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Bicuspid aortic valve (BAV), which a�ects up to 2% of the general population,

results from the abnormal fusion of the cusps of the aortic valve. Patients with

BAV are at a higher risk for developing aortic dilatation, a condition known

as bicuspid aortopathy, which is associated with potentially life-threatening

sequelae such as aortic dissection and aortic rupture. Although BAV

biomechanics have been shown to contribute to aortopathy, their precise

impact is yet to be delineated. Herein, we present the latest literature

related to BAV biomechanics. We present the most recent definitions and

classifications for BAV. We also summarize the current evidence pertaining to

the mechanisms that drive bicuspid aortopathy. We highlight how aberrant

flow patterns can contribute to the development of aortic dilatation. Finally,

we discuss the role cardiac magnetic resonance imaging can have in assessing

and managing patient with BAV and bicuspid aortopathy.
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Introduction

Bicuspid aortic valve (BAV) is the most common type of congenital heart disease

(CHD), affecting 0.5–2% of the general population (1–3). BAV results from the fusion

of the cusps of the aortic valve, which is normally a tri-leaflet valve that facilitates

the flow of oxygenated blood from the left ventricle into the aorta. Different fusion

patterns of the three leaflets have been identified to lead to a bicuspid morphology.

Various classifications have also been proposed to describe BAV, including Sievers,

Schaefer, and Michelena (4–6). The pathophysiology of BAV is not well understood,

but genetics are thought to have a role (7–9). Nevertheless, different fusion patterns

of BAV have been shown to result in aberrant blood flow dynamics through the

aortic valve (10). This dysregulation in the blood flow can contribute to dilatation of

the aorta, a condition known as bicuspid aortopathy (10). Bicuspid aortopathy can
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predispose patients to aortic dissection, which is associated

with high rates of morbidity and mortality (11). Given

these important clinical implications, various groups have

aimed to better understand the pathophysiology of BAV

and bicuspid aortopathy. Cardiovascular societies have also

suggested standardizing the definition and classification for

BAV. Moreover, biomedical engineers are striving to elucidate

the biomechanics of BAV and bicuspid aortopathy. Their

findings, coupled with innovative multi-modality imaging

techniques, have tremendously helped improve our knowledge

of the natural history of BAV and bicuspid aortopathy. Herein,

we review the latest literature on BAV and bicuspid aortopathy

as it pertains to clinical concepts, biomechanics, and non-

invasive imaging. We also summarize the literature pertaining

to BAV and bicuspid aortopathy biomechanics. Finally, we

explore whether multimodality imaging techniques can be used

to better inform clinical decision-making algorithms for patients

with a BAV.

Epidemiology

Obtaining an accurate estimate of the incidence of BAV

in the adult population is not trivial. Most data stems from

autopsy series. In the largest autopsy series of 21,417 consecutive

autopsies, Larson and colleagues identified 293 (1.37%) patients

with BAV (12). Pauperico et al. studied 2,000 cadaveric aortic

valves and found only 13 (0.65%) of them to be bicuspid

(13). Roberts (14) and Datta (15) also used autopsy series to

determine the prevalence of BAV. Three studies have also aimed

to determine the prevalence of BAV in alive patients (16–

18). Basso et al. screened 817 primary school children using

transthoracic echocardiography (TTE) and found 0.5% of the

population to have BAV, where there was a higher incidence

in males when compared to females (0.75 vs. 0.24%) (16).

Tutar and colleagues studied 1,075 newborns to determine the

prevalence of BAV in neonates (17). They also used TTE and

found BAV to be present in 0.46% of live births, where 0.71%

of male neonates had BAV compared to 0.19% of females (17).

Sillesen et al. performed a cross-sectional, population-based

study on all newborns born in Copenhagen (18). In total, 25,556

underwent TTE and BAV was found in 196 newborns, where

they noted a 2:1 ratio for males to females (18). Other studies

have also demonstrated BAV to be more common in males,

suggesting a potential genetic predisposition for this CHD (9,

19). With respect to non-syndromic BAV, it has been found to be

associated with multifactorial inheritance, low penetrance, and

variable phenotypes (20). It has been postulated that reduced

number of X chromosome genes that evade inactivation could

explain the higher frequency of BAV inmen (20). Various studies

have also shown BAV to be common in XO Turner syndrome

where more than 30% of patients with Turner syndrome have

BAV (1, 21). The relative prevalence of BAV in men and women

is important since different studies have found that clinical

outcomes can be heavily influenced by sex (19, 22–24).

