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Abstract: Our ability to predict and assess how environmental changes such as pollution and
climate change affect components of the Earth’s biome is of paramount importance. This need
positioned the fields of ecotoxicology and stress ecology at the center of environmental monitoring
efforts. Advances in these interdisciplinary fields depend not only on conceptual leaps but also on
technological advances and data integration. High-throughput “omics” technologies enabled the
measurement of molecular changes at virtually all levels of an organism’s biological organization
and thus continue to influence how the impacts of stressors are understood. This bibliometric review
describes literature trends (2000–2020) that indicate that more different stressors than species are
studied each year but that only a few stressors have been studied in more than two phyla. At the
same time, the molecular responses of a diverse set of non-model species have been investigated,
but cross-species comparisons are still rare. While transcriptomics studies dominated until 2016,
a shift towards proteomics and multiomics studies is apparent. There is now a wealth of data at
functional omics levels from many phylogenetically diverse species. This review, therefore, addresses
the question of how to integrate omics information across species.
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1. Introduction

The main objective of ecotoxicology and stress ecology is to understand and predict
the effects of contaminants and environmental stressors on ecological systems [1,2]. These
research fields are interrelated since toxicants often interact with “natural” stress factors
such as temperature and nutritional status [3]. Exposure of organisms to such stressors
triggers a series of cascading changes at multiple levels of the molecular hierarchy [4].
Since molecular changes inform about potential negative impacts following exposure, their
detection and measurement can reveal if organisms are exposed to pollutants and, when
determined experimentally, how they might respond following exposure in their natural
habitat. Regulatory molecular pathways involved in these responses exhibit changes of
levels, interactions, and feedback loops of (bio)molecules of different types active in net-
works with increasing complexity [5,6]. High-throughput methods allow the simultaneous
quantification and characterization of network components (e.g., transcripts, proteins,
and metabolites). Collectively, these methods are referred to as “omics”, with the aim to
address biological processes as integrated and interacting systems. Components of these
systems comprise very different physicochemical properties and exhibit complex nonlinear
interactions [7]. Despite this complexity, improvements in technologies for measuring
molecular-level endpoints now provide high-resolution information on molecular net-
works and an impetus for re-evaluating the ability to incorporate these measurements into
modern-day risk assessment procedures [8–12]. Driven by the developments in genomics
and a systems-oriented perspective on biology, the quest for unbiased identification of
biomarkers and relevant pathways has, arguably, already been transformed [9]. Omics
applications generate a wealth of data that researchers can integrate with adverse outcome
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pathways (AOPs) to establish links between sub-individual biomarker responses and poten-
tial effects at higher levels of biological organization [13,14]. For example, core networks of
transcripts and signaling pathways that respond to estrogen exposure have been identified
across six independent laboratories [15]. Omics assessments do not necessarily require
prior assumptions about the choice of biomarkers and provide an unbiased picture of the
ecotoxicological effect at an early stage [8,9]. Consequently, ecotoxicological tests are being
supplemented by making the best use of these methods and addressing biological traits at
different degrees of complexity [15–18].

Because it is only possible to test the effects of chemicals and other stressors on a
restricted range of species and exposure scenarios, researchers are faced with a signifi-
cant challenge of how to translate the measurements in model species exposed to model
stressors into predictions of impacts for a broader range of species and ecosystems. It is
impractical to determine all molecular effects for each stressor found in the environment
(and their synergistic and antagonistic effects) for each species found on planet Earth
(~8.7 million eukaryotic species globally) [4,19]. Since taxa and individual species within
classes and families often harbor similar genomic architectures and conserved cellular path-
ways, knowledge about available data is greatly beneficial for extrapolating results [20–23].
Furthermore, the knowledge of identified responses following stressor exposure in one
organismal group may be used to predict the modes of action of similar agents in other
groups [24]. Thus, so-called bridging effects may be identified that can be used in extrapola-
tion to other taxa, greatly accelerating our capability to evaluate the environmental impact
on a diverse set of species over time [25]. For practitioners and researchers planning to
apply these methods, or wanting to identify conserved cross-species responses, understand-
ing which methods are most frequently employed, which taxa, species and stressors have
been investigated most frequently and which levels of biological organization multiomics
studies typically investigate may help broaden the application of omics technologies to
novel taxa and aid choice of study system and omics layer. This knowledge may also
help avoid the recurring investigation of the same species and stressors. Accordingly, this
review identifies such trends, which may guide the choice of model taxa and stressors(s)
that have not yet been studied or for which no systems biological data on specific omics
levels have been generated.

