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Abstract

In multicellular organisms one can find examples where a growing tissue divides up until some final fixed cell number.
Asymmetric division plays a prevalent feature in tissue differentiation in these organisms, where the daughters of each
asymmetric division inherit unequal amounts of a fate determining molecule and as a result follow different developmental
fates. In some tissues the accumulation or decrease of cell cycle regulators acts as an intrinsic timing mechanism governing
proliferation. Here we present a minimal model based on asymmetric division and dilution of a cell-cycle regulator that can
generate any final population size that might be needed. We show that within the model there are a variety of growth
mechanisms from linear to non-linear that can lead to the same final cell count. Interestingly, when we include noise at
division we find that there are special final cell population sizes that can be generated with high confidence that are flanked
by population sizes that are less robust to division noise. When we include further perturbations in the division process we
find that these special populations can remain relatively stable and in some cases even improve in their fidelity.
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Introduction

There are multiple examples of cell populations with controlled

final numbers. The size and the accuracy with which this final

population number is reached vary. For instance, the number of

cells in the Caenorhabditis elegans nervous system reaches precisely

302 in every worm [1] while macroscopic organs of thousands of

cells in larger organisms also regulate their size [1,2]. Even similar

cell types can show vastly different lineages, as neuroblasts in

Drosophila can generate anywhere from 10 s to 100 s of future

neuronal cells (reviewed in [3]). In the proliferation and

differentiation of tissue, both extrinsic and intrinsic cues have

been found to play critical roles in robust size control of the cell

population [2,4,5]. Extrinsic cues from the micro environment in

which a cell finds itself have been shown to drive differentiation in

a variety of stem cells, terminating division, sometimes through

triggering apoptosis [3]. However, purely intrinsic or autonomous

cues also play a role as a variety of cultured or transplanted stem

cells can produce lineages nearly identical to those in the

endogenous locations. These intrinsic timers have been shown to

arise from temporal cascades of transcription factors (as in many

neuroblasts [3,6]) to the accumulation of cell cycle regulators in

oligodendrocytes [7,8]. Thus in some lineages, as cells divide an

internal molecular clock akin to an hourglass dictates when they

should exit the cell cycle and enter a quiescent stage [8].

Besides the timing of factors that regulate proliferation,

asymmetric division (AD), has been found to play a central

mechanism in determining the progression of cell lineages.

Asymmetric division is an essential mechanism of division in the

differentiation of Drosophila and C. elegans nervous systems [1,3,5,9].

For example the protein Prospero and several other proteins and

mRNAs have been identified to asymmetrically divide and

orchestrate neuroblast differentiation in the fly embryo [3,9].

Asymmetrically partitioning factors can arise by a variety of

mechanisms [10]. The first and simplest is through unequal

volumes of the resulting daughter cells, where the amounts of

molecule will be inherited in proportion to the respective volumes.

Active localization to basal or apical portions of the dividing cell is

another common strategy. In many of the most well studied

systems AD tends to generate an all or none inheritance of the cell

fate factor, though situations where reaction-diffusion mechanisms

that produce more graded distributions are known [10,11]. Thus

there are a variety of molecular mechanisms by which cell fate

factors can be distributed between daughter cells.

To our knowledge however no quantitative models have been

suggested for how an intrinsic timing mechanism plus asymmetric

division can be parameterized to achieve control over population

size. Forward engineering approaches have been used to suggest

potential solutions to questions in developmental biology, such as

self-organized pattern formation [12,13]. Here we use such an

approach to suggest a potential mechanism for achieving a final

population of arbitrary size with single integer accuracy. We

propose a feedback-free mechanism involving asymmetric division

and dilution of a molecule that governs cell division, to allow for

accurate and autonomous set-point control over population size.

Such a mechanism may play a part in controlling the cell

populations of certain tissues or single cell organisms.