Pathophysiology

There is strong evidence supporting an underlying genetic

predisposition for acquiring BAV, where it has been found to

cluster in families (25–27). Variance component methodology

and modeling have established the heritability of BAV to be

up to 89%, suggesting an almost exclusive genetic cause (8,

28–30). There is also mounting clinical data from familial

studies that have shown BAV to have an autosomal dominant

pattern of inheritance with reduced penetrance and variable

expressivity (31). Moreover, BAV is associated with aortic

coarctation, patent ductus arteriosus, and anomalies in proximal

coronary artery anatomy (9, 32). Nevertheless, the specific

genes and genetic abnormalities that result in BAV are yet

to be defined. Indeed, a host of genes, including NOTCH 1,

FBN1, and TGFβ1/2, with divergent inheritance pattern can also

contribute to the development of BAV (31, 33–39).NOTCH1 is a

transmembrane receptor that plays a role in valvulogenesis and

extracellular matrix (ECM) modeling, and its loss of function

leads to the development of BAV (40). However, mutations in

NOTCH1 account for <5% of BAV cases, with most occurring

sporadically with no known heritable thoracic aortic aneurysm

gene identified (6).

Moreover, as noted above, although BAV is usually present

in isolation, it is linked with other genetic syndromes, such

as Andersen syndrome, Turner syndrome, William Beuren,

Bosley-Salih-Alorainy, Tetralogy of Fallot, hypoplastic left heart

syndrome, and Athabascan Brainstem Dysgenesis syndrome

(33, 41). BAV may also be present in patients with connective

tissue diseases including familial Type A aortic dissection,

Marfan syndrome, Loeys-Dietz syndrome, and vascular Ehlers-

Danlos syndrome (41). Indeed, there is evidence showing

that, in patients with Marfan syndrome, the prevalence of

BAV was more than four times higher than what has been

shown in the general population (16, 42, 43). Table 1, which

is adapted from Giusti and colleagues (44) summarizes the

genes that have been implicated in the BAV patient population.

Germane to this manuscript, there is also literature supporting

the notion that BAV can be non-syndromic, where functional

and hemodynamic factors can modulate valve phenotype and

morphology during development leading to either a tricuspid

aortic valve or a BAV and its various types, respectively (45–48).

Classifications and nomenclature

One of the challenges with BAV literature and research

has been the heterogeneity of definitions and classifications

that have been used. Further compounding this complexity,

assigned nomenclature has been based on pathology specimens
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TABLE 1 Summary of the genes that have been implicated in the BAV

patient population [adapted from Giusti et al. (44)].

Genetic loci Function or associated syndrome

NOTCH1 Embryonic valve maturation and regulation

of aortic valve calcification

GATA5 Mediates cell differentiation during

embryonic cardio genesis

GATA4 Involved in cardiac embryogenesis

ACTA2 Smooth muscle α-actin

UFD1L Development of ectoderm-derived structures

during embryogenesis

AXIN1/PDIA2 Regulates valvulogenesis and cardiac neural

crest development through TGF-β signaling

(PDIA2 role unknown)

ENG Important in valvulogenesis

FBN1 Marfan syndrome

KCNJ2 Andersen syndrome

45 XO karyotype Turner syndrome

Deletion of 7q11.3

including CLIP2, ELN,

GTF2I, GTF2IRD1, and

LIMK1

William Beuren syndrome

HOXA1 Bosley-Salih-Alorainy syndrome, Athabascan

brainstem dysgenesis syndrome

TGFBR1/2 Loeys-Dietz syndrome

COL3A1 Vascular Ehler Danlos syndrome

ACTA2 Thoracic aortic aneurysm and dissection

syndrome

and images obtained from echocardiography, CT scans, and

cardiac magnetic resonance (CMR) imaging. Since the 1970’s,

11 published definitions have been proposed to describe BAV

fusion patterns (49). Using pathology specimens, Roberts

was the first to employ “anterior-posterior” and “right-left”

terminology (14). Bradenburg used echocardiography images

and a clock-face nomenclature (50), while Angelini used autopsy

specimens and based the classification on the presence of a raphe

and employed anterior-posterior/right-left cusps terminology

(51). Sabet et al. also used the presence or absence of raphe

on 534 cadaveric specimens to define BAV (52). Probably the

most commonly used nomenclature and classification for BAV

is the one suggested by Sievers and Schmidtke (4) (Figure 1).

Using autopsy specimens from 304 cadavers, they established

the “type” of BAV based on the presence of raphe: Type 0: no

raphe; type 1: 1 raphe; and type 2: 2 raphes. Other definitions

and classifications have been proposed by Schaefer (5), Kang

(53), Michelena (6), Jilaihawi (54), Sun (55), and Murphy (56).