2. Materials and Methods

Peer-reviewed studies (2000–2020) were identified based on an extensive literature
search using Google Scholar and Web of Science with a combination (using the Boolean
operator “AND”) of the following keywords: “Omic *” “Ecotox *”, with the keyword
“Omic *” iteratively replaced by “Proteom *”, “Transcriptom *”, “Metabolom *”, or “Multi
Omic *”. Asterisk (*) represent any character, group of characters, or no character to
increase the search space. Additionally, reference lists of recent (2018–2020) literature
reviews were scanned, and the Daphnia Stressor Database searched for ecotoxicological
and stress ecological studies [26]. Studies on (epi)genomics, lipidomics, plant systems,
and cell cultures were omitted from the analyses. Developments in these fields have
been reviewed elsewhere [27–33]. Genomics studies in Evolutionary Toxicology that e.g.,
determine changes in allelic or genotypic frequencies caused by increased mutation rates
are also covered elsewhere [34–39]. Included studies that utilized one or more of the
following omics layers: transcriptomics, proteomics, metabolomics, and multiomics to
study the effects of one or multiple stressors were classified based on (i) omics layer, (ii)
studied species/taxa, and (iii) studied stressor(s). Data are available in Table S1 and were
summarized and visualized in R v.4.1.0 (R Core Development Team, 2021).

3. Results

A total of 648 studies were included, representing many stressors (n = 259) and species
(n = 184). Transcriptomics was the most frequently applied method (43%), followed by
proteomics (30%), metabolomics (13%) and finally, multiomics (13%). While the number of
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transcriptomic studies stayed constant across the years, there is a trend towards increased
usage of proteomics, with studies dominating the literature from 2017 to 2019 (40% pro-
teomics vs. 34% transcriptomics). Furthermore, proteomics is not less frequently used in
multiomics studies as stated previously [40]. It was the second most frequently applied
method overall and out of 84 included multiomics studies, 62% used proteomics in concert
with at least one other omics layer. A trend towards combining omics technologies to
investigate the impact of stressors on organisms was observed, with multiomics studies
making up the majority (44%) of the literature in 2020 (Figure 1A). Across all years, multi-
omics studies most frequently used a combination of transcriptomics and proteomics (38%),
followed by transcriptomics and metabolomics (33%) and proteomics and metabolomics
(21%). Yet, multiomics data sets beyond two layers are still rare.
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Figure 1. (A) Ecotoxicological and stress ecological studies between 2000 and 2020 that used one or multiple omics methods
to investigate molecular changes following exposure to (environmental and chemical) stressors. (B) Word cloud showing
representative model and non-model species studied across all years (only species with n > 2 studies are shown). Word size
corresponds to the number of studies.

Out of 184 investigated species, the five most frequently studied organisms were
Danio rerio (11%), Daphnia magna (7%), Mytilus edulis (4%), Oryzias latipes (3%), Pimephales
promelas (3%) and Oncorhynchus mykiss (3%) (Figure 1B). Notably, most studies focused on
chordata (44%, Figure 2), potentially since approximately 70% of human protein-coding
genes, including disease-associated genes, have an ortholog in fish [41]. Except for a few
phyla, there is little preference for using specific omics methods for any one phylum, indi-
cating a balanced investigation at different levels of the molecular hierarchy (Figure 2).The
relative number of proteomics studies in mollusca was higher than for any other phy-
lum, indicating a preference for investigating protein-level responses in Mytilus (Figure 2).
Arthropods were the second most frequently studied phylum (19%, Figure 2), with Daphnia
magna and D. pulex being the species of choice when investigating the adverse effects
of environmental stressors in this phylum [42,43]. Studies probing the toxicobiology of
the amphipod Gammarus fossarum have also become more common. For these species,
high-quality sequence information such as sex-specific transcriptomes and genomes are
publicly available, facilitating the analysis and integration of data at various omics lev-
els [44–47]. Within the chlorophyta, Chlamydomonas reinhardtii was by far the most often
investigated organism, potentially owing to established laboratory cultivation protocols
and available sequencing information [48,49]. Within the cnidaria, Orbicella (previously
Montastrea) faveolata was the most often investigated organism. A wide range of sequencing
data is available for this endangered reef-building coral, from whole-genome assemblies
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to RNA-seq data [50–52]. Notably, there is little information on proteomic, metabolomic,
and multiomic responses within the cnidaria, indicating a knowledge gap for molecular
responses in cnidaria beyond the transcriptional level (Figure 2). Within the mollusca,
Mytilus edulis and M. galloprovincialis were the most frequently investigated species (21%
and 16%, respectively). Representing 5% of studies within this phylum, the invasive mol-
lusk Dreissena polymorpha represents a counterpart to Mytilus to monitor inland freshwater
bodies. Within the fungi, Aspergillus niger (ascomycota), and Pleurotus ostreatus (basid-
iomycetes) may become representative sentinel species since their molecular biology is
actively investigated [53,54].
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Figure 2. Alluvial diagram depicting the relative frequencies of phyla (left blocks) for which data on different omics levels
(right blocks) have been generated between 2000 and 2020. Stream fields between the blocks are color coded based on
taxonomic affiliation and represent the total number of times specific omics methods have been applied within the specified
phyla.

