus MaxEnt

Corpora Features Method P R F

CTA TOKEN SVM 0.93 0.93 0.93
POS 0.82 0.81 0.81
TOKEN MaxEnt 0.92 0.93 0.92
POS 0.81 0.80 0.81

CN TOKEN SVM 0.93 0.94 0.94
POS 0.85 0.90 0.87
TOKEN MaxEnt 0.93 0.94 0.93
POS 0.81 0.84 0.83

CN, clinical notes; CTA, clinical trial announcements; F, F-measure; P, precision;
POS, part-of-speech; R, recall; SVM, support vector machine.

Figure 4 Features for the
multi-layered sequence labeling.

Figure 5 Evaluation measures.
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with precision, recall and F-measure being 0.786/0.813/0.799,
respectively.

The best performing MLSL method (order 4) is statistically
significantly better than the rule-based method (p<0.01).
However, the best performing binary classification method
(SVM with TOKEN features) is significantly better than the
MLSL method (p<0.01) for both the CTA and CN corpora.

DISCUSSION
In CTA, the most frequent linkage is Modifier (59% of linkages),
the least frequent linkage is Date (less than 1%), and the other
types of linkages are each less than 10% (ranging from 4% to
9%). In CN, the most frequent linkage is Strength (24%), while
the two least frequent linkages are Date and Duration (less than
1% and 3%, respectively). The other types of linkages range
from 7% to 24%.

In CTA, most medication–attribute linkages have none or one
or two entities between the medication and its next attribute.
These linkages cover 91% of all linkages, with less than 1% of
the linkages having more than five entities between medications
and their attributes. In CN, the number of entities between
medications and their attributes is more evenly distributed than
in CTA, although approximately 20% of the linkages have more
than five entities between medications and their corresponding
attributes.

Comparison of the results of the baseline rule-based method
with the results of the machine learning methods shows that the
machine learning methods (both the classification and labeling
methods) perform statistically significantly better than the rule-
based method. We found that binary classification-based linkage
detection with the TOKEN features performs better than with
the POS feature set in both the CTA and CN corpora. The
TOKEN feature set can achieve 0.93 F-measure with around
100 000 features, while the POS feature set can achieve 0.81
F-measure for CTA and 0.87 for CN with far fewer (less than
500) features. However, this is not surprising considering that
the feature space of the TOKEN set is 200 times larger than the
POS set. Some tokens that strongly indicate the linkages, such as
tablet, obviously contribute to the classifier. Although a high
F-measure is important, the huge feature space makes that
model prone to over-fitting.

The number of linkage pairs in CN is three times the number
of pairs in CTA. Therefore, we infer that large training data for
the SVM method with POS features will help improve perform-
ance, but it is not necessarily true for the SVM method with
TOKEN features.

Comparison of the feature sets of unigram, 3Gram, and
5Gram for the MLSL method shows that both the 3Gram and
5Gram feature sets performed better than the unigram system,
with 5Gram performing better than 3Gram. This means that
increasing the window size of n-gram semantic types will help
to improve the performance of the MLSL method.

The MLSL method had its best performance of 0.82
F-measure for CTA with order 2 and 0.80 for CN with order
4. As expected the higher order model helps to improve MLSL
performance. This result was better than the SVM method with
the POS features for CTA but not for CN. Since 90% of pairs in
CTA are in layer 0, 1, and 2, but only 60% of pairs in CN are
in the same layers, we argue that the more complicated structure
of CN can explain why the MLSL method performs better on
CTA and why the higher order (4) is needed for the best per-
formance from CN.

Because we use the number of entities between the linkage pairs
to define the layers in the MLSL model, the models in each layer
are independent from each other. This independence can help
modeling of the overlapping linkage labels. However, our current
approach misses the information for the connections between dif-
ferent layers, that is, the next layer could use the linkage detections
from the previous layer, but we did not implement this feature.
Consequently, our current approach loses some of the advantage
of sequence learning, that is, the predictions in the previous stage
can help to predict the labels in the next stage. In our future work,
we would like to expand the model for cumulative sequence learn-
ing and to link other clinically relevant entities and attributes (eg,
diagnoses and their modifiers).

CONCLUSION
The purpose of this research was to detect the linkages between
medications and their corresponding attributes. We used two
corpora, CN and CTA. CN has higher linkage density and more

Table 3 Cumulative results of multi-layered sequence labeling linkage
detection

Corpus CTA CN

Features Layer P R F P R F

Unigram (Order 1) L0 0.938 0.596 0.729 0.918 0.276 0.424
L1 0.867 0.710 0.780 0.873 0.484 0.623
L2 0.852 0.721 0.781 0.848 0.608 0.708
L3 0.848 0.723 0.780 0.821 0.704 0.758
L4 0.847 0.724 0.780 0.784 0.771 0.777
L5 0.847 0.724 0.780 0.760 0.802 0.781
L6 0.847 0.724 0.780 0.749 0.812 0.779
L7 0.847 0.724 0.780 0.743 0.816 0.778

3Gram L0 0.936 0.599 0.730 0.925 0.278 0.427
L1 0.864 0.716 0.783 0.879 0.494 0.632
L2 0.850 0.727 0.784 0.853 0.623 0.720
L3 0.847 0.729 0.784 0.827 0.721 0.770
L4 0.846 0.730 0.784 0.789 0.789 0.789
L5 0.846 0.731 0.784 0.765 0.820 0.791
L6 0.846 0.731 0.784 0.753 0.828 0.789
L7 0.846 0.731 0.784 0.748 0.832 0.788

5Gram L0 0.943 0.602 0.734 0.939 0.283 0.434
L1 0.883 0.725 0.796 0.899 0.496 0.639
L2 0.869 0.735 0.796 0.876 0.622 0.727
L3 0.867 0.738 0.797 0.847 0.720 0.779
L4 0.866 0.739 0.797 0.806 0.788 0.796
L5 0.866 0.739 0.797 0.760 0.802 0.781
L6 0.866 0.739 0.797 0.749 0.812 0.779
L7 0.866 0.739 0.797 0.743 0.816 0.778

Order 4 L0 0.956 0.584 0.725 0.945 0.267 0.416
L1 0.924 0.724 0.812 0.917 0.479 0.629
L2 0.914 0.738 0.816 0.888 0.612 0.725
L3 0.913 0.739 0.817 0.853 0.712 0.776
L4 0.913 0.740 0.817 0.811 0.780 0.795
L5 0.913 0.740 0.817 0.786 0.813 0.799
L6 0.913 0.741 0.817 0.772 0.823 0.797
L7 0.913 0.741 0.817 0.768 0.828 0.797

CN, clinical notes; CTA, clinical trial announcements; F, F-measure; P, precision;
R, recall.

Table 4 Description of experiment groups

Token
features

Context
features

Semantic
type 3Gram 5Gram Order

Unigram X X X Order 1
3Gram X X X X Order 1
5Gram X X X X Order 1
Order 4 X X X Order 4
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complicated linkage structures than CTA. We explored the fea-
tures for the binary classification method and were able to
define a parsimonious feature set, POS features, for linkage
detection to avoid potential over-fitting problems while preserv-
ing a reasonably high performance. The results indicated that
this method achieves 0.81 F-measure for CN and 0.87
F-measure for CTA with only approximately 500 features. We
proposed a MLSL model for the linkage detection problem,
which decouples the multi-label problem into layers; each layer
only deals with one type of label and the labels in each individ-
ual layer are continuous and sequential. The experiment indi-
cates that the performance of this approach is close to that of
the SVM method with POS features.
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