The quantitative model that we study is based on the suggested

hourglass model for the intrinsic timer [8]. In such a mechanism a

cell cycle factor is accumulated or diluted with division that

ultimately halts the cell cycle when a certain threshold is crossed.
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We present how such a scheme coupled with asymmetric division

can address the problem of reaching an arbitrary controlled final

cell count in a growing population. We imagine that the hourglass

would be started in the initial progenitor cell via a transient burst

of some factor that would then be diluted at each subsequent cell

division. In the simplest case of symmetric dilution, the factor will

be diluted to (1=2)nafter n rounds of division, and therefore given a

threshold, T will yield a final population size of Nf~2n�, where
n�~{log(T)=log(2) and T is measured as a fraction of the initial

number of molecules present. If asymmetric division is allowed

however (Fig. 1), the final population size, Nf , will be dependent

on the degree of asymmetry in the growth factor as well as the

threshold below which cells can no longer divide, yielding different

sizes and topologies of trees (Compare Fig. 1A, B). We show that

this model can indeed generate any arbitrary final population size

and that there are special population sizes that can be generated

with high confidence even in the presence of noise. We discuss

how this model may be relevant to the development of certain

lineages given the available biological evidence.

Results

Deterministic Cell Division and Partitioning
Using our model we explored whether asymmetric division

coupled with dilution of a regulatory molecule could generate an

arbitrary final cell count. At each division a fraction of the

regulatory molecule, p, gets put into one cell with the remainder

going to the other. When the fraction of protein in a cell gets below

a cutoff T , cell division stops. Fig. 2a shows a map of the final cell

population size Nf as a function of these two parameters, fp,Tg.
The map shows that all population sizes can be generated using

such a scheme from Nf =2 to any arbitrarily large population size

(in the figure we stopped at a maximum Nf =310). Small final

population sizes have larger areas in parameter space, meaning

that there are more combinations of fp,Tg that will generate that

size. For instance, the largest area corresponds to Nf =2 and this

trivially corresponds to Twp and Tw (1{p): An arbitrary large

population size is possible but the area in the fp,Tg parameter

space that generates it gets prohibitively small so as to be

unattainable given biochemical mechanisms. These results can be

seen in Fig. 2B where we plot the number of fp,Tg pairs that

generated a given final population size. High Nf are generated at

low threshold cutoff since it requires many more divisions to dilute

to this low level. As the division moves from being more

asymmetric to symmetric, this threshold needs to get lower in

order to generate these high Nf values (as seen on the left border

of Fig. 2A). It is also possible to generate high Nf at very low

values of p (i.e. highly asymmetric division). Again, now, one cell is

getting most of the molecules and will take many rounds of

division to dilute.

Given that a final population size has a certain number of

parameter combinations, do all parameters yield a similar growth

curve? In the inset to Fig. 2C, we show the growth of the

population for different fp,Tg pairs that all yielded a final

Nf =41. Some parameters lead to rapid, non-linear growth

whereas others generate slow, linear growth curves. Interestingly

we find that the two extremes in topology (non-linear and linear)

tend to be the most frequent amongst the parameter space for a

given final population size (the numbers above each curve

represent how many parameters yielded that growth curve).

Non-linear growth parameter combinations correspond to higher

p (less asymmetric division) and a low threshold (Fig. 2C upper

left), whereas more linear topologies are found at lower p (more

asymmetric division) and higher thresholds (Fig. 2c lower right).

For these linear growth curves, it is analytically trivial to solve for

some of the multiple values of pand T that give any desired Nf .

Specifically, for a linear growth curve, T and p must satisfy: (1)

pv1{p (2) pvT (3) log(1{p)vlog(T)=(Nf{1) and (4)

log(1{p)wlog(T)=(Nf{2): For any arbitrary value of Nf it is

guaranteed that a fp,Tg value will exist to produce such a tree. As

shown in the inset to Fig. 2C, a variety of topologies exist between

non-linear and linear. We find that the variety of different tree

topologies grows with the size of the tree, while fewer

fp,Tgcombinations exist for larger Nf . These counteracting

forces result in maximal variety of topologies (variety = 11)

occurring at , 50 (see Fig. S1). Thus within this asymmetric

division model different growth responses are possible that still

lead to any arbitrary Nf : We now consider how such a model

responds to the addition of division noise.

Stochastic Partitioning and Robust Population Sizes
There is inherent stochasticity of molecular segregation at

division [14,15], which was ignored in the simulations above. This

variability can confound the fidelity with which a desired Nf can

be achieved; therefore, its effects must be evaluated to assess the

viability of this model in natural or synthetic systems. We model

this segregation noise as a binomial process, where regulatory

molecules in a cell are partitioned at each division with a

probability, p, to go to one cell or the other. This assumes

independent segregation of the molecules such as might occur

where the asymmetry arises purely due to volume differences

between the mother and daughter cells. This is a simplifying

assumption as other forms of segregation are possible from

disordered to ordered segregation [15] where correlations would

lead to a departure from purely binomial noise. In these stochastic

simulations we now have to introduce a third parameter, namely

N0, the initial number of molecules in the progenitor cell.

