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A self-supervised learning approach
for registration agnostic imaging models
with 3D brain CTA

Yingjun Dong,1 Samiksha Pachade,1 Xiaomin Liang,1 Sunil A. Sheth,2,4 and Luca Giancardo1,3,4,5,*

SUMMARY

Deep learning-based neuroimaging pipelines for acute stroke typically rely on image registration, which
not only increases computation but also introduces a point of failure. In this paper, we propose a general-
purpose contrastive self-supervised learning method that converts a convolutional deep neural network
designed for registered images to work on a different input domain, i.e., with unregistered images. This is
accomplished by using a self-supervised strategy that does not rely on labels, where the original model
acts as a teacher and a new network as a student. Large vessel occlusion (LVO) detection experiments us-
ing computed tomographic angiography (CTA) data from 402 CTA patients show the student model
achieving competitive LVOdetection performance (area under the receiver operating characteristic curve
[AUC] = 0.88 vs. AUC = 0.81) compared to the teachermodel, evenwith unregistered images. The student
model trained directly on unregistered images using standard supervised learning achieves an AUC =
0.63, highlighting the proposed method’s efficacy in adapting models to different pipelines and domains.

INTRODUCTION

Deep learning approaches have become the go-to method for automatically classifying medical conditions in brain images. As opposed to nat-

ural images, brain images, regardless of their image modality have to go throughmultiple pre-processing steps before using them as input to a

deep learning approach. One of themost critical ones is image registration. This involves aligning the brain images to a common space, such as

theMontreal Neurological Institute (MNI) templateor a subject-specific template. This step is important to account for variations in brain size and

shape across different subjects and to ensure that these changes are not used as ‘‘shortcuts’’ by the deep learning algorithm to perform the

classification. Apart from adding additional computation, image registration is one of the most common points of failure which is typically ad-

dressed by adding manual or automatic quality assessment requirements to the pipeline. These drawbacks are particularly significant for acute

stroke applications, where all interventions need to be extremely fast, and any minute lost will negatively affect the outcomes of patients.

Large vessel occlusion (LVO) is defined as vessel blockages of intracranial internal carotid artery (ICA), anterior cerebral arteries (ACA) A1,

ACA A2, middle cerebral arteries (MCA) M1, MCA M2, and posterior cerebral arteries (PCA), which amounts up to 46% of acute ischemic

strokes. 3D computed tomographic angiography (CTA) has been proven as an efficient and more precise way of medical imaging analysis

for LVO detection.1 Note that other imaging modalities, such as diffusion-weighted magnetic resonance imaging or CT-perfusion are

used for other aspects of acute stroke care, however, for LVO detection CTA is the main diagnostic modality. In this work, we introduce a

method based on a teacher-studentmodel structure using unregistered 3DCTAwithout extra image pre-processing steps on LVOdetection.

In recent years, contrastive learning has played a pivotal role in self-supervised learning approaches.2–4 Contrastive learning methods

attempt to maximize the similarities between positive pairs and minimize the differences between negative pairs, and by doing so learn valid

semantic representations without the need for labels. Contrastive learning is a major contributor to the development of medical imaging, due

to the high cost and insufficient of labeling medical images.

Automatic LVO detection with the deep learningmethod has been studied before. Olive-Gadea et al.5 applied deep learning-based soft-

ware namedMethinksLVO to detect LVOonbrain CTA, as their results showed,Methinks softwareworks well in LVOdetection in patients who

are suspected to be diagnosed with acute ischemic stroke. Barman et al.6 demonstrated a deep symmetry-sensitive CNN on brain CTA to

investigate the changes between brain hemispheres for acute ischemic stroke detection. Czap et al.7 investigated a deep learning method

to detect LVO on a mobile stroke unit CTA, their work showed an efficient and accurate approach to LVO detection for prehospital patients,

which shows practical advantage in clinical studies. Other works for LVO detection with deep convolutional neural networks (DCNN), include
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the work of Stib et al.,8 Luijten et al.,9 and Czap et al.10 These works showed competitive performance in LVO detection using deep learning

methods; however, they still required labeled, registered, and quality-checked data. In these works, imaging registration is one of the key

preprocessing steps and potential source of error. In our study, we propose a teacher-student model based on self-supervised contrastive

learning that utilizes unregistered and no quality checked images to break through the bottleneck.

