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Vaccination with CD1d-binding glycolipid adjuvants and co-administered protein, lipid, 
and carbohydrate antigens leads to invariant natural killer T (NKT) cell-dependent 
enhancement of protective B  cell responses. NKT cell activation boosts the estab-
lishment of protein antigen-specific B cell memory and long-lived plasma cell (LLPC) 
compartments. NKT cells may exert a similar effect on some carbohydrate-specific 
B cells, but not lipid-specific B cells. The mechanisms of action of NKT cells on B cell 
responsiveness and subsequent differentiation into memory B  cells and LLPC is 
dependent on CD1d expression by dendritic cells and B  cells that can co-present 
glycolipids on CD1d and antigen-derived peptide on MHCII. CD1d/glycolipid-activated 
NKT  cells are able to provide help to B  cells in a manner dependent on cognate 
and non-cognate interactions. More recently, a glycolipid-expanded subset of IL-21-
secreting NKT cells known as NKT follicular helper cells has been suggested to be a 
driver of NKT-enhanced humoral immunity. This review summarizes established and 
recent findings on how NKT  cells impact humoral immunity and suggests possible 
areas of investigation that may allow the incorporation of NKT-activating agents into 
vaccine adjuvant platforms.
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inTRODUCTiOn

Several research groups have demonstrated that CD1d-restricted natural killer T (NKT) cells 
influence the humoral immune response to viruses, bacteria, their toxins, parasites, and fungi 
(Table  1). Typically prophylactic immunization of a mammal with a vaccine antigen or other 
pathogen product in combination with a CD1d-binding, NKT-activating adjuvant such as the 
α-galactosylceramide (α-GC) glycolipid has resulted in the enhancement of pathogen-specific Ab 
responses. These NKT-enhanced Ab responses are associated with, or contributory to enhanced 
protection against lethal challenges with pathogens or their toxins. The NKT-enhanced Ab 
responses are also typified by Ig class switch (1–4), establishment of B cell memory (Bmem) (2, 5), 
and long-lived plasma cells (LLPC) (6, 7), all hallmarks of a desirable vaccine response.

These findings support the notion that NKT cells could be harnessed following prophylactic 
vaccination to improve existing vaccines or contribute to the development of new vaccines. 

Abbreviations: Bmem, memory B  cells; LLPC, long-lived plasma cells; NKTfh, NKT follicular helper cells; α-GC, 
alpha-galactosylceramide.
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FiGURe 1 | Model for natural killer T (NKT) cell influence on humoral 
immunity (A) CD1d+/+ dendritic cells (DCs) are able to capture, internalize, 
process, and present peptide Ag on MHCII and glycolipid Ag on CD1d and 
do so in a coordinated fashion. As a result, Th cell priming occurs, as does 
NKT activation and/or NKT follicular helper cell (NKTfh) differentiation.  
(B) B cells capture Ag via the BCR, but also capture complexed  
CD1d-binding glycolipid, or internalize it by endocytosis. B cells are, thus, 
able to coordinately present peptide on MHCII and glycolipid on CD1d. 
Consequently, B cells are able to receive help from DC primed or activated 
classical Th/Tfh cells as well as NKT/NKTfh cells. The additional help from 
NKT/NKTfh cells enhances the establishment of a Bmem compartment and 
the generation of long-lived plasma cells.

TABLe 1 | List of pathogens and their products where immunization-  
or infection-induced natural killer T (NKT) activation influences protective  
humoral immunity.

Pathogen Product/Antigen Host 
species

Reference

Influenza PR8 Inactive PR8, live  
attenuated PR8, PR8 HA

Mouse (8–10)

Influenza H3N2 Inactive H3N2 Mouse (2)
Influenza DNA vaccine (M2) Mouse (11)
Influenza H5N1 DNA vaccine (HA) Mouse (12)
Influenza (various) HA Mouse (13)
Influenza H1N1 Inactivated or  

UV-killed H1N1
Pigs (14–16)

Herpes simplex virus 1 Mouse (17)
Herpes simplex virus 2 HSV-2 glycoprotein  

D (gD)
Mouse (18)

Hepatitis B virus HBsAg Human, 
Mouse, 
Monkey 
(Macaca 
fascicularis) 