We simulated our stochastic model (see Methods) and calculated

the distribution of final cell population sizes for each fp,Tgpair
with initial starting molecule number of N0: Some of the

generated distributions are shown in Fig. 3A. Interestingly there

Figure 1. Asymmetric dilution of a growth factor can produce
populations of any size. The trees represent growing populations of
cells where the color represents the concentration of a growth factor.
The parameter p indicates the degree of asymmetry with which the
factor is divided between two daughter cells. The threshold (T ) is the
concentration of this factor below which the cell can no longer divide.
Different final population sizes (Nf ) and tree topologies can be
achieved by varying p and T : The two trees in this figure demonstrate
two such possibilities. (A) A linear topology and (B) non-linear topology.
doi:10.1371/journal.pone.0074324.g001

Programming Cell Population Size
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are some fp,Tg values for which the most probable Nf

corresponds to that of the deterministic case (see Fig. S3) whereas

there are other fp,Tg values for which the most probable Nf is

different than what would have been generated in the determin-

istic simulation. When N0 is low, growth is inherently noisier and

the difference between the population sizes generated in the

deterministic case and the stochastic simulation is stark (see Fig.

S2). Not surprisingly, as N0 is increased, the stochastic simulation

converges toward the deterministic results (see Fig. S2).

We are particularly interested in fp,Tg values that generate a

population size with high likelihood. In particular, what fp,Tg
values have their most probable Nf occur.90% of the time? Such

fp,Tg values are insensitive to the noise and yield populations that

yield the same number of cells with high confidence (see Fig. 3A).

Can all population sizes be generated with high confidence? Or

are there some that are more difficult to generate when noise is

added? In Fig. 3B we show the probability of the most probable

Nf for each fp,Tg pair. This shows that there are a number of

fp,Tg pairs that can generate small Nf with high confidence. This

is not true for larger Nf where the number of fp,Tg pairs is much

smaller, with some having hardly any fp,Tg that can yield .90%

confidence. Also not surprisingly for those parameters that reside

near the transitions between Nf the probability of the most likely

Nf also drops. In Fig. 3C we plot these confidence values against

the most probable Nf value for all fp,Tg pairs sampled. With this

particular N0, all small population sizes up to Nf , 20 can be

generated with high confidence (P(Nf )w90%:) What is remark-

able is that at higher Nf (e.g. 41), there exist special population sizes

that can also be generated with high confidence, yet sizes that are

either smaller or bigger by one are low confidence. This is

reminiscent of the emergence of magic numbers in other systems.

We summarize our findings for these special population sizes in

Fig. 3D. In this figure we plot the number of parameters that yield

a given Nf with probability .90% as a function of the starting

molecule number. At low N0, only the smallest of population sizes

can be generated with high confidence. Yet as N0 increases, it can

be seen that there are larger population sizes that occur with high

confidence and these particular Nf follow a complex pattern of

emergence. In the next section we will explore if these special

population sizes are robust to perturbations in the division process,

more so than other population sizes.

As in the deterministic case, when simulating a given fp,Tg pair
stochastically, the resulting growth curves all follow a particular

topology. Are there topologies that are more likely to generate a

final population size with high confidence? For every fp,Tg pair

we characterized the topology of the growth curve in the stochastic

simulation (see Methods). In Fig. 4A we plot the chance that either

the linear or non-linear topologies will generate a final population

size with the given likelihood. Overall for this value of N0, linear
topologies tend to generate more high confidence population sizes.

In Fig. 4B we show the fraction of high confidence fp,Tg pairs (i.e.
the most probable Nf was .90%) for both the linear and non-

linear cases as a function of N0 (these results are shown in detail in

Fig. S4). Interestingly at low N0, non-linear growth is much better

at generating high-confidence Nf yet at higher N0, it shifts over to

Figure 2. Deterministic simulation of tree growth at all p and Tvalues. (A) Nf as a function of the degree of asymmetry (p) and the threshold
(T ). The final population size Nf grows as the values of p and T approach zero. (B) The likelihood of finding a parameter combination with a final
population size of Nf drops rapidly for larger values of Nf : (C) Different and separate regions in parameter space can produce a given Nf , in this case
Nf =41 is shown. The inset and the color-coding indicate that each of these locations produce a tree with a different topology (uniquely identified by
its growth curve) despite all of them producing Nf = 41. The numbers above each growth curve indicate the number of parameter pairs that produce
that topology.
doi:10.1371/journal.pone.0074324.g002
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linear growth being the best. Thus topology has a role in

determining the confidence with which a final Nf will be

generated and non-linear growth is less sensitive when division is

noisy and linear growth is better when noise is minimal.