Self-supervised contrastive learning has been proven for a useful method in medical imaging studies. Azizi et al.11 introduced a self-su-

pervisedmodel of medical imaging classification. Their work has 3 steps, firstly, they conducted self-supervised learning on unlabeled natural

images, then they applied a self-supervisedmodel on unlabeledmedical images, and they conducted fine-tuning on labeledmedical images

in the last step. Their work showed the efficiency and reliability of a self-supervised model on medical images. Taleb et al.12 conducted a self-

supervised multimodal contrastive learning on retinal fundus images and genetic data which is named ContIG. Their work showed consid-

ering genetic data in imaging models could improve the performance of image models.

After the contrastive language-image pretraining (CLIP) model was published, some works applied CLIP-based strategies to medical data.

Wang et al.13 developed a CLIP-basedmodel using prior medical knowledge of unpaired images and reports namedMedCLIP. Their proposed

methodcould improve the classification performancewith fewer datasets than state-of-the-artmethods. Tiu et al.14 also appliedCLIP-based stra-

tegiesonunlabeledchestX-ray images for self-supervisedclassification tasks. Theypre-trained the image-reportmodel andthenutilizedprompts

and images for zero-shot classification. However, thoseworks focus on 2D images. Our proposed study utilized 3D imageswith small batch sizes.

In this paper, we propose a general-purpose contrastive self-supervised learning method that converts a convolutional deep neural

network designed for registered images to work on a different input domain, i.e., with unregistered images. The proposed pipeline is shown

in Figure 1. During training, a teacher model pre-trained to classify LVO on registered images is used to guide a student model (with a

different architecture) to learn a similar feature representation on unregistered brain CTA. The teacher model guides the student model

by themodifiedCLIP loss without any explicit use of the image labels. In the testing phase, we only utilize unregistered CTA for LVOdetection

with the student model without any further fine-tuning. One example slice from the registered CTA and unregistered CTA of two patients is

shown in Figure 2. In the rest of the paper, we refer to the studentmodel trained in thismanner as the teacher-guided (TG) studentmodel. The

model trained with a classic supervised loss on the LVO labels is referred to as the non-teacher-guided (non-TG) student model. The demo-

graphic information for subjects we used in this work is listed in Table 1.

RESULTS

To demonstrate the performance of our proposedmethod, we conducted a comparative analysis of the area under the receiver operating char-

acteristic curve (AUC) scores for threedifferentmodels: ourproposedTGstudentmodel, thenon-TGstudentmodel, and the teachermodel itself.

While the TG student model utilizing a teacher-student structure, is designed to learn key features for LVO detection from registered 3D

CTA images and apply the acquired knowledge to detect LVO using unregistered 3D CTA images without explicitly relying on the labels,

Figure 1. A pipeline of the proposed method

Structure of teacher-student model experiments, we utilized a CLIP-based loss strategy on pairs of registered and unregistered 3D CTA.
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the non-TG student model employs a standard the supervised learning method, and labels, on unregistered 3D CTA images for LVO

detection.

To clarify, the non-TG studentmodel is trained using supervised learningwith unregistered images.We conducted testing experiments on

the same dataset with all of the models. We implemented the testing experiments on the two datasets previously described. For Dataset A,

each subject has an individual transformation, and for Dataset B, we performed 50 different transformations, but for each iteration, all of the

subjects have the same transformation.

The main metric used in the experiments is AUC, which is the most common evaluation metric for LVO detection classifiers.1,7,15 A higher

AUC score indicates better performance.

The performance comparisons for differentmethods are shown inTable 2 andFigure 3. FromTable 2 theAUCon the test dataset from theTG

student model which utilized DCNN as an unregistered image encoder is 0.8098, the AUC from the teacher model which applied

DeepSymNetv316 as a registered image encoder is 0.8785, and the AUC from the non-TG student model using DCNN for unregistered image

encoder is 0.632. The TG studentmodel shows better results comparedwith the non-TG studentmodel, whichmeans our proposed teacher-stu-

dent structure works better than the common supervised method. As expected, the TG studentmodel does not outperform the teacher model.

Basedon Table 2, nomatter whether TG or non-TG,DCNNas an unregistered image encoder shows better results than Vision Transformer (ViT).