(19)

Human herpes virus 8 None (blood samples 
following natural infection)

Human (20)

Clade C HIV-1 Envelope gp140 Mouse (21)
Bacillus anthracis Anthrax toxin (AnTx) Mouse (3, 22, 23)
Borrelia hermsii Live bacteria Mouse (24)
Borrelia burgdorferia Live bacteria Mouse (25, 26)
Clostridium difficile Toxin B (TcdB) Mouse (27)
Clostridium tetani Tetanus toxoid Mouse (2)
Hemophilus influenzae P6 protein Mouse (28)
Streptococcus 
pneumoniae

Polysaccharide/
liposomes, pneumococcal 
polysaccharide vaccine

Mouse (29, 30)

Plasmodium berghei Merozoite surface protein 1 Mouse (31, 32)
Toxoplasma gondii Live parasites Mouse (33)
Trypanosoma cruzia Live parasites Mouse (34–36)

In response to the pathogens indicated by superscript “a,” some groups observed that 
NKT activation enhanced humoral immunity, while others reported that NKT cells were 
dispensable for the response.
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Arguably, to understand how best to harness NKT  cells dur-
ing vaccination, and/or how to appropriately direct a humoral 
immune response, the intersection of NKT cell and B cell biology 
needs to be understood. In this article, we discuss what is known 
about the mechanisms by which invariant NKT cells influence 
humoral immunity. We also discuss whether NKT-activating 
adjuvants can or should be incorporated into vaccines. Type II 
NKT cells expressing diverse TCRs (dNKT) are fully discussed 
elsewhere (37, 38), but briefly described herein in the context 
of vaccination.

MeCHAniSMS ReGULATinG nKT CeLL 
inFLUenCe On T-DePenDenT HUMORAL 
iMMUniTY

As mentioned, co-administration of a protein Ag and α-GC 
leads to enhanced humoral immunity against the protein Ag in a 
manner that is CD1d-dependent, and NKT cell-dependent (39). 
A model for how the humoral response is initiated is shown in 
Figure  1. In this model, professional APCs including classical 
CD11c+ dendritic cells (DCs) capture both the Ag and α-GC by 

endocytic mechanisms. This allows the internalization and traf-
ficking of Ag and adjuvant (α-GC) into late endosomal processing 
compartments known as MIIC (MHC Class II compartments). 
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B  cells responses such as IgM production, but contributes to 
germinal center responses and, thus, class switch and somatic 
hyper-mutation (51). It should also be noted that Tonti and 
colleagues have observed cognate and non-cognate interactions 
between CD1d+/+ B cells and NKT cells (52). This suggests that 
the particular Ag, the dose and formulation (particulate versus 
soluble or linked versus separate Ag and adjuvant), and perhaps 
the route of immunization could influence the degree to which 
enhanced Ab responses rely on B cell CD1d expression. However, 
on balance, the evidence that CD1d+/+ B cells directly interact 
with NKT  cells, and that this is required for NKT-enhanced 
humoral immunity is quite compelling.

Fewer studies have addressed whether there is direct com-
munication between Th/Tfh and NKT/NKT follicular helper 
cells (NKTfh) cells during a humoral response. Our studies 
showed a temporal relationship between Th/Tfh and NKT/
NKTfh production of IL-4 and IL-21, with the NKT/NKTfh 
compartments providing an early source of IL-21 (27). However, 
we did not detect any direct dependence of one cell type upon 
the other with regard to cytokine secretion.

While there is good evidence in support of a CD1d-dependent 
mechanism for B cell stimulation of NKT cells, it is somewhat 
less clear how the NKT provides help to the B cell. For example, 
using mixed bone marrow chimeras in which NKT cells were 
either CD40L+/+ or CD40L−/−, equal Ab responses to Ag and 
α-GC were observed (4). ICOS could not be studied in a similar 
manner because it is required for peripheral NKT survival 
(53), but in  vitro assays suggested its requirement for NKT 
activation of marginal zone B cells (54). Given the propensity 
of marginal zone B cells to respond to T-independent Ags, its 
role in NKT-enhanced T-dependent responses remains unclear. 
It is difficult to envision CD40L and ICOS having no role to 
play in NKT-enhanced humoral responses, but experimental 
systems whereby these ligands are missing from the cell surface 
may be compensated by the same signals derived from Th 
cells. Alternatively, these co-receptor signals may be genuinely 
dispensable for NKT-mediated B  cell help. If so, then the 
mechanisms of NKT- and Th-mediated B cell help are distinct.