For the first time in 2020, more different species than stressors were studied, indicating
that omics technologies are now being applied to a broader variety of species than stressors
(Figure 3B). The number of unique stressors investigated each year was higher than the
number of unique species used as study systems (Figure 3B). The most frequently studied
stressors were temperature (8%), 17α-Ethinyl estradiol (8%), cadmium (5%), copper (2%),
oil (2%), bisphenol A (0.15%) and silver nanoparticles (0.13%). Interestingly, most studies
(11%) tested the adverse effects of chemical mixtures in situ, most often in the form of
wastewater effluents (WWE) and via in situ studies that compared polluted with nonpol-
luted reference sites. These studies most often employed transcriptomics (48%) followed
by proteomics (29%) and metabolomics (18%).
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Figure 3. Overview of stressors, phyla and species investigated using omics methods from 2000 to 2020. (A) Number of
phyla studied for unique stressors (only stressors for which more than one phylum has been investigated are shown). (B)
Line plot showing the number of unique stressors and species studied each year.

Except for 17α-Ethinyl estradiol, the most frequently studied stressors were also
studied in the most phyla (Figure 3A). For example, the effects of temperature were studied
in 15 different phyla compared to any other stressor and most frequently in arthropods
(21%), followed by cnidaria (19%) and mollusca (12%). In contrast, the adverse effects of
17α-Ethinyl estradiol have almost exclusively been studied in chordata (96%), indicating
a knowledge gap in the impacts of 17α-Ethinyl estradiol on other taxonomic groups.
Additionally, the effects of 17α-Ethinyl estradiol have almost exclusively been studied
on the transcriptomic level (Figure S1). In contrast, the effects of temperature have been
studied using a broad range of methods, most notably via many multiomics studies
(Figure S1). The adverse effects of heavy metals such as cadmium and copper have been
studied most often in arthropods (38% and 22% respectively), mollusca (27% and 27%),
and chordata (16% and 22%). The impacts of these heavy metals have also been studied
using a broad range of methods, except for zinc, for which primarily transcriptomic studies
have been conducted. An overview of which omics methods have been applied to which
stressor is given in Figure S1.

4. Discussion

It is beyond the scope of this article to highlight all trends and challenges associ-
ated with the application of omics in ecotoxicology and stress ecology. For example,
integrating information across multiple omics layers requires addressing a multitude of
challenges [55,56]. Additional issues arise from the complexity of life and environmen-
tal variability. A species may not respond uniformly across its range, since populations
may react differentially to environmental change [57–59]. The increased application of
proteomics and multiomics in the literature suggests the importance of studying functional
changes gained from these analyses since they may offer a more informative perspective of
toxicopathic effects compared to e.g., mRNA copy numbers [60–64]. Although arguments
have been made to prioritize working on model organisms with complete genome data
available [11], the molecular responses following stressor exposure are increasingly being
studied in phylogenetically and ecologically diverse non-model species. An important
consideration is how measurements in these species can be translated into predictions
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of impacts for a wider range of species and ecosystems. Taken together, the growing
availability of functional omics data on a wide variety of non-model species calls for
cross-species comparisons based on standardized functional annotation. Identifying evolu-
tionarily conserved expression patterns may be a promising path forward. Knowledge of
these conserved pathways enables the detection of a pollutant in any ecosystem and the
determination of the effects of environmental change on novel species based on previously
obtained data [65–67]. For example, exposure to hexahydro-1,3,5-trinitro-1,3,5-triazine
(RDX) elicited a conserved mode of action throughout phylogenetically remote organ-
isms [65]. Identifying conserved expression patterns (or pathways of toxicity (PoT) [12])
requires concerted functional analyses based on gene set enrichment, network modeling,
text mining, graph-based, and pathway enrichment analyses [68–75]. For example, in
the field of phenomics, ontology-based semantic mapping (OS-Mapping) has been used
to identify chemical by species interactions and similar mechanisms of action (MOAs)
across species [76,77]. Here, phenotypes are described as free text and are then made
computable by annotating them with appropriate ontology terms (e.g., Gene Ontology
(GO), Pfam, FunCat, KEGG, and WikiPathways [78–83]). A significant advantage of this
approach is that functional datasets are less concerned with comparing absolute changes
of (bio)molecules between studies but are focused on how the function of the biological
system changes. Ultimately, a systems approach with a functional perspective gains rele-
vance and meaning [84–88]. Considering that a prevalent argument against the adoption
of omics in chemical risk assessments is the lack of simplicity of use [89], presenting results
from a functional approach in “human-readable language” may facilitate the incorpora-
tion of omics in environmental monitoring efforts and link pathway perturbations to the
phenotype [90].