Table 2 summarizes these definitions and classifications. The

diverse heterogeneity in BAV nomenclature has been confusing.

Some of the proposed categories for BAV have also had limited

clinical application. To address these challenges, an international

consensus statement on BAV nomenclature and classification

was prepared and published in 2021 (49). This statement, which

has been endorsed by major cardiovascular societies, recognizes

three types of bicuspid valves. First, the fused type that has either

a right-left cusp fusion, or right-non-coronary cusp fusion, or

left-non-coronary cusp fusion phenotype. Second, the 2-sinus

type, which has latero-lateral and antero-posterior phenotypes.

Third, is the partial-fusion type. Based on this categorization,

BAV right to left cusp fusion (R-L) is the most prevalent (70-

80%), followed by right to non-coronary cusp fusion (R-N) (20–

30%), and least commonly, left to non-coronary cusp fusion

(L-N) (3–6%). The consensus statement also emphasizes that

the presence of raphe and the symmetry of the fused type

phenotypes are critical aspects to describe. Using a standardized

nomenclature should help in simplifying BAV literature. Clinical

application and correlation of the various types of BAV can also

be better conveyed.

Clinical significance of BAV and
bicuspid aortopathy

The clinical implications of BAV and bicuspid aortopathy

are noteworthy. BAV is associated with aortic valve insufficiency

(AI), aortic valve stenosis (AS), infective endocarditis, aortic

dilatation, and aortic dissection (48). While AI is present

in approximately 30% of BAV patients, AS is much more

common. Furthermore, over half of patients with BAV develop

aortic dilatation and this may progress to aneurysm, dissection,

and rupture, which are frequently lethal complications (49).

Although BAV can cause morbidity and mortality through

valvular disease and bicuspid aortopathy, the overall survival for

patients with a BAV is similar to that of the non-BAV population

(57). Thus, if surgical intervention is provided at the appropriate

time, BAV patients should benefit from identical survival rates

to non-BAV patients. Salient to clinical management, bicuspid

aortopathy can have varied presentations, where dilatation may

occur in the aortic root, the ascending aorta, the proximal

aortic arch, or any combination of these sites (58). The tubular

ascending aorta is the most common segment affected in

bicuspid aortopathy, where 60–70% of aneurysms occur at this

site (59). When aortopathy occurs at the level of the aortic root,

the sinuses of Valsalva are predominantly affected (59). There is

evidence suggesting that dilatation of this segment is associated

with more rapidly progressive aortopathy (60–62). In contrast,

non-BAV aortic aneurysms, such as degenerative aneurysms,

tend to begin in the mid ascending aorta and progress distally

and proximally, while aneurysms secondary to connective tissue

diseases are limited to the aortic root (59).

The clinical manifestation of BAV-associated complications

is heterogenous, spanning from some patients developing deadly

aortic dilatation and subsequent dissection, and others suffering
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FIGURE 1

Schematic representation of bicuspid aortic valve (BAV), as defined by Sievers and Schmidtke [modified from Sievers et al. (4)]. RCC, right

coronary cusp; LCC, left coronary cusp; NCC, non-coronary cusp.

no symptoms at all (49). Various studies have quantified the

risk over time of developing an aneurysm in the ascending

aorta in BAV patients. These studies have found that 20–30%

of BAV patients have aortic dilatation during a follow-up of

9–25 years (6, 57, 63). Critically, studies have found that the

risk of acquiring aortic dilatation was 80 times higher in BAV

patients compared to the general population (6). Furthermore,

recent studies have found that the rate of aortic dissection

in patients with BAV 15 years after aortic valve replacement

(AVR) was 0.55%, which is not significantly higher than that

for patients with tricuspid aortic valve (0.41%) (63–65). Studies

have also aimed at better understanding the difference between

aortic aneurysms in patients with and without a BAV. Patients

with BAV presented at a smaller aortic diameter; their aortic

aneurysms grew more rapidly; and a higher number of BAV

patients required surgical treatment at a significantly younger

age compared to non-BAV patients with an aortic aneurysm

(66). The same study found that BAV patients who had aortic

valve stenosis and aortic dilatation were at an increased risk for

aortic dissection, rupture, or death before surgery compared to

patients with normally functioning BAV (66). It is also important

to emphasize that the absence of valvular dysfunction does

not lessen the risk of aortic dissection in BAV patients (67).

Conversely, BAV patients who also have aortic stenosis or aortic

regurgitation are at an increased risk of aortic dissection and

rupture (68). Interestingly, BAV patients who also have aortic

regurgitation are more prone to aortic dissection (69).