Some evidence supports a role for NKT-derived soluble 
factors in B  cell responses. The NKT  cellular compartment 
is prolific in its rapid IFNγ and IL-4 section following α-GC 
activation, yet in the context of additional Th-mediated cytokine 
responses, NKT-derived cytokines may play a fairly limited role 
in influencing isotype switch. In bone marrow chimeras whereby 
NKT cells lacked IFNγ or IL-4, there were only modest effects 
on Ig class switch (3). A new study, however, reported that IL-4-
secreting NKT cells positioned at the edge of the B cell follicle 
can promote germinal center entry, perhaps providing a mecha-
nism of NKT-enhanced B cell memory (55). However, different 
laboratories have reported that α-GC leads to differentiation and 
expansion of a subset of NKT cells that display the hallmarks of 
T follicular helper cells (Tfh) and are, therefore, referred to as 
NKTfh cells (49, 56–58). This phenomenon explains the previ-
ous identification of an IL-21-secreting NKT subset (59), which 
is now known to express high levels of the master transcriptional 
regulator Bcl6, and upregulate the chemokine receptor CXCR5, 
and the PD1 molecule. The NKT subset may provide an early 

It is in these compartments that protein-derived peptides and 
α-GC intersect with MHC II and CD1d, respectively (40, 41). 
Using well-defined mechanisms, peptide is loaded on MHCII 
and α-GC on CD1d [reviewed in Ref. (42, 43)]. The MHCII/
peptide and CD1d/α-GC complexes are then transported to 
the cell surface for presentation to classical CD4+ T  cells and 
NKT cells, respectively. Evidence also suggests that presentation 
of MHCII/peptide and CD1d/α-GC is facilitated by plasma 
membrane micro-domains or “rafts” (44, 45).

In the model (Figure  1A), Th priming by DCs is concord-
ant with initial activation of NKT  cells. In previous studies, 
our laboratory generated mixed bone marrow chimeric mice 
in which 50% of DCs expressed the diphtheria toxin receptor 
(DTR) under control of the CD11c promoter and the other 
50% of cells were non-transgenic and CD1d+/+ or CD1d-/- (46). 
Administration of DT temporarily ablated DTR transgenic 
CD1d+/+ DCs, leaving non-transgenic CD1d+/+ or CD1d-/- DCs 
intact. In those experiments, Ab titers were similar between the 
groups. However, complete ablation of DTR+; CD1d+/+ DCs 
delayed the α-GC-enhanced Ab response, suggesting a contri-
bution by CD1d+/+ DCs (46). Since that experiment, a Cre-Lox 
system has been employed by the Bendelac group to permanently 
ablate only CD1d+/+ DCs, showing a definitive contribution of 
these DCs to the humoral response to pneumococcal capsular 
polysaccharides (29). Although, a direct contribution of CD1d+/+ 
DCs to T-dependent humoral responses has not been formally 
demonstrated, it appears likely that they are required for NKT-
enhanced responses.

In the model (Figure 1B), B cells specific for the immuniz-
ing Ag capture native Ag via the BCR and internalize α-GC 
by endocytosis, leading to MHCII and CD1d co-presentation 
by B cells. This will allow B cells to receive classical T cell help 
from Th cells and additional help from NKT cells. As a result 
of coordinated Th- and NKT-mediated B  cell help, germinal 
center entry, Ig class switch, Bmem differentiation, and estab-
lishment of LLPC compartments are enhanced. Our laboratory 
performed adoptive transfers of CD1d+/+ and CD1d−/− B cells 
into recipient μMT mice and demonstrated that B  cell CD1d 
expression was essential for NKT-enhanced responses to the 
co-administered protein Ag (47). Co-presentation on MHCII 
and CD1d was further supported by Barral and colleagues who 
used liposomes containing Ag and α-GC for immunization (48).