In Table 2, we compared three different contrastive strategies to perform the TG training of the student model. In addition to CLIP, we

tested two other recent strategies: SimSiam17 and SimCLR.18 The results indicate that CLIP outperforms both SimSiam and SimCLR.

In addition, Table 3 shows the statistical significance of the changes in probabilities between the experiments. p values reported are

computedwith aMann-WhitneyU test to reject thenull hypothesis that theoutputof the twomodels comparedarepart of the samedistribution.

Computational time

Furthermore, we conducted a comparison of computational time between using registered and unregistered images, considering the effi-

ciency requirements for clinical implementations. Utilizing registered images requires additional processing steps for image registration

compared to unregistered images. We performed registration on 11 subjects, with an average registration time of 16.9 (G 5.1) seconds

per subject. This registration time can be avoided by using unregistered images, enabling quicker response and early intervention in acute

stroke diagnosis cases.

DISCUSSION

In this study, we propose a knowledge distillation approach to enable a studentmodel not only to learn from a pre-trained teachermodel but

also to adapt this knowledge using unregistered images. Registration is an essential pre-training step for the teacher model.

Utilizing unregistered images as input is a significant advantage for acute stroke application and LVO detection, as these systems are typi-

cally used to prioritize urgent cases and send alerts to the stroke team in case there is a need for urgent intervention. As such any additional

Figure 2. Axial slices from 3D CTA volumes

(A) shows a registered CTA image for a subject with LVO; (B) shows an unregistered CTA image for the same subject as a; (C) shows a registered CTA image for a

subject without LVO; (D) shows an unregistered CTA image for the same subject as c.

Table 1. Subjects demographic information

N 79.85%(321) LVO=yes, 20.15%(81) LVO=no

Age, mean(STD) 65.57 (14.94)

Gender 50.25%(202) male, 49.75%(200) female

Race 36.57%(147) White, 28.61%(115) Black or African American, 25.12%(101) Asian, 9.7%(39) other

ll
OPEN ACCESS

iScience 27, 109004, March 15, 2024 3

iScience
Article



minute spent in pre-processing is detrimental to the patient’s health. In addition, the need to use registered images as input for clinical

applications would require an additional quality assurance step to make sure that no processing errors were made.

While our work takes inspiration from the knowledge distillation paradigm, there are significant differences from the typical knowledge

distillation studies. We did not distill a complex model into a simple one to make it more efficient or use fewer parameters, but rather having

a general-purpose 3D deep learning network without pre-training (the student) distill the knowledge from a pre-trainedmodel with a custom

architecture specialized for acute stroke neuroimaging (the teacher) and at the same time changing the image domain, i.e., going from regis-

tered to unregistered images.

As we discussed in Section 2, the TG student model proposed performs significantly better on unregistered images compared with the

non-TG student model, no matter which unregistered image encoder was used. The largest improvement was achieved with a relatively sim-

ple DCNN as a student model which led to improvements of around 0.17 points in AUC.

We compared the loss used in our strategy, i.e., CLIP, with other popular contrastive learning losses: SimSiam and SimCLR. CLIP signif-

icantly outperformed both of them. The most likely reason is that both SimSiam and SimCLR do not take do not attempt to minimize the

cosine similarity (or maximize the distance) between registered/unregistered pairs coming from different subjects, as opposed to the

CLIP loss.

While our strategy allows, in principle, to use any network architecture as a student model, larger student models will still be much more

data hungry. This is apparent in our experiments using ViT, which is known for having excellent generalizability performance but only if pre-

trained with a larger amount of data than DCNNmodels. In fact, our teacher-student approach improved the performance of the baseline ViT

model (non-TG Student), but the AUC improvement obtained (0.57 vs. 0.46) is significantly less than the one obtained from on themodel with

the DCNN architecture (0.81 vs. 0.63).

In the development of this approach, we were cognizant of the risks of the student model learning shortcuts for the LVO classification by

using the type of ‘‘misalignments.’’ This is why we generated the datasets A and B. Amodel that uses transformation as a shortcut for the LVO

prediction, would work well on dataset A, but perform poorly in dataset B. Our best-performing model, the student model based on the

DCNN architecture, did not exhibit this behavior, giving us confidence of the generalizability of the LVO prediction.

