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Mycobacterium tuberculosis (M. tuberculosis) infection of the central nervous system
(CNS) is the most devastating manifestation of tuberculosis (TB), with both high mortality
and morbidity. Although research has been fueled by the potential therapeutic target
microglia offer against neurodegenerative inflammation, their part in TB infection of the
CNS has not been fully evaluated nor elucidated. Yet, as both the preferential targets
of M. tuberculosis and the immune-effector cells of the CNS, microglia are likely to
be key determinants of disease severity and clinical outcomes. Following pathogen
recognition, bacilli are internalized and capable of replicating within microglia. Cellular
activation ensues, utilizing signaling molecules that may be neurotoxic. Central to
initiating, orchestrating and modulating the tuberculous immune response is microglial
secretion of cytokines and chemokines. However, the neurological environment is unique
in that inflammatory signals, which appear to be damaging in the periphery, could be
beneficial by governing neuronal survival, regeneration and differentiation. Furthermore,
microglia are important in the recruitment of peripheral immune cells and central to
defining the pro-inflammatory milieu of which neurotoxicity may result from many of
the participating local or recruited cell types. Microglia are capable of both presenting
antigen to infiltrating CD4+ T-lymphocytes and inducing their differentiation—a possible
correlate of protection against M. tuberculosis infection. Clarifying the nature of the
immune effector molecules secreted by microglia, and the means by which other CNS-
specific cell types govern microglial activation or modulate their responses is critical
if improved diagnostic and therapeutic strategies are to be attained. Therefore, this
review evaluates the diverse roles microglia play in the neuro-immunity to M. tuberculosis
infection of the CNS.

Keywords: microglia, Mycobacterium tuberculosis, central nervous system, cytokines, chemokines, neurotoxicity,
neuroprotection, tuberculosis meningitis

Abbreviations: BCG, Bacillus Calmette-Guérin; CCL, chemokine C-C motif ligand; CD, cluster of differentiation; CNS,
central nervous system; CNS-TB, tuberculosis of the central nervous system; CSF, cerebrospinal fluid; CXCL, C-X-C motif
chemokine; DC-SIGN, dendritic cell-specific intercellular adhesionmolecule grabbing nonintegrin; ERK, extracellular-signal-
regulated kinases; G-CSF, granulocyte colony stimulating factor; GM-CSF, granulocyte macrophage stimulating factor; LPS,
lipopolysaccharide; MAPK, mitogen-activated protein kinase; IL, interleukin; MCP, monocyte chemotactic protein; MHC,
major histocompatibility complex;MMP,matrixmetallometalprotease;M. tuberculosis,Mycobacterium tuberculosis; NADPH,
nicotinamide adenine dinucleotide phosphate; NOS, Nitric Oxide Synthase; PRR, pattern recognition receptor; ROS, reactive
oxygen species; sPLA2, secretory phospholipase A2; TB, Tuberculosis; TLR, toll like receptor; TNF, Tumor necrosis factor;
ICAM, intracellular adhesion molecule.
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Introduction

Microglia, from the literal Greek ‘‘small glue’’, are one of three
glial cell types found within the brain and spinal cord. As
arguably the most prominent immune effector cells of the
central nervous system (CNS), microglia simultaneously exhibit
a potential for neurotoxicity. Found in numbers comparable
to neurons, microglia comprise 0.5–16.6% of the total human
CNS cell population, varying by anatomical site and with higher
densities in white matter (Mittelbronn et al., 2001). Microglia
are isolated within the cerebral parenchyma by the blood-brain
barrier (BBB), thereby serving as the first line of defense against
intra-cerebral infections such asMycobacterium tuberculosis (M.
tuberculosis), causative pathogen of tuberculosis (TB).

It is known that TB in the CNS (CNS-TB) generates host-
orchestrated tissue destruction by infiltrating monocytes (Price
et al., 2001; Lee et al., 2004). Although defined as the facultative
phagocytic myeloid cells of the CNS, microglia are distinct
from the macrophages located within the subarachnoid space,
choroid plexus, meninges and perivascular spaces (Mittelbronn
et al., 2001; Guillemin and Brew, 2004). Differential molecular
expression, a unique ‘‘spiny’’ morphology, an experimentally-
useful resilience to ionizing radiation and a unique blend of the
phagocytic behavior of innate immune cells with the trophic
nature of glia, define microglia as being a highly unique cell-
type (Flaris et al., 1993; Ulvested et al., 1994; Giulian et al.,
1995; Aarum et al., 2003; Guillemin and Brew, 2004; Balentova
et al., 2015). This creates difficulty in relating the well-studied
interactions between macrophage and M. tuberculosis of the
periphery to the role microglia might play in CNS infections—an
interaction which has, unfortunately, formed the basis of our
understanding of microglia in CNS-TB infection to date.

Polarized views of beneficial and harmful results of active
microglia have not clarified the perception of the diverse
roles of microglia during CNS pathology (Glezer et al., 2007;
Hanisch and Kettenmann, 2007; Sierra et al., 2013). On
one hand, microglia are viewed positively as the initiators
and sustainers of acute neuroinflammation where they are
responsible for pathogen identification, the subsequent clearance
of infection, insult repair and the restoration of cerebral
homeostasis. Such trophic roles stand in stark contrast to their
capacity for robust immune activation and their accountability
for the consequent neuropathology of chronic inflammation.
Therefore, this review aims to describe and critically evaluate
the potential roles of microglia in the pathogenesis of M.
tuberculosis infection of the CNS, a better understanding of
which is critical for improved diagnostic and therapeutic
technologies.