Sensitivity Analysis of Population Size
In the previous section we added noise at division by assuming

that the number of molecules is distributed by some independent

random process at each division. However there was no noise in

either the value of p or T . In this section we consider allowing

these parameters to be perturbed during the division process. For

every dividing cell we allow each parameter, p or T to vary by

some amount.

In particular we are interested in exploring whether those

special population sizes that can be generated with high

confidences are less sensitive to parameter perturbations than

those which are lower confidence. In Fig. 5 we show the results of

perturbing both division parameters for the case Nf =41 which

corresponds to a high confidence population size. In Fig. 5A we

show how the probability of generating Nf =41 changes as we

vary the parameter p for different fp,Tg values in the parameter

space that yielded this as the most probable Nf in the previous

section (see Fig. 5C for a zoom in on the parameter space selected).

For the fp,Tg pair that yielded Nf =41 with the highest

confidence (green) we see that it is fairly robust to parameter

variation out to about 5% variation. For a fp,Tg pair that resides

near a boundary of a neighbouring Nf region, the probability of

generating Nf =41 drops more rapidly and is less robust.

In Fig. 5B, we show the effects of perturbing the cutoff threshold

at each division. Again for the most high confidence fp,Tg pair

the likelihood of generating Nf =41 drops at around 6% variation.

However what is striking is that for some lesser confidence fp,Tg
pairs, perturbations in the threshold actually help to improve the

likelihood of generating the given population size. Indeed for the

fp,Tg pair on the right boundary of the parameter region, with a

threshold variation of , 5% the probability of generating Nf =41

can be raised from ,80% with no variation to .90%. We

speculate that this must arise due to some effective cancelation in

division errors that increases the fidelity, since individually each

fp,Tg pair for these values of Nf have confidences ,90%. In

contrast to this and other special population sizes, those that are of

lower confidence are less robust to perturbations in p and T (see

Fig. S5).

Discussion

In this paper we have shown how an hourglass model for an

intrinsic cell cycle factor coupled with asymmetric division can

Figure 3. Stochastic simulation of tree growth at all p and Tvalues. (A) Distributions of Nf from two different combinations of p and T in a
stochastic simulation with binomial noise at division. The black lines indicate the resulting Nf when the same parameter values are used in a
deterministic simulation. The shift in the most probable Nf and the probability or confidence with which they occur can vary from parameter to
parameter. (B) The confidence of the most probable Nf drops in border regions between different Nf values (compare with Figure 1A) and also at
small values of p and T corresponding to high Nf : (C) The confidence with which the most probable Nf occurs is plotted for all parameter values.
Grey dashed line shows the mean, blue lines show one standard deviation from mean, and individual confidences are shown for parameter
combinations that resulted in confidences greater than one standard deviation from the mean. Note that despite the rapid drop in the average
confidence there exist high (.90%, red line) confidence outliers for Nf as large as 64. The occurrence of these high confidence outliers appears to be
sporadic for Nf between 32 and 64. Here N0=10,000. (D) The number of high confidence parameters for any given Nf also depends on the value of
N0, as it prescribes the magnitude of noise at each division. Note that special values of Nf (e.g. 41) contain high confidence parameters for values of
N0 lower than their neighbouring Nf values.
doi:10.1371/journal.pone.0074324.g003
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produce an arbitrary final cell population size. Such a mechanism

has been argued and shown to potentially govern the development

and differentiation of certain tissues [8]. Besides being able to

generate any final population size, the model also showed that

given a final fixed cell count, different parameter choices could

produce a variety of lineage trees from linear to non-linear giving

flexibility in the differentiation process. Also depending on the

degree of noise, these topologies can perform better or worse at

generating fixed populations with high confidence. Topology

differences in tissue development has been seen in Drosophila

neuroblasts, where type I neuroblasts produce linear tree lineages

whereas much more proliferative type II neuroblasts have much

more non-linear lineages. When we considered the addition of

division noise to the model, a number of unique final population

sizes were shown to exhibit robustness. Such population sizes were

found to be able to be generated with much higher confidence

than even nearby sizes. It is intriguing to think that if such an

intrinsic timer coupled with asymmetric division is at work one

might expect to see biases in the distribution of final population

sizes.