In conclusion, this paper introduces a strategy that enables the conversion of a convolutional deep neural network originally designed for

registered images to function effectively with unregistered images. By employing a self-supervised strategy that eliminates the need for

labeled LVO data, our method employs the original model as a teacher and a new network as a student, facilitating the transfer of knowledge

without relying on explicit labels.

Our results reveal that the trained model exhibits competitive LVO detection performance compared to the teacher model, even when

handling unregistered images. In contrast, training the same student model directly on unregistered images using a standard supervised

cross-entropy loss yields a significantly lower AUC. These findings underscore the potential of our training strategy to enhance the adaptation

of existing models to different pre-processing pipelines and potentially other domains, surpassing the performance achieved by training

models from scratch using standard supervised approaches.

Table 2. AUC on different methods

Group Image Encoder Loss Dataset A AUC Dataset B AUC

Teacher model on registered images DeepSymNetv3 CLIP 0.8785 –

TG student model on unregistered images DCNN CLIP 0.8098 0.8088

Non-TG student model on unregistered images DCNN CLIP 0.632 0.6458

TG student model on unregistered images ViT CLIP 0.5729 0.4386

Non-TG student model on unregistered images DCNN CLIP 0.632 0.6458

Non-TG student model on unregistered images ViT CLIP 0.4687 0.4789

TG student model on unregistered images DCNN SimSiam 0.6477 0.6311

TG student model on unregistered images DCNN SimCLR 0.5632 0.5921

Table 3. Methods performance comparison evaluated with Mann-Whitney U test

Methods p value

TG student model on unregistered images DCNN vs. non-TG student model on unregistered images DCNN 9e-28

TG student model on unregistered images ViT vs. non-TG student model on unregistered images ViT 0.3e-28

Non-TG student model on unregistered images ViT vs. non-TG student model on unregistered images DCNN 9e-29

TG student model on unregistered images CLIP loss vs. TG student model on unregistered images SimSiam 9e-28

TG student model on unregistered images CLIP loss vs. TG student model on unregistered images SimCLR 9e-28

TG student model on unregistered images SimSiam vs. TG student model on unregistered images SimCLR 9e-28
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For future work, it would be valuable to explore the applicability of our proposed method to additional medical domains and datasets.

Additionally, investigating the extension of this approach to other types of neural network architectures and evaluating its performance

on larger and more diverse datasets could provide further insights and improvements.

Limitations of the study

The main limitation of our work is that the performance of the original teacher model is still superior to the student model; however, it should

be noted that in these experiments, the teacher is the upper bound achievable, as the student has no access to the training labels. In addition,

we only tested this approach with a very specific task, LVO detection, and registration type, linear registration.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability statement

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Image encoders

B Student model - Convolutional neural network (DCNN)

B Student model - Transformers

B Contrastive learning loss

Figure 3. Receiver operating characteristic (ROC) curves comparisons

(A) shows ROC curves comparison on teacher model on registered images, teacher model guided student model on unregistered images, and non-teacher

model guided student model on unregistered images; CLIP loss was used and DCNN worked as an unregistered image encoder; (B) shows ROC curves

comparison on different unregistered image encoders. We utilized DCNN and ViT as unregistered image encoders. CLIP loss was used; (C) shows ROC

curves comparison on different contrastive learning loss, we compared CLIP loss, SimSam loss, and SimCLR loss. DCNN was used as unregistered image

encoders.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Luca Giancardo

(Luca.Giancardo@uth.tmc.edu).

Materials availability statement

No reagents were generated in the study.

Data and code availability

� The code for this work can be found at: https://github.com/lgiancaUTH/registration_agnostic_ml_cta/.

� Requests for imaging data used in this work should be directed to lead contact. The availability of imaging data will be contingent upon

the specific request, institutional policies, and the project requirements of NIH R01NS121154.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

In this proposedwork, we used a dataset of 402 CTA images of different subjects which were split into a train, validation, and test with the ratio

of 60%, 20%, and 20%, respectively. The demographic information for subjects was listed in Table 1.

To obtain the unregistered images, we applied the imaging padding function on the three axes, then, we randomly generated rotations

with an angle in the range of �15�–15� and translations with distance in the range of �30 mm–30 mm in 3 axes (x, y, z). Finally, we anisotrop-

ically resampled the images to 1823 1823 182which reduces thememory requirement for training the deep learning approaches. Tomake a

fair comparison and avoid our proposedmodel learning "shortcuts"20 instead of LVO, we did transformations of the test dataset in two ways.