Tuberculosis of the Central Nervous
System

In 2013, an estimated 1.5 million people succumbed to TB,
making it second only to HIV as the largest cause of infectious
mortality. Global incidence remains high, estimated at 9 million
cases (World Health Organisation (WHO), 2014). One in
three people are thought to be latently infected, carrying a

lifetime risk of developing active, transmissible disease. Extra-
pulmonary TB accounts for 15–20% of all cases prior to
the HIV pandemic (Mehta et al., 1991; Kulchavenya, 2014).
Approximately 3–10% of all extra-pulmonary TB cases in
developed countries exhibit CNS involvement (Rieder et al.,
1990; Houston and Macallan, 2014), with far higher prevalence
likely in developing countries bearing the brunt of the HIV
pandemic (Berenguer et al., 1992; Leeds et al., 2012). Although
CNS-TB represents just 1% of the global TB burden (Cherian
and Thomas, 2011), it is the severest form of TB owing largely
to its difficulty in diagnosis (Karstaedt et al., 1998; Marais
et al., 2010), and high mortality and morbidity even after
appropriate management (Afghani and Lieberman, 1994; Cheng
et al., 2002)—with children and the immunosupressed being
vulnerable, yet not presenting atypically (Dubé et al., 1992;
Farinha et al., 2000; Nelson and Zunt, 2011). In African adults,
approximately one in three cases of bacterial meningitis is
attributable to M. tuberculosis infection, with fatality in almost
two out of every three patients (Woldeamanuel and Girma,
2013).

The propensity for disseminated disease depends upon
both bacterial and host-specific factors. Two retrospective
studies found significant associations between strain-patterning
and CNS infection (Arvanitakis et al., 1998; Click et al.,
2012), whilst a Brazilian study using Restriction Fragment
Length Polymorphism analysis concluded that risk factors for
dissemination are more host-dependent (Gomes et al., 2013).
A meta-analysis concluded that age, sex, and lifestyle habits, in
addition to immunological factors (but not, interestingly HIV
status), contributed towards the probability of extra-pulmonary
TB (Webster and Shandera, 2014). This indicates that host factors
are also critical to the pathogenesis of extra-pulmonary TB, as
disease often results from either exaggerated or inefficient host-
responses. Therefore, studying the role of host cells, such as
microglia, is just as important as studying the pathobiology of
the infectious agent.

Clinically, CNS-TB has been studied through the use
of various imaging techniques, resulting in a hierarchical
classification system. Primary classification is on the basis of
the infection affecting the spinal cord or the cerebrum, then
further sub-classified by the diffuse or localized nature of
the infection, and finally, anatomically by the precise nidus
of infection (Jinkins et al., 1995; Bernaerts et al., 2003). TB
meningitis (TBM) is a diffuse infection of the leptomeninges,
characteristically affecting the brain in a basal fashion (Thwaites
and Hien, 2005). However, infection of the pachymeninges has
also been described (Bernaerts et al., 2003). Direct infection
of the brain parenchyma does occur, during which the M.
tuberculosis bacilli breech the BBB. Localized infections of the
parenchyma may result in a tuberculoma, an abscess, or focal
cerebritis, whilst more diffuse parenchymal infections are, by
definition, encephalitic. Such a diverse spectrum of cerebral
infections has been explained through a unifying pathogenic
theory, built largely upon the seminal studies by Rich et al.
who posited that, following hematogenous deposition of bacilli
into the parenchyma, the subsequent tuberculoma ruptures
into the cerebral spinal fluid and adjacent brain structures
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become infected (Rich and Mccordock, 1933; Donald et al.,
2005). However, many questions are left unanswered. For
instance, what are the differential host mechanisms regulating
BBB penetration by M. tuberculosis, and, if the parenchyma
is required to be infected prior to cerebral dissemination,
what immunological factors could potentially be mediating the
disease. These questions lead one to consider the most renowned
immunological effector cells of the CNS, the microglia, as the
missing link in this paradigm.

Microglia

Origin and Maintenance
Historically, microglia were considered derivatives of invading
pia, or malleable neuroectodermal elements (Rezaie and
Male, 2002). Subsequent studies recognized their origin from
mesoderm; borne from bone-marrow progenitors that seed
the brain parenchyma (Hess et al., 2004). The resemblance
of microglia to macrophages in surface antigen expression, as
well as both phagocytic and cytotoxic effector functions hinted,
particularly, at a myeloid origin. Although many experiments
failed to provide definitive proof of such a myeloid heritage,
mice lacking the myeloid-specific transcription factor PU1.1 also
lacked microglia (Beers et al., 2006). Later, primitive microglia
were identified as erythromyeloid precursors arising from the
yolk sack very early in embryogenesis (Alliot et al., 1999;
Ginhoux et al., 2010; Schulz et al., 2012; Kierdorf et al., 2013).
It was originally hypothesized that continual replenishment
of the microglia population occurred into adulthood via
peripheral recruitment of circulating monocytes, followed by
subsequent differentiation steps. However, although murine
monocytes have been shown to invade the CNS amidst insult
(Andersson et al., 1992) and microglia demonstrate the potential
to differentiate into either CNS-macrophage or dendritic cell
profiles in vitro (Santambrogio et al., 2001), evidence for
monocyte to microglial differentiation in the developed CNS
is lacking (Ajami et al., 2007; Ginhoux et al., 2010). Thus,
these studies suggest that microglia, upon successful CNS-
seeding of their progenitors in early development, act as an
independent, self-renewing population into adulthood (Ginhoux
et al., 2010).