Can one find examples of such a mechanism in Nature? As

mentioned in the introduction, tissue differentiation usually

involves a mix of intrinsic and extrinsic cues guiding the

proliferation and differentiation process, convolving their contri-

butions to the final population size. Some potential hints exist that

with further testing might show that dilution plus asymmetric

division may play some role. For example in Drosophila Type I

neuroblasts where a linear cascade of transcription factors governs

the proliferation and differentiation process, it is known that

overexpression of any TF in the cascade leads to extra

proliferation [3]. In particular, overexpressing the gene hunchback

leads to extra rounds of division [16] turning the type I system into

something more like the more proliferative type II neuroblasts. Is

this extra proliferation due to a gradual dilution of the extra

hunchback in the system, prolonging the cascade? In many stem-cell

systems, mutations in the factors that cause errors in the

partitioning also lead to increased proliferation and tumor like

growth [10]. Could this be due to changes in what would be the

equivalent of the asymmetry parameter, p in our model, or in the

initial amounts of factor, N0? Further exploration of such systems

within the context of the suggested model would be required to

assess the degree to which such a mechanism plays any role.

There are other experimental systems where the proposed

mechanism may be more directly relevant. The original hourglass

model for an intrinsic timer was suggested in the context of

oligodendrocyte differentiation [7,8]. For these stem cells it is a

combination of accumulation and dilution of cell cycle regulators

(such as the Cdk-inhibitor p27) that regulated proliferation.

However the role of the asymmetric division of such factors has

not been discussed in great detail for this system. So this system too

may only have the proposed mechanism acting in part.

A more likely system for direct testing of the model would be in

unicellular organisms. Recent work has shown that the accumu-

lation of misfolded protein in bacteria and yeast may lead to

ageing, and reduced cell divisions [10,17,18]. Misfolded protein is

known to be asymmetrically partitioned between mother and

daughter cell [19]. Overexpressing such proteins leads to reduced

proliferation as both mothers and daughters undergo fewer

divisions. This represents the inverse of our model where instead

of dilution a cell-cycle factor is being accumulated. Once the factor

is above some threshold, cells can no longer divide. A theoretical

model showed that there is a benefit to asymmetrically dividing the

accumulation of such deleterious material within an ageing

unicellular population [20].

One could also imagine a direct testing of the model using

synthetic biology methods with yeast as the model. Budding yeast

would allow for the asymmetric partitioning of factors due to

unequal volumes of the resulting cells post division. One might

imagine generating a mutant defective in one of the constitutively

present cell cycle factors such as the cyclin-dependent kinase, Cdk.

The lineage and division process could be started through the

transient expression of the missing Cdk off of an inducible

promoter. After the initial burst of the protein, it would be

subsequently diluted asymmetrically through repeated rounds of

division. Using automated lineage tracking, it would be possible to

track the exact details of the sequence of divisions through to

termination.

Lastly we comment on the different active mechanisms for the

asymmetric division of biological macromolecules like protein and

RNA. While these processes are often conceptualized as produc-

ing an absolute (all-or-none) asymmetry in the daughter cells, it is

plausible to assume that at least a small fraction of these molecules

could be inherited by one of the daughter cells. Whether this

fraction (p in our model) can be tuned by tweaks in the various

parameters of the mechanism remains to be explored experimen-

tally in either natural or synthetic systems. An example of such a

parameter that could potentially be ‘tuned’ is the affinity of an

Figure 4. The relationship between tree topology and confi-
dence. (A) For N0= 10,000, a higher percentage of linear topologies
(i.e. linear growth-curve) exhibit a high (.90%) confidence. There are
however always more non-linear topologies with 100% confidence. (B)
This trend appears to revert at about N0= 8,000. The percentage of
high-confidence non-linear topologies is higher for N0 ,8,000.
doi:10.1371/journal.pone.0074324.g004
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mRNA to the protein complexes that are asymmetrically shuttled

by myosin motors towards one of the daughter cells [21]. Also

reaction-diffusion schemes have been to also play a role where

mRNAs are captured at a localizing region, leading to gradients

across the cell [11]. Though again, how well these can be

manipulated have yet to be explored to our knowledge.