This article highlights the available wealth of disparate information on systems molec-
ular responses in a large variety of species and stressors and with sufficient mode of action
data that allows scanning for patterns from which general patterns, rules, theory, and
models can be inferred. An important consideration is the storage and dissemination
of findings based upon a commonly agreed ontology and structured vocabulary to fa-
cilitate data-sharing and mining. For example, the diXA project has assembled a set of
toxicogenomics studies from diverse sources, which in part comprise multiomics data [91].
Databases such as MOD-finder, and CEBS facilitate finding published omics datasets and
TOXsIgN, and the Comparative Toxicogenomics Database (CTD) facilitate submission,
storage, and retrieval of cross-species toxicogenomic signatures based on molecular func-
tion [92–96]. Ideally, however, a curated database containing relevant information such
as raw sequences of differentially expressed genes, proteins, etc. would further accelerate
the quest for identifying functional bridging effects. To date, 412,969 organisms have
been completely or partially sequenced and are available via GOLD (Genome OnLine
Database; http://www.genomesonline.org, accessed on 1 August 2021). Initiatives such
as i5K, the Darwin Tree of Life Project (https://www.darwintreeoflife.org), the Vertebrate
Genomes Project (https://vertebrategenomesproject.org), the Fish10K project, and the
Earth BioGenome Project are making the application of omics increasingly accessible for
a multitude of hitherto unstudied species [97–99]. A narrow focus on only a handful
of species may constrain our understanding of chemical-induced disease processes and
molecular systems that have evolved to respond to stressor exposures and environmental
change [100]. The continued study of non-model species and the integration between
phylogenetically diverse datasets may pave the way for determining the effects an an-
thropogenically impacted and rapidly changing environment has on ecologically-relevant
species and the populations they form in nature [101–104].

5. Conclusions

The sheer amount of publicly available data on tens of thousands of genes and their
products calls for integrative analyses of cross-species responses. A focus on identifying
the members and functions of evolutionarily conserved pathways and expression sig-

http://www.genomesonline.org
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https://vertebrategenomesproject.org
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natures that repeatedly emerge from differential and network modeling analyses across
different stressors and species may lead to a redefinition of how omics technologies are
being applied in ecotoxicology and stress ecology. Streamlining the use of omics technolo-
gies in risk assessment and environmental monitoring requires an expanded reference
database and a better understanding of the relationships between specific responses and
the functions of identified biomarker patterns. Comparing and systematizing repeatedly
identified pathways will be a crucial step if we are to understand and predict the impact
of existing and novel stressors and their mixtures on underrepresented ecosystems and
species. Ecotoxicologists and stress ecologists are still faced with the daunting task of
potentially evaluating thousands of stressors and species. Although the application of
omics in ecotoxicology has many challenges [105], there is increased integration of different
omics levels, a growing availability of genomic information on non-model species, an
increasing number of public databases curating information across studies, an improved
arsenal of bioinformatics, and computational tools, and an increasing variety of stressors
and non-model species investigated.

Supplementary Materials: The following data are available online at https://www.mdpi.com/
article/10.3390/genes12101481/s1, Figure S1: Supporting Information File 1. Table S1: Dataset used
in this review.
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