Populations and Phenotypes
Microglial cells may be classified by location or functional
morphology. Juxtavascular microglia, which contribute to
the glia limitans by incorporating processes between those of
astrocytes, are found adjacent to and migrate along penetrating
cerebral arteries (Lassmann et al., 1991; Grossmann et al., 2002;
Mathiisen et al., 2010). Microglia not in contact with the CNS
microvasculature contribute to the parenchymal population.
Perivascular antigen-presenting macrophages, ensheathed
within the basal lamina and replenished by bone marrow
progenitors (Hickey and Kimura, 1988; Hickey et al., 1992), are
sometimes referred to as perivascular ‘‘microglia.’’ The opinion
that true microglia are ‘‘macrophages of the CNS’’ is perhaps
simplistic; advances in monocyte-macrophage immunology,
such as the introduction of the M1-M2 paradigm or classical vs.

alternative activation have been extrapolated from peripheral to
central (i.e., microglial) immunological processes (Mittelbronn,
2014).

Nevertheless, microglial morphological plasticity reflects
a specific yet stereotypical, graded spectrum of functional
states. Ramified or ‘‘branched’’ microglia are a resting but
highly active, baseline phenotype continually palpating
the local microenvironment with cytoplasmic processes;
searching for pathogens, signs of injury or homeostatic
disturbances. Ramified microglia are well known for their
potential to up-regulate the constitutive expression of both
major histocompatibility complex (MHC) classes, amongst
many other immune molecules (Leong and Ling, 1992; Ford
et al., 1995; Olah et al., 2011). Activated microglia (upon
encounter of injury or pathogen) typically display an amoeboid
phenotype through cytoplasmic contraction. Such microglia
are defined functionally by migration to the site of interest
(Carbonell et al., 2005), proliferation (Giordana et al., 1994),
discretional phagocytosis of self or non-self constituents
(Magnus et al., 2001; Rogers and Lue, 2001; Shams et al.,
2003), cytokine and chemokine expression (Hanisch, 2002),
and induction of reactive oxygen species (ROS; Colton et al.,
1996; Wang et al., 2004; Long et al., 2006). Such morphological
diversity is further amplified by regional variations in molecular
expression (de Haas et al., 2008), and evidence suggesting
that microglial activation may simultaneously generate an
immune-regulatory phenotype (Liao et al., 2012; Selenica et al.,
2013).

Microglia-Mycobacterium tuberculosis
Interactions

Microglia in Context: the Cellular and
Biochemical Milieu
Microglia rely heavily on a complex system of in vivo
signals from the surrounding cellular and biochemical milieu
for both activation and modulation. Although microglia
are the principal CNS cells infected by M. tuberculosis
(Peterson et al., 1995a; Rock et al., 2005; Yang et al.,
2007), other CNS-specific cells that display potential for
M. tuberculosis infection include astrocytes and neurons
(Rock et al., 2005; Randall et al., 2014). When human
astrocytes and microglia were challenged with M. tuberculosis
in vitro, Rock et al. observed a 15% and 76% bacilli uptake
respectively (Rock et al., 2005). Teasing apart these complex
cellular interactions, both amongst the different CNS cell-
types and with the immune system, remains an outstanding
step towards fully understanding the molecular pathogenesis of
CNS-TB.

The most striking feature of microglial activation in general
is the rapidity at which it occurs, suggesting a potential role
of diminishing neuronal inhibitory signals in producing swift
immune responses. Randall et al. (2014) were the first to
observe that neurons can be infected by M. tuberculosis and,
in response, contribute immunologically to the inflammatory
state by secreting IL-1β, IL-6, and IL-10 (Randall et al., 2014).
Although neither the extent to which this occurs in vivo
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during human CNS-TB pathogenesis nor the consequences
of such infections on neuronal electrical or immunological
signaling has been fully investigated, this introduces the
possibility that altered neuron-microglia interactions (either
in diminishing inhibitory signals, or increasing activation
signals) as well as the direct participation of other CNS
cell-types promote the pro-inflammatory milieu that drives
chronic inflammation and culminates in subsequent host-
pathology.

Mycobacterium tuberculosis Recognition,
Internalization and Microglial Activation
Microglia possess a unique repertoire of innate-immune and
neuro-specific receptors, including pattern-recognition receptors
(PRRs); the broad class of molecules used to identify pathogen-
associated molecular patterns for self vs. non-self distinction.
Although some of these receptors are of importance in
macrophage recognition ofM. tuberculosis, further experimental
evidence is required to confirm their role in the microglial
response toM. tuberculosis (Table 1).

Internalization of M. tuberculosis bacilli by human microglia
is dependent on CD14 – a monocyte differentiation antigen
which binds to lipopolysaccharide (LPS) with Toll-like receptor
4 (TLR4; Wright et al., 1990). Peterson et al. (1995a) observed
a 64% and 62% reduction in non-opsonized tubercle bacilli
uptake in the presence of anti-CD14 monoclonal antibodies and
soluble CD14 ligand, respectively (Peterson et al., 1995a). On
the other hand, Shams et al. (2003) found that CD14 does not
mediate entry of M. tuberculosis into human peripheral blood
mononuclear cells (Shams et al., 2003), while others observed
a CD14-dependant and regulated internalization of M. bovis
(Khanna et al., 1996; Sendide et al., 2005). Dectin-1 and TLR2
have been recognized as key mediators of macrophage activation
by M. tuberculosis (Yadav and Schorey, 2006). Yang et al.
used combinations of well-characterized TLR2 antigen, dectin-1
antagonists and TLR2-deficient mice to show thatM. tuberculosis
bacilli recognition by microglia occurs via an as yet unidentified
pathogen recognition mechanism involving identification of a
heat-stable M. tuberculosis bacilli antigen (Yang et al., 2007).
Such recognition could possibly be orchestrated by other PRR’s
or perhaps activate through alteration of microglial-specific
ion channels (Kettenmann et al., 1990; Prinz et al., 1999),
which have been shown to be modulated by both cytokine
signals and pathogen associated molecular patterns such as LPS
(Nörenberg et al., 1994). Interestingly, Lambert et al. has shown
the induction of dendritic cell-specific intercellular adhesion
molecule grabbing nonintegrin (DC-SIGN) in human microglia
when treated with GM-CSF, IL-4, and LPS (Lambert et al.,
2008). DC-SIGN is a known PRR expressed by DC as part
of the innate immunity for the recognition of M. tuberculosis
(Tailleux et al., 2003), therefore one cannot exclude the potential
recognition of M. tuberculosis by the induced microglia using
DC-SIGN.