It is important to summarize the contemporary clinical

outcomes for patients with BAV, which have been extensively

covered by Michelena and colleagues from the International

BAV Consortium (6). Excellent overall survival rates have been

found for patients with BAV in community, population-based

studies, while outcomes are poorer in referral center patients

who have required aortic valve replacement. Heart failure is

uncommon in patients with BAV, and aortic stenosis is a more

common indication for surgery compared to aortic insufficiency.

Development of aortic aneurysm (aortic diameter >45mm)

occurs in 25–45% of patients over prolonged periods of follow-

up, but aortic dissection is a rare event (∼1%) outside of

tertiary referral center populations, where it is more common

(∼10%) (6).

Collectively, the diversity in BAV and bicuspid aortopathy

complicates management as interventions must coincide with

risk of developing aortic complications, which is challenging to

determine in a clinically heterogenous population. Ideally, non-

invasive biomarkers that have high prognostic sensitivity and

specificity should be established to accurately predict the natural

course of BAV-associated complications (70). Such biomarkers,

which do not require invasive approaches to obtain them, can

then be used to intervene on the appropriate patient at the most

optimal time to prevent serious complications (71–73).

Bicuspid aortopathy: Genetics or
valve-mediated dysfunctional flow
patterns and aortic wall shear stress?

BAV is associated with an increase in aortic wall shear

stress (WSS) (74–76), the tangential shear force that blood

flow exerts on a vessel wall, and thus potentially expression of

aortopathy. Four-dimensional flowmagnetic resonance imaging

(4-D flow MRI) can be used to assess for WSS, the aortic

valve, and the thoracic aorta (77). Utilizing novel imaging

techniques such as 4D flow MRI presents an opportunity to

characterize and risk stratify patients with BAV who are at risk

of severe aortic complications (78). The mechanism underlying

bicuspid aortopathy is a widely debated subject, oscillating

between genetic predisposition to hemodynamic causes. Like
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TABLE 2 A summary of the definitions and classifications that have

been used in the BAV literature [adapted from Michelena et al. (49)].

References Type of study Nomenclature

Roberts (14) Pathology Anterior-posterior cusps, right-left

cusps, presence of raphe

Brandenburg et al.

(50)

Echocardiography Clock-face nomenclature:

Commissures at 4–10 o’clock with

raphe at 2 o’clock (R-L)

Commissures at 1–6 o’clock with

raphe at 10 o’clock (R-N)

Commissures at 3–9 o’clock

without raphe (L-N)

Angelini et al. (51) Pathology Anterior-posterior cusps, right-left

cusps, presence of raphe

Sabet et al. (52) Pathology RL, RN, LN, presence of raphe

Sievers and

Schmidtke (4)

Pathology Type 0 (no raphe): anteroposterior

or lateral cusps (true BAV)

Type 1 (1 raphe): R-L, RN, L-N

Type 2 (2 raphes): L-R, RN

Schaefer et al. (5) Echocardiography Type 1: RL

Type 2: RN

Type 3: LN

Presence of raphe

Aorta:

Type N: normal shape

Type E: sinus effacement

Type A: ascending aorta dilatatio

Kang et al. (53) Computed

tomography

Anteroposterior orientation: type

1: R-L with raphe type; 2: R-L

without raphe

Right–left orientation:

Type 3: RN with raphe

Type 4: L-N with raphe

Type 5: symmetrical cusps with 1

coronary artery originating

from each cusp

Aorta:

Type 0: normal

Type 1: dilated root

Type 2: dilated ascending aorta

Type 3: diffuse involvement of the

ascending aorta and arch

Michelena et al. (6) Echocardiography Type 1: R-L

Type 2: RN

Type 3: L-N

Presence of raphe

Jilaibawi et al. (54) Computed

tomography

Tricommissural: functional or

acquired bicuspidity of a trileaflet

valve

(Continued)

TABLE 2 Continued

References Type of study Nomenclature

Bicommissural with raphe

Bicommissural without raphe

Sun et al. (55) Echocardiography Dichotomous nomenclature:

R-L Mixed: (RN or L-N)

Murphy et al. (56) Cardiac resonance

imaging

Clock-face nomenclature:

Type 0: partial fusion/eccentric

leaflet

Type 1: RN, RL, LN partial

fusion/eccentric leaflet

Type 2: RL and RN, RL and LN,

RN and LN partial fusion/

eccentric leaflet

BAV, NOTCH 1 is the gene that has been implicated in

bicuspid aortopathy (48). A study of first-degree relatives of

BAV patients with tricuspid valves (TAV) were found to have

altered aortic shape and hemodynamics despite the absence

of valvular disease or aortic dilatation. These findings suggest

the presence of an unidentified genetic component of BAV

aortopathy that is independent of bicuspid valve pathology (79).