These results raised the question of whether cognate interac-
tions between B cells and NKT cells were occurring and depend-
ent on CD1d and Vα14 TCR expression, respectively. In support 
of a direct B: NKT interaction and possible cognate interaction is 
our previous study adoptively transferring CD1d+/+ and CD1d−/− 
B cells (47). Chang and colleagues used intra-vital microscopy 
to demonstrate direct interaction between HEL-specific MD4 
B cells and NKT cells in vivo (49). The interactions lasted for 
4–50 min suggesting a direct but time-limited interaction. The 
van den Elzen group showed that a combination of retinoic 
acid and α-GC led to reduced expression of CD1d by B cells, 
arguing for a constrained time window for B:NKT interaction 
(50). The Terhorst laboratory have also reported that signaling 
lymphocyte activation molecule associated protein (SAP) is 
expressed by NKT cells, but seems to be dispensable for initial 
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source of IL-21 (27) and perhaps accelerate Ig class switch, an 
effect that may have been missed in earlier studies examining 
cytokine contributions (3). The NKT-enhanced IgG response 
to T-dependent Ag is typically IgG1-dominated and this makes 
sense given the pivotal role of Tfh-derived IL-21 in IgG1 class 
switch (60, 61).

As mentioned, NKT activation is associated with increased 
numbers of LLPC (6, 7). Some mechanistic insights have been 
gained through bone marrow chimera experiments in which 
NKT  cells lacked expression of either B  cell activating factor 
(BAFF), a proliferation-inducing ligand (APRIL), or both BAFF 
and APRIL. While NKT-derived BAFF was dispensable for LLPC 
responses, APRIL made a modest contribution to longevity. 
However, the combination of BAFF and APRIL were critical for 
LLPC survival. In controls, bone marrow plasma cell numbers 
were maintained over around 90 days after immunization with 
minimal attrition. In the absence of NKT-derived BAFF and 
APRIL, there was a ~90% loss with 26 days (7). These data suggest 
a direct effect of NKT-derived plasma cell survival factors on the 
endurance of a humoral immune response.

MeCHAniSMS ReGULATinG nKT CeLL 
inFLUenCe On T-inDePenDenT 
HUMORAL iMMUniTY

Studies by our group demonstrated that Abs complexed to a 
bio tinylated α-GC could be used to stimulate BCR-dependent 
uptake, trafficking, loading, and presentation by CD1d (41). 
This Ag presentation pathway resulted in 100- to 1,000-fold 
more efficient activation of NKT hybridoma cells and suggested 
a hypothesis that such pathways could stimulate NKT-driven 
production of glycolipid-specific Abs. Indeed, the Brenner group 
demonstrated that anti-nitrophenol (NP) hapten Abs could 
be produced in a CD1d-/NKT-dependent manner following 
immunization with an NP-modified α-GC (62). The humoral 
response to NP-α-GC was examined and found to stimulate 
short-lived IgM responses without the establishment of Ab 
recall responses and B cell memory (62). In a further study, the 
B cell response to glycolipids was attributed to NKTfh cells (58). 
Therefore NKT (and NKTfh cells) cells may be able to boost 
Bmem responses to T-dependent Ags but not T-independent 
lipid Ags.

The Bendelac group, however, demonstrated a role of NKT/
NKTfh cell-driven anti-polysaccharide responses (29). In a 
study involving immunization with capsular pneumococcal 
polysaccharides and α-GC, class-switch recombination, affin-
ity maturation, and B  cell memory were observed and there 
was a limited induction of NKTfh cell responses (29). In some 
unpublished studies from our laboratory, we have been unable 
to observe convincing Ab recall responses to T-independent 
carbohydrate Ags co-administered with α-GC, although there is 
a good adjuvant effect on primary responses (Lang, unpublished 
observation).

Clearly, information on the influence of NKT and NKTfh cells 
on humoral immunity to T-independent Ags is limited. More 

study is warranted in this area, particularly with regard to Ags 
associated with pathogenic bacteria.