Furthermore, upon experimental verification of the basic

scheme hypothesized here, elaborations to the model can be

made. Some of these are: the inclusion of production and

degradation rates for the factor, interaction between multiple

asymmetrically dividing molecules, and coupling between the

currently independent division mechanism (p) and thresholding

mechanism (T ). The model also has similarities to branching

processes such as those studied in cosmic ray physics, for instance

the decay of high energy nucleons into lower energy particles.

Analytical solutions using generating functions for such processes

have been worked out [22] and it will be interesting to see to what

degree they relate to the branching process suggested here.

Asymmetric division coupled with dilution should act as a proof of

principle for the viability of a feedback-free process for set-point

population size control.

Methods

Deterministic Simulations
A binary tree was iteratively generated where every node was

labeled pN(x) and (1{p)N(x) at each branch point, where N(x)
is the label of the node from which they branched and provided

that N(x)wT . N(x~0) or the number of molecules in the initial

‘cell’ was taken to be 1. This allowed dispensing with a third

parameter N0 and the simplification of the range of parameter T

to be between 0 and 1 (i.e. as a fraction of N0). The parameter p

was explored between 0 and 0.5. Both of these parameters were

explored with a mesh size of 0.0025.

Stochastic Simulations
Due to the impact of the initial number of molecules, N0, on the

size of binomial noise at each division it therefore had to be

considered as a third parameter to the system. The simulations

were carried out at different N0 for all the different values of p and
T simulated in the deterministic case. At each division the values

for the labels of the two cells were drawn binomially from the

number of molecules in the parent cell with probability p and 1-p.

For each fp,Tg value simulations were carried out 100 times.

Defining Topologies
The linear topologies were defined as those where the

population size at each iteration time point during the growth of

the tree, i.e. n(t), followed n(t)z1~n(tz1), for the whole course
of growth until the final size was reached. Figure 1A is an example

of such a topology. Non-linear topologies like that in Figure 1B,

were defined as those which do not satisfy this relationship for even

a single value of t.

Parameter Perturbations
The simulations were carried out as in the stochastic

simulations, except that at every division the values for p and T

were chosen from a Gaussian distribution. The mean of this

distribution was equal to the value of p or T in the parameter

space that was being explored, and the standard deviation of the

distribution ranged from 0 to 10% of the mean. For each value of

p, T , and sigma, 1000 simulations were carried out.

Figure 5. Special values of Nf exhibit robustness against perturbations in p and T . (A) Perturbations in p show that parameters with higher
initial confidence also exhibit robustness to larger perturbations in p. (B) Perturbations in T can produce critical behavior where a parameter
combination with an initially low confidence can benefit from added noise to the value of T . (C) This shows the region in parameter space from
which the three parameter combinations were chosen (black box). The colors indicate the initial confidence at that point before perturbation.
doi:10.1371/journal.pone.0074324.g005
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Supporting Information

Figure S1 The variety of topologies as a function of Nf :
The number of unique topologies as measured by the length of

time taken for Nf to be reached. Note that it peaks around

Nf =50. This is due to the counteracting forces of increased

variety due to increase in Nf , and decreased number of fp,Tg
pairs that give a certain Nf with increase in Nf :
(PDF)

Figure S2 Difference between deterministic and sto-
chastic results. The difference between Nf from deterministic

simulations and the most probable Nf from the stochastic

simulations is plotted as a function of p and T : The difference is

highest on the border between regions of different Nf and where p

and T are close to 0 (where Nf is larger). The identity between the

stochastic and deterministic results (measured as a percentage of

all the fp,Tg values explored) approaches 100% with increase in

N0:
(PDF)

Figure S3 The most probable Nf as a function of p and
T. The mode of the distribution of Nf is plotted as a function of p

and T when N0=10,000.

(PDF)

Figure S4 Relationship between topology and confi-
dence at differentN0. At smaller values of N0 non-linear

topologies tend to yield Nf with higher confidence.

(PDF)

Figure S5 Perturbations of low-confidence parameter
combinations. Perturbations of non-special Nf (i.e. those for

which there were no high-confidence parameter combinations)

result in rapid decay in the confidence, and no critical behavior.

Nf =40 and Nf =23 are chosen to compare with Nf =41 in

Figure 5 (main text).

(PDF)
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