Bicuspid aortopathy frequently affects the ascending aorta and

rarely the descending aorta, and these regions have distinct

embryological origins (30). Smooth muscle cells derived from

the ascending aorta of BAV patients also demonstrate impaired

contractility, further suggesting that bicuspid aortopathy may

develop from a genetic defect that results in abnormal

differentiation (80).

In contrast, the hemodynamic theory of bicuspid aortopathy

postulates that BAV cusp fusion leads to subclinical stenosis

resulting in abnormal hemodynamics and increased WSS,

ultimately eliciting aortic remodeling (81). In a tricuspid

aortic valve (TAV) the systolic velocity jet is unidirectional

and does not abnormally impinge on the aortic wall. The

abnormal hemodynamics observed in BAV are determined by

the phenotype of valve cusp fusion (Figure 2A). The fusion

pattern of the cusps and their opening angle, which is a

quantifier of the restricted cusp motion, influences aortic root

shape eccentricity, with a larger sinus located at the non-

fused cusp (82), and aortic aneurysm growth rate, respectively

(47). Alterations in ventricular outflow hemodynamics leads to

varying levels of WSS at certain regions of the aorta as detected

by 4D flow MRI (Figure 2B). For example, A R-L BAV velocity

jet is directed anteriorly with greater axial WSS at the aortic

root, while a R-N BAV jet is directed toward the posterior aorta

with greater circumferential WSS at the mid-distal aorta (30, 83)

(Figure 2C).
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FIGURE 2

Abnormal bicuspid aortic valve (BAV) hemodynamics. (A) shows four patients with di�erent BAV phenotype. Arrows point to regions where

helical and abnormal flow patterns can be observed. (B) shows an example of regional wall shear stress in the ascending aorta. Four landmark

locations are illustrated: left ventricular outflow tract, sinus of Valsalva, mid-ascending aorta, and distal ascending aorta. (C) shows anterior and

posterior view from vectorial wall shear stress in RL and RN patients.

Clinical implications of bicuspid
aortopathy

These conflicting theories have made management strategies

difficult, where practices vary among cardiac surgeons with

respect to the timing of intervention and the extent of a

reparative operation (84). In BAV patients with a higher genetic

predisposition to aortopathy, such as those with NOTCH1

mutations, prophylactic surgical resection of the aorta may be

warranted to prevent serious complications. However, in cases

of BAV where aortopathy is presumed to be secondary to altered

biomechanics and blood flow dynamics to a BAV, conservative

management and/or aortic valve replacement (AVR) may be the

preferred approach (85). Strategies to identify which patients

would benefit from surgery is critical since an operation is not

without risks. Ascending aorta replacement grafts are stiff with

altered geometry, which can lead to downstream descending

aorta distention and aneurysm (86). Presently, prophylactic

surgery for aortic dilatation is guided by aortic diameter and

presence of risk factors that would predispose one to aortic

complications (85). With a spectrum of clinical presentations

it is difficult to ascertain whether this is justified, as up to 59%

of BAV aortas dissect below the surgical threshold diameter of

55mm, while large aortic aneurysms can be stable for years (30).

The underlying etiology of BAV aortopathy is likely a result of

complex interplay that is beyond only hemodynamic alterations

or simply a genetically predisposed aorta, thus aortic diameter

alone is not a sufficient determinant of which BAV patients need

surgery (71).

Numerous factors affect rate of aortic dilatation in BAV.

Different studies have shown that aortic wall shear stress (WSS)

is a major factor associated with ascending aorta growth (49,

81, 87). Normally, physiologic WSS decreases with age (88). In

BAV, the skewed orifice jet and displaced flow results in specific

patterns of elevated systolic WSS. BAV patients have abnormal

right-handed helical flow that impinges on the greater curvature

of the ascending aorta resulting in increased WSS (89). The jet

skewness, velocity, and shear stress overloads have demonstrated

to coincide with the aortic wall region prone to dilatation in a

way that is specific to the cusp fusion phenotype. As previously

discussed, R-L BAV exhibits increased WSS at the root and

proximal ascending aorta greater curvature, and this promotes

root and mid-ascending aorta dilatation that presents as a type

2 aortopathy (90, 91). In comparison, a R-N BAV velocity jet

is directed toward the posterior distal aortic wall promoting

arch dilatation as a type 3 or sometimes type 1 aortopathy

(92, 93). This suggests a mechanistic link between BAV fusion

morphology and aortopathy expression.
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Other factors contributing to
bicuspid aortopathy