Whilst most pathogens attempt to avoid host immunity,
it is generally accepted that tubercle bacilli actively seek
internalization by host macrophages in which they have

developed strategies to survive. Of all the parenchymal CNS cell
types, microglia could, theoretically, demonstrate preferential
infection by M. tuberculosis due to their similarity with
monocytes, as evidenced by their tendency to associate with
more bacilli per cell than astrocytes (Rock et al., 2005). Microglia
internalize virulent M. tuberculosis more rapidly and efficiently
than less virulent strains. Upon internalization, tubercle bacilli
are found in sparse, but densely packed ‘‘vacuoles’’ (Curto
et al., 2004). A number of studies report M. tuberculosis
bacilli retaining reproductive potential within infected microglia;
providing a cerebral niche for persistence and a possible
mechanism for subsequent reactivation should a state of
immune-suppression be acquired (Peterson et al., 1995b; Curto
et al., 2004; Cannas et al., 2011).

To illustrate the complexity of immune-modulatory signals,
microglia have diminished phagocytic capacity when treated with
anti-CD14 antibodies, opiate antagonists and pertussis toxin;
indicating a G-protein dependent mechanism (Peterson et al.,
1995b). Although opiate abuse has been associated with CNS-
TB development, Peterson et al. (1995b) observed an enhanced
phagocytic capacity of primary fetal microglia when pre-exposed
to a morphine concentration of 10−M—reporting a higher
proportion of phagocytically active microglia and greater M.
tuberculosis burdens (Peterson et al., 1995b). Mu receptors have
also been implicated in the control of microglial chemotaxis,
suggesting that morphine’s anti-inflammatory action is due to
a reduction in microgliosis rather than diminished microglial
activity (Chao et al., 1997).

Microglial activation by M. tuberculosis has been largely
studied through cytokine and chemokine as opposed to
morphological or transcriptional responses. Messenger RNA
and protein expression studies by Qin et al. (2015) suggest
that a classically activated, M1 phenotype is induced and an
M2-like phenotype reduced in microglia following exposure to
Mycobacterium-challenged macrophage culture medium (Qin
et al., 2015). Although such studies need to be verified in a
human model, several important observations can be made.
Firstly, this illustrates that microglia, even when not directly
infected, can be activated and respond immunologically to
infections by tubercle bacilli. Secondly, macrophage infection
by M. tuberculosis may not only incite a pro-inflammatory
microglial phenotype, but their persistent infection may prevent
either the conversion or reversion of microglia to a more M2-
like phenotype. This has further potential applications to the
underlying pathophysiology of CNS-TB as macrophage infection
could: precede CNS-parenchymal infection; contribute towards
a breakdown of the BBB for peripheral immune recruitment or
enhance bacilli breech; contribute towards either the activation
or persistence of a pro-inflammatory milieu through direct
communication with microglia.

Furthermore, patterns of microglial activation differ not only
between organisms, but also between virulent and avirulent
strains of mycobacteria—revealing the high degree of specificity
with which microglia respond to pathogens (Curto et al.,
2004; Cannas et al., 2011). Curto et al. challenged the ‘‘all-or-
nothing’’ dogma of microglial activation by observing a stronger
inhibition of both IL-1 and IL-10 in M. tuberculosis-microglial
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TABLE 1 | Correlation between innate receptors on macrophages and microglia that have demonstrated importance in M. tuberculosis infections.

Microglial PRR Macrophage recognition Microglial recognition of References
of M. tuberculosis M. tuberculosis

TLR2 + Unknown Drennan et al. (2004)
and Kielian et al. (2005)

TLR4 + Unknown Abel et al. (2002)
TLR9 + Unknown Bafica et al. (2005)
CD14 − + Peterson et al. (1995a),

Means et al. (1999),
and Shams et al. (2003)

CR3 (CD11b/CD18) + Unknown Melo et al. (2000)

Comparing the experimentally determined importance of innate immune receptors in M. tuberculosis infection of macrophages and microglia. “+” indicates confirmed

importance, “−” indicates no importance determined whilst “unknown” indicates a lack of experimental evidence altogether

infections with more virulent strains (Curto et al., 2004). This
finding suggests thatM. tuberculosis infection initiates a rigorous
transcription profile that enhances the expression of certain
molecules whilst simultaneously suppressing the expression of
others. Therefore, microglial effector mechanisms are tightly
regulated, pathogen-specific responses that appear to also be
virulence-specific, and such effector profiles, or a dysregulation
in certain profiles, may yet be correlated with either a propensity
to neuropathology, or a heightened resistance to it.