COnSiDeRATiOnS FOR USinG nKT 
CeLL-ACTivATinG vACCineS

The α-GC adjuvant has been valuable in helping delineate 
mechanisms of action by which NKT  cells impact humoral 
immunity. However, several questions remain as to how best to 
move forward to incorporating NKT activation strategies into 
vaccines. The α-GC adjuvant is particularly potent in  vivo and 
has the potential to initially activate all Type I NKT cells express-
ing the Vα14 TCR. There have been numerous reports detailing 
NKT cell anergy whereby a single treatment with α-GC can induce 
long-term NKT hypo-responsiveness to further stimulation 
(63–65). However, route of immunization may be contributory 
to this effect. Intradermal, subcutaneous, and mucosal vaccina-
tion routes allow repeat immunization and NKT responsiveness 
whereas intravenous and intraperitoneal delivery tends to result 
in anergy (6, 66–68). Some of the mechanisms underlying NKT 
anergy have been delineated and there are signaling pathways, 
such as CARMA1 and PD-1 that can be targeted to minimize 
anergy in mouse models (69, 70). While PD-1 blockade might be 
of practical value in cancer immunization, it is likely impracti-
cal for routine prophylactic vaccination in the field. A study 
in mice whereby α-GC was administered by the intra-tracheal 
route led to airway NKT cell activation and exacerbated airway 
hyper-reactivity and inflammation which is worth considering as 
a potential caveat to intranasal administration (71). These studies 
demonstrate that a combination of adjuvant selection, formula-
tion, route of delivery, and perhaps mitigation of anergy-driving 
mechanisms may have to be considered when incorporating 
CD1d ligands into vaccines.

There are now several variants based on the α-GC molecule 
that can attenuate or enhance NKT activation [reviewed in Ref. 
(72)]. The α-GC molecule can be modified in its acyl chain, 
sphingosine chain, or sugar head-group and there is, therefore, 
considerable room for manipulating its effects on NKT  cells. 
Furthermore, the Th1/Th17 to Th2 balance can be modulated by 
altering the α-GC molecule. Depending on the type of immune 
response that is desired, a different α-GC-derived adjuvant could 
be used for vaccination, perhaps with weaker anergy-inducing 
effects.

The vaccine formulation itself should be considered. 
Physically linking or associating vaccine antigens with α-GC 
(or a derivative thereof) is more likely to ensure that the same 
DCs and B  cells that capture the vaccine, and coordinately 
present peptide on MHCII/HLA-2 and α-GC on CD1d. Small 
soluble complexes may result in different outcomes from larger 
(~100 nm) particles where extra-follicular B cell responses were 
observed in mice. Selection of the best particle size for ensuring 
that follicular and perhaps germinal center responses are worth 
considering.

Several studies have shown that α-GC is safe and well-
tolerated when administered intravenously to cancer patients 
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either in free form, or as part of a DC vaccine (73–77). It is, 
therefore, likely to be safe for inclusion in vaccines, but a few 
studies in mice implicated administration of α-GC during the 
third trimester in pregnancy loss, late preterm birth, and neona-
tal mortality (78–80). This issue, therefore, warrants additional 
attention to determine if α-GC adjuvants should be avoided in 
pregnancy.

This article has focused heavily on Type I invariant 
NKT cells. Type II NKT cells exhibit diverse TCR usage and 
respond to a growing list of CD1d-binding molecules. Available 
information on Type II NKT cells is reviewed elsewhere (37). 
We observed that the Th2 cytokine response to Alum adju-
vant was attenuated by around 65% in mice lacking Type II 
NKT  cells but not Type I NKT  cells (81). This observation 
warrants further investigation and in the context of protection 
against pathogenic challenges. However, it should perhaps also 
be considered that Alum is safe, and stimulates excellent Th2 
responses and poor Th1 responses. The inclusion of Type I 
NKT cell-activating adjuvants into vaccines containing Alum 
could potentially result in coordinated Type I and Type II NKT 
responses and give a broader response to existing vaccines.

COnCLUDinG ReMARKS

The α-GC adjuvant has made possible valuable insights into 
how NKT cell and B cell biology intersect and provides a good 
jumping off point for the inclusion of similar adjuvants in vac-
cines. Potentially, derivatives of α-GC could be used to enhance, 
broaden, and extend the protective humoral response to a variety 
of protein and non-protein antigens.
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