Elasticity and recoil are crucial functions of the aorta

during systole and diastole. These functions are facilitated by

the extracellular matrix (ECM) components and architecture

of the medial layer of the aorta. The ascending aorta of

BAV patients have been found to have altered biomechanical

properties and ECM protein dysregulation due to elevated WSS

forces, which contributes to the progression of aortopathy (76,

94–96). Two major structural ECM proteins are elastin and

collagen, and their content is altered in BAV (97). One mouse

model demonstrated that deficiencies in elastogenesis cause

ECM disorganization, inflammation, and aortic valve disease

(97, 98). Moreover, BAV aortas demonstrate perturbed elastin

metabolism, which manifests with increased medial elastin

degradation and decreased elasticity, resulting in increased

stiffness (76, 99). The aneurysmal aorta of BAV patients shows

increased collagen-related strength, stiffness, and alignment

with overall decreased wall thickness, which contributes to its

susceptibility to aneurysmal dilatation (100). The decrease in

wall thickness may be directly related to collagen deposition due

to elastin fragmentation. From a mechanical point of view, due

to higher stiffness and strength of collagen compared to elastin,

a lower degree of wall thickness is sufficient for achieving the

same structural behavior. Indeed, the elastin in these areas is less

abundant, less aligned, and contains greater distances between

layers. This is associated with lower delamination strength and

an increased risk of dissection (85). Furthermore, a recent study

by Deveja et al., found that intact wall and layer-specific failure

stretch and stress was significantly higher in ascending thoracic

aorta aneurysm (ATAA) of BAV patients when compared to

non-aneurysmal aortas and ATAA of tricuspid aortic valve

patients (101). Interestingly, their findings suggest that BAV-

ATAA is not associated with an increased susceptibility to

dissection initiation (101). Moreover, biaxial load testing has

shown that aneurysmal growth may be driven by greater elastic

energy (defined as the area under the stress-strain curve) in the

proximal ascending aorta of BAV patients compared to those

with a tricuspid valve (102). However, a loss of actin in the

innermedia and increased intimal thickness due to flow-induced

stress has also been found in both groups of patients, suggesting

that hemodynamics may not play as large of a role in the

development of aortopathy (103). Adding further complexity,

in addition to WSS on the aortic wall layers, oscillatory shear

stress (OSS) has also been found to be elevated in BAV (40).

OSS is related to WSS as it demarcates areas where the direction

of the shear stress changes multiple times in a small area. This

adversely impacts the endothelium since its role is to return to

homeostasis in response to non-physiologic flow. Indeed, the

endothelium is healthier when subjected to laminar flow with

lower OSS and mid-range WSS (104).

Moreover, WSS can also contribute to aortopathy through

its impact on aortic wall stiffness. There is evidence showing

that increased circumferential stiffness and elastic fiber thinning

in areas of the BAV aortic wall is affected by high WSS

(75). Aortic wall stiffness is also known to be associated with

ATAAs and cardiovascular events and may thus be a marker

of aortopathy progression (94). However, it is not yet clear

whether aortic stiffness is due to a primary genetic defect or the

result of a secondary adaptation to BAV flow disturbances (105).

Nevertheless, both BAV and tricuspid valve ATAAs demonstrate

increased aortic stiffness that does not differ between BAV and

tricuspid aortic valve patients. Our group has observed that

aortic stiffness may be more linear in the BAV population,

possibly resulting in stiffer behavior at physiologic levels of

strain and potentially less stiff than tricuspid aortic valve aortas

at supra-physiologic degrees of strain (106). Nevertheless, this

overlap suggests that ECM irregularities may not be specific to

BAV but rather to aortic aneurysmal tissue in general (107).

Aortic mechanoreceptors detect abnormal WSS to produce

different biological responses in endothelial cells and smooth

muscle cells. Additionally, turbulent blood flow activates

remodeling and inflammatory pathways (108). Areas of elevated

WSS are also associated with increased smooth muscle cell death

(109). Furthermore, premature calcification of the aortic valve

is thought to be related to altered hemodynamics and over half

of BAV patients older than 35 years of age will develop early

onset calcific aortic valve disease that quickly progresses to aortic

stenosis within 10–12 years (92). The process of calcification

is thought to be related to an upregulation in pro-calcification

factors caused by micromechanical forces experienced by a BAV

aorta (110). Also of note, the presence of aortic stenosis or aortic

insufficiency exacerbates the magnitude of WSS in BAV patients

and increases the risk of dilatation (111, 112). In aortic stenosis,

the enhanced WSS eventually overrides previous flow patterns

associated with BAV, making BAV with severe aortic stenosis

WSS patterns indistinguishable from tricuspid valves with severe

aortic stenosis (113, 114).