Cytokine Effector Responses Orchestrated by
Microglia
Microglia are known to be capable of secreting a wide
range of cytokines and chemokines (Figure 1). The cytokine
levels in TBM are distinct from meningitis caused by other
microbes (Mastroianni et al., 1998). Studies in cerebrospinal
fluid of patients with CNS-TB indicate significantly elevated
concentrations of sTNFR-75, sTNFR-55, IFN-γ, and IL-10,
and persistently elevated levels of TNF-α—even following
therapeutic interventions (Mastroianni et al., 1997). Other
immunological molecules, confirmed experimentally, to be
secreted by microglia following M. tuberculosis stimulation
include: IL-1α, IL-1β, IL-6; IL-10, IL-12p40, TNF-α, G-CSF,
GM-CSF, CCL2, CCL5, and CXCL10 (Curto et al., 2004;
Rock et al., 2005; Yang et al., 2007; Cannas et al., 2011;
Table 2). In comparison, Rock et al. found M. tuberculosis-
challenged astrocytes to have a much narrower cytokine-
chemokine response—detecting modest levels of CXCL10 only
(Rock et al., 2005).

TNF, a pro-inflammatory cytokine, demonstrates
paradoxically destructive and protective roles in CNS and
peripheral M. tuberculosis infection, owing to transmembrane
or soluble forms binding to either of two receptors. Microglia
encounteringM. tuberculosis, generate an initial burst of TNF-α,
followed by a sustained decline thereafter (Curto et al., 2004).
TNF-α acts on other microglia, possibly in an autocrine fashion,
to induceNADPHproduction of H2O2, and thus drivemicroglial
proliferation—an attempt either to promote neuroinflammation
or limit its sequelae (Mander et al., 2006). TNF-α has been
shown to have both protective (Nawashiro et al., 1997) and
harmful (Barone et al., 1997) effects in cerebral ischemia, and

alone induces necrotic changes in cerebral endothelial cells. After
which, microglia could contribute towards forming a secondary
BBB (Claudio et al., 1994). Multi-nucleated giant cell formation
following M. bovis is initiated by TNF-α in swine microglia
(Peterson et al., 1996), making TNF-α a critical contributor to
the formation of tuberculomas and the subsequent seclusion of
mycobacteria. TNF-α induces expression of chemokines within
the CNS, including intercellular adhesion molecule (ICAM-1),
important in leukocyte recruitment to the brain during bacterial
infection (Engelhardt et al., 1994). Although TNF-α appears to
be the most potent ICAM-1 inducer within the CNS, it acts in
concert with other molecules in the recruitment of leukocytes
into the nervous system (Claudio et al., 1994; Shrikant et al.,
1994; Glabinski et al., 2003). Interestingly, neurotoxicity has
been attributed to the synergism of TNF-α with IL-1β on
NO generation by astrocytes (Chao et al., 1995). Moreover,
the importance of TNF has been further supported by the
neutralization study, leading to M. tuberculosis dissemination
causing severe CNS-TB (Seong et al., 2007; Lynch and Farrell,
2010).

IL-1α and IL-1β, members of the pyrogenic IL-1 family
of cytokines, are both believed to act through IL-1RI with
an accessory protein, and compete for binding with IL-1Rα.
Although secreted, a strong inhibition of IL-1α expression was
observed when microglia were infected with more virulent
mycobacteria (Curto et al., 2004; Cannas et al., 2011). Given the
importance of IL-1α in a pulmonary granulomatous response
(Kasahara et al., 1988), both the initial parenchymal cell type and
the virulence of the mycobacteria infection may dictate the IL-1α
levels within the CNS, and thus define both the form and course
of the infection. IL-1β has also been shown to be secreted by
both neurons and microglia upon encountering M. tuberculosis
(Cannas et al., 2011; Randall et al., 2014), and is known to
induce microglial proliferation via the same mechanism as TNF-
α (Mander et al., 2006). Recombinant IL-1β injected into rat
brain induces both astrocyte proliferation and stimulates blood
vessel growth (Giulian et al., 1988), and has been shown to initiate
transcription of type II NOS (Liu et al., 1996).

Astrocytes play an important role in complementing and
counteracting the adverse effects of IL-1α and IL-1β by secreting
G-CSF and GM-CSF in response (Tweardy et al., 1990). Murine
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FIGURE 1 | Schematic diagram of microglial immune responses and interactions during M. tuberculosis infection in the central nervous
system (CNS).

TABLE 2 | Experimentally confirmed cytokine and chemokine expression by microglia during M. tuberculosis infection summarizing the experimental
evidence for microglial cytokine secretion in response to M. tuberculosis stimulation.

Molecule Microglia M. tuberculosis Experimental Reference
line strains model

CCL2/ MCP1 Human Fetal H37Rv Human Rock et al. (2005)
CCL5/RANTES Human Fetal H37Rv Human Rock et al. (2005)
CXCl10 Human Fetal H37Rv Human Rock et al. (2005)
G-CSF Murine BV-2 H37Rv Murine Cannas et al. (2011)
GM-CSF Murine BV-2 H37Rv Murine Cannas et al. (2011)
IL-1 Human Fetal N.C 0741708 Human Curto et al. (2004)
IL-1α BV-2 H37Rv Murine Cannas et al. (2011)
IL-1β BV-2; Human Fetal H37Rv Murine, Human Rock et al. (2005) and Cannas et al. (2011)
IL-10 Human Fetal N.C 0741708 Human Curto et al. (2004)
IL-12p40 BV-2 H37Rv Murine Yang et al. (2007)
IL-6 BV-2; Human Fetal H37Rv Murine, Human Rock et al. (2005) and Yang et al. (2007)
TNF-α BV-2; Human Fetal H37Rv; N.C 0741708;H37Rv Murine, Human Curto et al. (2004), Yang et al. (2007)