Firstly (Dataset A), we conducted random transformation on a single subject, which means every subject has different transformations. Sec-

ondly (Dataset B), we applied the same random transformation on all of the subjects and generated 50 different transformations in total. The

process was implemented using SimpleITK21,22 and NiBabel.23

METHOD DETAILS

Image encoders

There are multiple individual image encoders in our proposed work. One is for registered 3D CTA which is named DeepSymNetv3, and

another is DCNN for unregistered 3D CTA.

The teacher model is an adaptation of the original DeepSymNetv316 which adds non-symmetric paths and it is trained on LVO rather than

stroke core. In summary, the model splits the registered brain CTA Ireg into left ILreg and right IRreg parts and then constructed several layers of

VGG network for each part of the brain to obtain VILreg and VIRreg. After that, the L1-norm was calculated based on the outputs of separated

VGGnets for themerged layer asMergedreg = L1ðVILreg;VIRregÞ. Then, we obtained concatenated layers with two separated layers from respec-

tive VGG and one L1-norm merged layer as CatðMergedreg;VI
L
reg;VI

R
regÞ. After the average pooling layer and fully connected layer, Ereg was

extracted as registered image embedding.

Student model - Convolutional neural network (DCNN)

For unregistered images, we applied DCNN24 as the image encoder. Before we put the unregistered images into the encoder, we conducted

preprocessing to crop the x-, y-, and z axis to reduce the unregistered image’s Iraw size. Then we put Iraw into DCNN to obtain unregistered

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

DeepSymNetv3 Giancardo et al.16 https://glabapps.uth.edu/

ViT Dosovitskiy et al.19 https://github.com/google-research/vision_transformer

Self-Supervised Learning Approach for

Registration Agnostic Imaging Models

This study https://github.com/lgiancaUTH/registration_agnostic_ml_cta/.

SimSiam Chen et al.17 https://arxiv.org/abs/2011.10566

SimCLR Chen et al.18 https://arxiv.org/abs/2002.05709
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image embedding Eraw . There are 19 convolutional layers in the DCNN, except the last convolutional layer, each of them followed by a batch

normalization layer and activated layer leaky ReLU. DCNN contains 5 max pooling layers. After the last convolutional layer, there is a global

average pooling layer followed by a fully connected layer.

Student model - Transformers

In order to evaluate the student/teacher strategy proposed with an alternative image encoder, we also utilized ViT19 as the unregistered im-

age encoder. The preprocessing details are the same asDCNNexperiments. Iraw is the input for ViT, the patch size is 26, and the input channel

is 1. After obtaining the unregistered image embedding Eraw , we used the projection layers to get the unregistered images logit.

Contrastive learning loss

CLIP loss

We applied CLIP-based loss on projected image embeddings of registered images and unregistered images. The same project module with

output dimensionality in 256 was used to obtain projected embeddings. CLIPmodel25 firstly was applied in pairs of text and image to conduct

contrastive self-supervised learning. Here, we applied theCLIP-based loss on pairs of images for contrastive self-supervised learning to obtain

CLIP-based loss L = CLIPLossðPEreg;PErawÞ, where PE� represents projected embeddings for registered and unregistered images. In the

CLIP-based loss, logits and targets were used as inputs of cross entropy loss, which were calculated as

x =
�
PEraw ,PEu

reg

�.
t;

and

y = s
��

PEreg ,PE
u
reg

�
+
�
PEraw ,PEu

raw

��.
2t

�
;

where x represents the logit obtained from projected embeddings of unregistered images and registered images, in our experiments, y rep-

resents the target, t is the temperature parameter and t = 1:0 in our experiments. T represent the transpose. To calculate cross entropy loss,

Lij = � 1

N

XN
i

XN
j

xij log yij;

Lji = � 1

N

XN
j

XN
i

xji log yji;

where xji and yji are transposed of xij and yij respectively, i; j˛ ð0;NÞ, N is the batch size. And the final loss output is

L =

�
Lij+Lji

�
2

:

SimCLR loss

We also applied SimCLR18 loss for comparison with CLIP loss. The normalized temperature-scaled cross entropy (NT-Xent) loss is used in the