Moreover, BAV is associated with a greater total pressure

gradient along the aorta distal to the aortic valve and

higher viscous energy loss compared to tricuspid valves. An

increase in loss of both pressure and energy are known to

be related to abnormal helical flow and aortic dilatation in

BAV patients (Figure 3) (74, 78). BAV also causes increased

reverse flow and reduced stasis of blood (70). Finally, regions

of high WSS also contain decreased endothelial nitric oxide

synthase (eNOS) expression in non-dilated BAV, suggesting that

alterations in eNOS expression occur independent of aberrant

hemodynamics in BAV and may have a genetic etiology (115).

Interestingly, proteomic analysis of BAV ATAA tissue and

NOTCH1 knockdown mice studies demonstrated that BAV

aneurysmal tissue has impaired mitochondrial dynamics with

attenuated fusion (116). This abnormality could be partially
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FIGURE 3

Abnormal helical flow and dilation. Flow patterns at peak systole were observed in a patient with RN fusion. Arrows point to regions with high

helicity (white arrow) and vorticity (orange arrows), abnormal jet (white-golden arrows), elevated energy loss due to flow impingement (yellow

arrow).

rescued with mitochondrial fusion activation, presenting a

potential therapeutic target for BAV ATAAs (116).

The application of 4-dimensional
flow magnetic resonance imaging
(4D flow MRI) in BAV

Four-dimensional cardiac magnetic resonance imaging (4D

flow MRI) has become a central feature for assessing and

following patients with BAV and bicuspid aortopathy. Images

obtained from 4D flowMRI are both quantitative and qualitative

and can be used in patients with known BAV and those

who have had a surgical intervention to replace their BAV

(117, 118). 4D flow MRI can reveal the relation between

aortic flow patterns and regional WSS (119). As magnitude

of WSS correlates with pathologic remodeling and aortopathy,

4D flow MRI WSS measurements provide an important risk-

stratifying clinical tool that can identify aortic regions at risk

of dilatation and devastating complications (120). The first step

to developing this prognostic tool is creating a reference atlas

of normal physiologic WSS patterns (Figure 4) (73). Generating

individualized heat maps that identify abnormal WSS patterns

can guide resection strategies and improve outcomes in patients

with BAV (72). Moreover, WSS may also be used to follow post-

operative changes after surgical restoration of normal anatomy

in BAV aortopathy. Indeed, WSS patterns have been shown to

improve post-aortic valve replacement in BAV patients with

aortic insufficiency (117). However, methods for quantifying

WSSmust be generalizable to all patients with BAV (81). Gordon

and colleagues have developed a standardized and reproducible

4D flow MRI workflow with prospective application to WSS

and other BAV-related hemodynamic measurements (121).

Although WSS can be a promising marker of aortopathy, one

study found that, at 3 years follow-up of BAV patients, aortic wall

areas with high WSS had no significant anatomical remodeling

(122). This suggests that although WSS alterations may precede

aortopathy and contribute to its progression, this is a very slow

process that probably occurs over years. Moreover, 4D flow

MRI WSS has been shown to be likely underestimated due

to limited temporal and spatial resolution and thus may need

complementary techniques for evaluating bicuspid aortopathy

(123). Such data is critical when managing patients with BAV

and bicuspid aortopathy as the timing of surgical resection

should be contextualized against the relative growth rate of

the aneurysm.

Other alterations in aorta hemodynamics observed in BAV

may be applied in conjunction with WSS to stratify risk in

surgical BAV patients. Dilated R-N BAV aortas demonstrate

increased flow displacement and overall flow angle at the

sino-tubular junction that is associated with a wider distal

ascending aorta diameter (124). Flow displacementmeasures the

displacement of systolic flow from the centerline of the aorta and

is normalized by aortic diameter (125). It can be easily derived

from 2-dimensional phase contrast data to quantify aortic flow

eccentricity. It is also a metric that is easier to measure than

WSS (81). Dilated BAV aortas experience elevated flow skewness

and eccentricity, retrograde flow, and right-handed helical flow,

which may contribute to progression of aortic enlargement

(126). Moreover, although aortic root flow eccentricities may not

be necessarily altered in aneurysmal bicuspid aortas compared

to tricuspid aortas, flow eccentricities have been shown to

correlate with WSS and blood helicity, which are known to

contribute to aortopathy (95). Finally, a BAV MRI pulsatile
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FIGURE 4

Personalized heat maps. A 60-year-old man with BAV Type 1 RL phenotype was scanned to obtain 4D flow velocities prior to surgical planning.