and Cannas et al. (2011)

microglia have also been shown to secrete G-CSF and GM-
CSF when infected with M. tuberculosis, which, unlike IL-1
or IL-2, drives microglial-specific proliferation via JAK/STAT
pathways (Lee et al., 1994; Liva et al., 1999), amoeboid

differentiation, and stimulates debris clearance (Giulian and
Ingeman, 1988; Cannas et al., 2011). GM-CSF may facilitate
bacilli containment by augmenting the neutrophilic phagocytosis
of bacilli (Fleischmann et al., 1986) and enhancing the
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bactericidal mechanisms of macrophages (Blanchard et al.,
1991)—but whether G-CSF contributes to collateral neurotoxic
damage through infiltrating leukocyte activation remains to
be investigated. Some systemic symptoms of CNS-TB may
be due to GM-CSF negatively affecting food intake and
positively affecting energy expenditure (Reed et al., 2005). G-
CSF, like GM-CSF, is mainly known for its hematopoietic
effects. Recently, however, it has been recognized that G-
CSF plays important roles in the induction of immune
tolerance, including redirection of T-lymphocytes to a Th2
phenotype (Pan et al., 1995; Sloand et al., 2000), and of
specific importance in M. tuberculosis immunity, a decline
in IFN-γ secretion (Sloand et al., 2000). G-CSF and GM-
CSF not only augment phagocyte cell survival, but also highly
neurotrophic factors: decreasing cortical ischemic damage,
improving neuronal survivability and contributing towards
neuronal regeneration (Kim et al., 2004; Schneider et al.,
2005). Thus, microglia do not only orchestrate and lead the
host immune response (and through which, may participate
in neurotoxicity), but may have additional roles in neuronal
protection and recovery.

Microglia secrete IL-6 in direct response to M. tuberculosis
(Yang et al., 2007) and, through TNF-α, promote its additional
expression by astrocytes (Sawada et al., 1992), and serves
to dampen the TNF-inducible expression of VCAM-1 within
the CNS (Oh et al., 1998). IL-6, well-known for its primary
importance in B-lymphocyte differentiation (Burdin et al.,
1995), has secondary, neuron-specific effects. IL-6 induces
neurotrophin secretion from astrocytes in a region-specific
pattern: (März et al., 1999) this not only disrupts the IFN-γ-
induced expression of MHC class II by microglia (Neumann
et al., 1998), but has been shown to increase the survival of
dissociated neurons (Thier et al., 1999). Monocytes cultured
from Chinese individuals with rs1800796GG polymorphisms
produced less IL-6, which also granted these individuals
a reduced risk of pulmonary TB (Zhang et al., 2012).
This correlates with observations that M. tuberculosis bacilli
maximize IL-6 production from macrophages to antagonize
IFN-γ-induced autophagy, increasing the longevity of their
macrophage host and thereby extending intracellular persistence
(Dutta et al., 2012). Although not yet investigated, IL-
6 may thus be used by the tubercle bacilli to extend
the lifespan of their CNS-specific host-cells, including (but
not limited to) microglia and neurons (Randall et al.,
2014).

Neurons infected withM. tuberculosis act as a source of IL-10
which is generally accepted as an anti-inflammatory cytokine. In
TB specifically, its principal role is considered to be the regulation
of Th1 responses and thus, opposing IFN-γ production (Jamil
et al., 2007). In the CNS, IL-10 diminishes MHC class II
receptor expression on microglia but not astrocytes, and reduces
the proliferative response induced by glial interactions with
effector T-lymphocytes (Frei et al., 1994). IL-10 may also silence
cytokine production by infiltrating monocytes (de Waal Malefyt
et al., 1991). IL-10 represents an important mechanism by
which the body protects itself from CNS-autoimmunity through
Th1 attenuation (Bettelli et al., 1998; Fillatreau et al., 2002).

Furthermore, Curto et al. observed inhibition of IL-10 expression
by microglia in more virulent M. tuberculosis infection,
uncovering one possible mechanism driving a pro-inflammatory
response, and potentially the basis of pathogenicity between
mycobacteria within the CNS (Curto et al., 2004). Considering
IL-10 alone suggests possible contributory mechanisms in TB
neuropathology: loss of neuron-to-effector inhibition, which
results in spurious immune activation; a relative resistance
of microglia in some individuals, be the cause acquired or
inherited, resulting in autonomous immune activation; or a
relatively pro-inflammatory milieu (to which multiple cells
contributed) as ultimately generating host-mediated tissue
damage.

Potential Neurotoxicity
The inflammatory damage found in the CNS amidst infections,
ranging from HIV (Garden, 2002) to bacterial meningitis
(Gerber and Nau, 2010) has, of all the CNS-specific cells-
types, been attributed largely to microglia. However, microglia
are not the only cell type to produce increased MMPs
(matrix metalloproteinases) in response to TB, and neither
do microglia act in isolation. It is, in fact, the contribution
of other cell types towards a pro-inflammatory milieu that
appears to drive the secretion of destructive compounds.
For example, M. tuberculosis-activated monocytes release
factors into the local microenvironment that rapidly stimulate
microglia to produce MMP-1 and MMP-3, well known to
induce tissue damage through degradation of various matrix-
associated proteins (Green et al., 2013). The dependency
on monocyte-priming of microglia was reproduced in other
studies, where it was reported that significantly greater
MMP-1, MMP-3, and MMP-9 synthesis is observed in
microglia co-cultured in M. tuberculosis-infected monocyte
culture medium as opposed to those microglia exposed to
M. tuberculosis bacilli alone (Green et al., 2010). Astrocytes
are an additional source of MMPs within the CNS, and
have been shown to secrete significantly more MMP-9 in a
monocyte-dependent fashion as do microglia (Harris et al.,
2007). Such data suggests that it is miscommunication or
dysregulation between many cell types, performing exaggerated
but physiological activities, that result in CNS pathology, rather
than individual cellular populations (like microglia) inducing
pathology autonomously.