SimCLR study. However, our study used different sources as input for the SimCLR loss calculation, as opposed to the original SimCLR paper

where the authors used different augmentations from the same source. Also, SimCLR ignores negative pairs. For the positive pairs of samples,

the loss function is defined as:

Lo;p = � log
exp

��
s
�
xo; xp

��
t
�

P2N
k = 1 1ks1 exp

�
sðx0; xkÞ

t

� ;

where xo represents the image logit obtained fromprojected embeddings of images, t is the temperature parameter and t = 0:5. Here, o˛
ð0;2NÞ, p˛ ð0; 2NÞ and k ˛ ð0;NÞ, N is the batch size. sðxo; xkÞ represents the pairwise similarity.

SimSiam loss

SimSiam17 loss was tested using registered images and unregistered images as inputs and then minimizing the negative cosine similarity be-

tween two image embeddings. The unmatched pairs are not considered as in SimCLR. The loss function follows:

D
�
Preg;Eraw

�
= � Preg		Preg

		
2

,
Eraw

kErawk2
;
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where k � k2 is L2-norm, and Preg is output from prediction MLP, Eraw is unregistered image embedding. And symmetrized loss is defined as:

L = 0:5 ,D
�
Preg;Eraw

�
+ 0:5,D

�
Praw ;Ereg

�
:

Feature embeddings

The teachermodel (DeepSymNetv3) was initially trained using pairs of registered images and the radiologist’s reports and then fine-tuned on

LVO.26 Then, we loaded the model as the teacher model and the weights of the model were frozen in the teacher-student experiments.

DCNN was utilized as an unregistered image encoder, and it works as the student model. DCNN is one of the popular neural networks

that showed outperformed performance amongpublishedmodels in computer vision. In ourmodel, the deepCNN composed of 19 convolu-

tional layers, 18 batch normalization layers, and maxpooling layers. Besides, we also conducted experiments using ViT, which is a popular

Transformer-based architecture.19 The size of image embedding for both registered images and unregistered images using DCNN is 72,

and for unregistered images using ViT is 768. The same image projection structure was applied for CLIP-based loss, which has an output

in dimensionality 256.

Implementation details

LVOdetection is a binary classification task. In the implementation of teachermodel training and fine-tuning experiments, the batch size is 14,

with 100 epochs. Adam optimizer with a learning rate 1e � 4 was utilized in pretraining and a learning rate 1e � 5 was applied in fine-tuning

experiments. In the validation, the loss function Binary Cross Entropy with Logits was used, and AUC scores were calculated by Scikit-Learn27

function.

We set the batch size as 4, and the number of epochs is 200 with an early stopping strategy which has a 25 tolerance setting in the imple-

mentation of teacher-student model experiments. Besides, the loss function in training is CLIP-based loss and the optimizer is AdamWwith a

learning rate of 1e � 4. The teachermodel’s weights were frozen in the training phase.What’s more, we applied AUCM loss28 from LibAUC29

in the validation which is a margin-based surrogate loss and has shown better performance in medical imaging tasks.

All of the experiments were implemented on a single NVIDIA T100 40GB GPU with AMD EPYC 7402 24-Core Processor. The whole

Teacher-Student model structure is described as a pseudo-code in Algorithm 1.

Algorithm 1. Teacher-Student Model Structure

Data: Registered Images Ireg, Unregistered Images Iraw

1 for each mini-batch do

2 Ereg = TeacherModelðIregÞ; /* Frozen weights

3 Eraw = StudentModelðIrawÞ; /* Eq1

4 Preg = ProjectionðEregÞ; /* Eq2

5 Praw = ProjectionðErawÞ; /* Eq3

6 logits =
Praw�Pu

reg

t ; /* Eq4

7 target = s

�
simðPreg ;Pu

regÞ+simðPraw ;P
u
raw Þ

2t

�
/* Eq5

8 Lraw = CrossEntropyðlogits; targetÞ; /* Set gradients to zero

9 Lreg = CrossEntropyðlogitsu; targetuÞ; /* Compute the gradients

10 L =
ðLraw+LregÞ

2 ; optimizer.zerograd(); /* Parameters update

11

12 loss.backward();

13 optimizer.step();

14 end
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