Patient’s velocity field was compared with an age and sex-match atlas allowing to identify abnormal regions (high wall shear stress in red, low

wall shear stress in blue) of wall shear stress using heat maps.

flow circulation model has been used to quantify outflow jet

eccentricity (10). The model has demonstrated that asymmetric

BAV outflow jets are directed at the aortic wall facing the

smaller leaflet, and these regions may be at increased risk of

aortic events (10). Cardiac magnetic resonance imaging can

also be used to determine aortic pulse wave velocity (PWV).

PWV can be used to measure aortic wall stiffness, where higher

PWV has been found in BAV patients and been associated with

aortic dilatation (105, 127). In contrast, Singh et al. found that

PWV was not elevated in patients with bicuspid aortopathy

(128). Despite these conflicting results, aortic stiffness is known

to be predictive of aortic dilatation in the Marfan patient

population (129). Future studies may better delineate whether

aortic stiffness can be a valid predictor of aortopathy in patients

with BAV. Overall, these patterns in altered hemodynamics may

further compound WSS and correspond to an increased risk

of aortopathy.

Ancillary imaging options for
assessing BAV biomechanics

Additional imaging strategies can be used to complement

4D flow MRI to provide a more comprehensive assessment

of BAV and improve risk stratification of patients. For

example, echocardiography speckle-tracking imaging identifies

early abnormalities in aorta elasticity (130). Left ventricular

myocardial strain analysis correlates to myocardial remodeling

and may help inform decision making in BAV patients (112),

while computational fluid dynamics provide more precise WSS

measurements (94). In turn, WSS of the BAV leaflets may

be measured by fluid structure interaction (FSI) (131). The

advantage of FSI is that it provides stresses in the aortic wall

(in addition to WSS), where such a calculation for WSS may

be more accurate because the wall is modeled as elastic and

not simply as a rigid boundary. FSI also provides measurements

of vessel structural stress, which correlates with aortic media

degeneration (132). Machine learning has also been employed

to classify BAV aortas at risk of dilatation using 4D flow MRI

parameters (133). Machine learning uses computer systems

that can “learn” from datasets by using statistical models and

algorithms to identify patterns in the data. Such a strategy

may facilitate more accurate and efficient predictive models and

streamline prognostication for BAV patients. It is important

to emphasize that a complete imaging-based assessment of the

heart and aorta should be performed for patients with BAV.

Valve function may be assessed in detail using echocardiography

and cardiac MR (56), whereas 4D flowMRI and CT scans can be

done to generate accurate and informative images of the aorta in

BAV patients (134).

These studies collectively confirm the safety, feasibility, and

potential clinical applicability of 4D flow MRI in assessing

and following BAV patients. They also show some of the

limitations associated with this imaging modality, which are

amplified by the heterogenous nature of the BAV patient

population. Future studies should include larger number of

healthy controls and BAV patients to map normal physiological

hemodynamics and identify BAV patients at risk of deadly

aortic complications. Indeed, a personalized medicine approach

to BAV aortopathy clinical decision-making involves detecting

flow derangements with 4D flow MRI and other imaging

modalities; assessing biomechanical wall properties; measuring

the levels of circulating biomarkers of wall remodeling and

endothelial dysfunction; and identifying genetic alterations.

Such parameters can be used to help determine which, if

any, regions of the aorta need to be resected; guide in the

timing and extent of any potential surgical interventions;

and provide prognostic insight into the clinical course

of aortopathy.

Conclusion

Bicuspid aortic valve is a congenital heart disease that

affects up to 2% of the general population. In addition to
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placing those patients at a higher risk for valvular dysfunction,

BAV predisposes patients to developing bicuspid aortopathy.

While some factors have been identified, our knowledge of

the potential genetic causes for BAV and bicuspid aortopathy

remains incomplete. Moreover, our understanding of the

altered hemodynamics and biomechanics that preside in this

patient population continues to evolve. Such an understanding

has been augmented by novel, non-invasive multimodality

imaging techniques. Collectively, these advances have been

translated to clinical practice, where care providers and surgeons

are now able to base their management plans on more

accurate evidence. This is an exciting area that seamlessly

blends principles in biomedical engineering with advanced

imaging techniques and precise treatment strategies that can

be personalized. Mathematical modeling, machine learning,

and other non-invasive biomarkers can herald the next

generation of impactful innovations for patients with BAV and

bicuspid aortopathy.
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