Although it has not been studied directly in the context of
M. tuberculosis, microglia are known to demonstrate cytotoxic
behavior towards oligodendrocytes—a possible component
of demyelinating tuberculous diseases. One such rarer form
of CNS-TB, Tuberculous (allergic) encephalopathy, usually
occurs in vulnerable populations with a preceding or concurrent
tuberculous infection (Bernaerts et al., 2003). The broad
pathognomonic features of this complication are diffuse white
matter destruction, occurring with or without clinical meningism
in an individual exposed to TB, and has been classically attributed
to a delayed hypersensitivity reaction towards tuberculoprotein
(Udani and Dastur, 1970; Dastur, 1986). Activated microglia
are capable of lysing oligodendrocytes via a NO-dependent
mechanism requiring membrane-bound TNF-α (Merrill
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et al., 1993). Alternatively, a more novel mechanism whereby
microglia destroy oligodendrocytes involves a local spike in
extracellular glutamate and excitotoxic cellular death (Domercq
et al., 2007). Regardless of the precise mechanisms, such
microglial-oligodendrocyte interactions are well worth further
investigation and may very well broaden the understanding of
CNS-TB.

Also, many of the signaling molecules used by microglia
are also potential sources of collateral neurotoxicity. Central
to microglial pro-inflammatory activation pathways is secretory
phospholipase A2 (sPLA2; Yang et al., 2009), a compound shown
to be a culprit of toxicity in neurons (Kolko et al., 1996,
1999) and potential contributor to neural damage amidst CNS-
TB. Studies in lungs have demonstrated the regulatory role
of sPLA2 in inflammation through the induction of cytokine
production and cellular recruitment (Granata et al., 2005, 2006).
Yang et al. has shown in the CNS that sPLA2 is essential
for M. tuberculosis-dependent ROS (in particular, H2O2 and
superoxide) generation in microglia via increased NADPH
oxidase activity, which further initiates MAPK signaling of the
pro-inflammatory response (Yang et al., 2007). Tumor necrosis
factor alpha (TNF-α) and IL-6 secretion are positively regulated
by ERK1/2 and p38, but p38 alone negatively regulates IL-
12p40 generation (Yang et al., 2007). IL-12 is critically important
for the protective granulomatous, antigen-specific Th1 and
CD8+ T-lymphocyte responses to M. tuberculosis infection
(Hölscher et al., 2001). Hence, many of the pro-inflammatory
programs initiated by microglia require potentially cytotoxic
compounds.

Another potential source of cytotoxicity in CNS-TB is
associated with the treatment of adjunctive corticosteroids.
Its success is often attributed solely to the modulation
of microglial pro-inflammatory cytokine activity, and thus
used as evidence for the destructive nature of microglia.
However, a double-blinded randomized control trial found that
adjunctive corticosteroid use in patients with TB meningitis
had improved mortality, but not morbidity (Thwaites et al.,
2004). Furthermore, there was no difference in cytokine levels
within the CNS of CNS-TB patients treated with corticosteroids
(Claudio et al., 1994) and those who remained untreated
(Mastroianni et al., 1997).

IL-1β and TNF-α are factors secreted from microglia that
drive the production of MMP-2 and MMP-9 from astrocytes;
their production reduced through glucocorticoids (Gottschall
and Deb, 1996). Experiments involving dexamethasone
demonstrate two main mechanisms by which the effects of
corticosteroids in CNS-TB may be explained. Firstly, production
of IL-1β, IL-6, and TNF-α by M. tuberculosis-stimulated
microglia is significantly reduced (Rock et al., 2005). Secondly,
dexamethasone reduces MMP-1 and MMP-3 production
within the CNS (which could alternatively be explained by
the reduction of its TNF-α and IL-1β, as these promote MMP
secretion) (Green et al., 2010). However, microglia are not
the only sources of these cytokines in the CNS, and thus to
either fully achieve anti-inflammatory effects in vivo or to
prove the beneficial effects of adjunct steroid use relating only
to microglia attenuation, it is necessary to look at these cells

in a much broader context. In other words, microglia could
still respond to cytokines from additional, upstream sources,
even if their own autocrine or paracrine responses have been
suppressed.

Blood-Brain Barrier Permeability and Immune
Recruitment
Cytokines are generally considered inducers of BBB permeability
for the influx of peripheral immune constituents (Figure 1).
IL-6 and TNF-α increase cerebral endothelial cell permeability
both in vitro and in vivo (Bamforth et al., 1996; Duchini
et al., 1996). IL-1β interference of the BBB is associated with
inter-endothelial pores, as well as leukocyte recruitment and
hemorrhage (Claudio et al., 1994). Although these secreted
products of microglia compromise the integrity of the BBB,
this may facilitate additional activation signals: such as ATP
by means of purinergic receptors, or complement through
complement receptors (Lynch et al., 2004; Davalos et al., 2005).
Microglia have been shown to internalize many extravasated
proteins during BBB compromise (Claudio et al., 1994).
Furthermore, as a component of the glia limitans capable of
migration and immune activation, microglia not immediately
responding to the intra-cerebral threats, may play a role
in protecting the CNS when it is at its most vulnerable;
compensating for the altered BBB permeability (Claudio et al.,
1994).

Chemokines produced by M. tuberculosis-challenged
microglia include CCL2, CCL5, and CXCL10 (Rock et al.,
2005). CCL2 (also known as MCP-1) is essential for the cellular
response in M. tuberculosis infection, recruiting leukocytes
(in particular, monocytes, and T-lymphocytes) to the sites of
infection or injury (Babcock et al., 2003; Hasan et al., 2005).
Similarly, CCL5 has shown particular importance in recruiting
T-lymphocytes in pulmonary granulomas (Berenguer et al.,
1992; Vesosky et al., 2010), and CXCL10 (from microglia and
M. tuberculosis-challenged astrocytes) is likely important in
helper T-lymphocyte trafficking (Fife et al., 2001; Rock et al.,
2005). Along with this importance in cellular recruitment
into the CNS, CCL2 has shown additional inflammation-
modulating and protective activities. CCL2 deficient mice
have more pronounced pro-inflammatory responses from
astrocytes (Semple et al., 2010). Both CCL2 and CCL5 increase
neuronal resilience to neurotoxicity in various experimental
settings (Bruno et al., 2000; Madrigal et al., 2009). Given
that microglia express PRR’s, are preferentially infected by
M. tuberculosis and secrete an array of immunologically-
relevant molecules, it is likely that they are critical regulators
of chemokine receptors within the CNS, hence regulating both
the trafficking and the state of activation of peripheral immune
components.

Throughout the course of mycobacterial infections of the
CNS, infiltrating cell populations change, with significant
recruitment of innate CD11b+ cells, CD11c+ cells, and CD4+

T-lymphocytes (Lee et al., 2009). Of these cell types recruited to
the infected CNS, T-lymphocytes and monocytes have the best-
characterized roles in TB. Within macrophages, M. tuberculosis
evade intracellular killing by means of multiple mechanisms,
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including phago-lysosome exploitation and disruption of CD4+
T-lymphocyte interactions by a reduction of MHC Class II
expression (Noss et al., 2001; Vergne et al., 2005). Although
this may hold true for infiltrating monocytes, who could be
the actual agents of neurotoxicity, the uniqueness of microglia
makes it difficult to assume similar escape mechanisms within
or MHC class II evasion in glia, and highlights the importance
of gaining an experimental, rather than a purely hypothetical
understanding, of such processes.

Microglia form an important mediator between innate
and adaptive immune responses within the CNS. Microglial
stimulation by M. tuberculosis induces the rapid expression
of the co-stimulatory molecule CD137 for the activation of
infiltrating T-lymphocytes (Curto et al., 2004). Numerous studies
have highlighted the importance of a T-cell response against
M. tuberculosis, in particular the importance of a robust Th1
response (Salgame, 2005). For instance, Lienhardt et al. found
that African TB patients had not only reduced proxies of a
Th1 response, but exhibited an inferior capacity to suppress
a Th2 response (Lienhardt et al., 2002). Taking this into
account, it is of utmost importance to appreciate microglia
as a source of IL-12 amidst M. tuberculosis infection, which
may play a role in polarizing local Th1 responses (Yang
et al., 2007). Furthermore, IFN-γ treated microglia rapidly
express MHC class II, through which they present antigen
to helper T-lymphocytes (Frei et al., 1987; Steiniger and Van
Der Meide, 1988) (as previously discussed, microglia may
play roles in the regression thereof, too). IFN-γ, interestingly,
also provides a mechanism to keep microglia in check by
inducing apoptotic pathways (Spanaus et al., 1998; Badie
et al., 2000). Although microglia are weaker antigen presenting
cells compared to macrophages, they are perfectly adapted to
the delicate CNS: stimulating the Th1 differentiation of T-
lymphocytes without inducing their proliferation (Carson et al.,
1999).

A number of meta-analyses have confirmed the efficacy of
BCG against CNS-TB (Rodrigues et al., 1993; Colditz et al.,
1994; Trunz et al., 2006). Whether this protective effect is due to
preventing the bacilli from reaching the CNS, or through CNS-
specific immune augmentation, remains to be uncovered. In a
murine study of intracerebral BCG infection, Lee et al. report

that microglia are the eminent TNF-α producers, with additional
sources including infiltrating CD4+ T-lymphocytes (Lee et al.,
2009). Given that microglia have the capacity to differentiate
Foxp3+CD4+ T-regulatory lymphocytes (Ebner et al., 2013), and
that unique IFN-γ+IL-17+ T-lymphocytes have been identified
with protective immunity characterized by the Foxp3+CD4+ T-
regulatory phenotype (Colditz et al., 1994), it is not unreasonable
to assume that microglia may be involved in mediating the CNS
efficacy of BCG againstM. tuberculosis.

Conclusion

To improve patient outcomes following CNS infections by
M. tuberculosis, more research needs to be conducted on the
mechanism of M. tuberculosis identification and internalization
within the CNS, mechanisms of persistence within microglia,
the nature of each cytokine or chemokine secreted by microglia,
and the means by which other CNS specific cells responding
to or infected by M. tuberculosis govern microglial activation
and modulate their responses. The neurological environment
is unique in that inflammatory signals, which may appear to
be damaging in the periphery, may in fact be beneficial in
the CNS by governing neuronal survival, regeneration and
differentiation.

In conclusion, microglia are the understudied arbiters of
initiating, maintaining within acceptable limits, and attenuating
the immune responses to CNS-TB, and may even be critical
in mediating the protection or recovery from such responses.
During M. tuberculosis infection, microglia are essentially the
conductors of a tightly regulated immune symphony, and may
well be a missing link towards fully understanding the molecular
pathogenesis of CNS-TB.
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